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4. On induction
4.1. Basic exercises

1. Prove that for all natural numbers n≥ 3, if n distinct points on a circle are joined in consecutive
order by straight lines, then the interior angles of the resulting polygon add up to 180 · (n− 2)
degrees.

We prove this property P(n) of all n≥ 3 by mathematical induction from basis 3.

Base case: n= 3. Three connected points on a circle must form a triangle: since they are
distinct, they cannot be collinear. The sum of internal angles of a triangle is 180°, which is
180 · (3− 2) degrees.

Inductive case: n = k + 1. Assume that IH⃝ P(k) holds and take an arbitrary polygon
constructed from k+ 1 points A1, . . . , Ak+1 on a circle. The (k+ 1)-gon can be separated
into a k-gon and a triangle with a line segment connecting A1 and Ak. By the induction
hypothesis IH⃝, the interior angles of the k-gon add up to Sk = 180 · (k− 2) degrees. The
sum of angles of the whole polygon is Sk+1 = Sk +∠AkA1Ak+1 +∠A1Ak+1Ak +∠A1AkAk+1,
where the angle terms belong to the triangle△A1AkAk+1. Since its interior angles must
add up to 180°, we have the expression for the sum of internal angles of the (k+ 1)-gon:

Sk+1 = Sk + 180°= 180 · (k− 2) + 180°= 180 · ((k+ 1)− 2)

A1A2

A3

Ak−1
Ak

Ak+1

� While the formula holds for any polygon, working with points on a circle makes the
inductive proof easier, since we never need to worry about three points being on the same
line and only making up one side.

� It may be tempting to approach the inductive step by starting with a k-gon, then adding
a new point to turn it into a (k+ 1)-gon and increasing the sum of internal angles by 180°.
The problem with this is that we are given a (k+ 1)-gon to start with, and its vertices are
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predetermined: we need to split it up into a triangle and a k-gon, no matter what the points
are. This distinction is fairly minor in this case and doesn’t cause any difficulties (any line
segment connecting two vertices one point apart will split do the job), but remembering
what parameters we have control over vs. what we are given (that is, what we need to
assume as being arbitrary) is very important in proofs, especially inductive ones. We will
see examples of this throughout this sheet.

2. Prove that, for any positive integer n, a 2n × 2n square grid with any one square removed can
be tiled with L-shaped pieces consisting of 3 squares.

We prove the property P(n) of all n≥ 1 by mathematical induction from basis 1:

P(n) = ∀0≤ i, j ≤ n. a 2n × 2n grid A with square Ai, j missing can be tiled

Base case: n= 1. Take a 21 × 21 = 2× 2 grid and assume one of the squares is missing.
This must be one of the following four situations, depending on which one of the 4 squares
was removed:

All resulting shapes can be tiled with one L-shaped piece consisting of three squares.

Inductive step: n= k+ 1. Assume IH⃝ P(k): a 2k × 2k grid with any square missing can be
tiled with L-shaped pieces. Take a 2k+1 × 2k+1 grid with any one square missing. The grid
can be split into four 2k × 2k quarters which we label by A, B, C and D; assume, without
loss of generality, that the missing square is in quarter A at position Ai, j . By the IH⃝ applied
to i and j, the quarter A can be tiled with Ai, j missing. Next, we use the IH⃝ applied to i = k
and j = 1 to tile quarter B with the bottom left square missing. Similarly, we tile C and D
with two applications of the induction hypothesis ( IH⃝(1, k) and IH⃝(1, 1), respectively) with
the top right and left corners missing. The three missing corners form an L-shaped hole of
3 squares in the middle of the 2k+1 × 2k+1 grid, which can be filled in with one additional
tile. This leaves only one missing square Ai, j with the rest of the grid tiled with L-shaped
pieces, so we are done.

D

B

C

A
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� This is an example of an inductive proof where the proposition P(n) is itself a universally
quantified statement: we state property for all grid size parameters n, and within a particular
grid of size 2n×2n, for all possible grid cells that could be missing. Thus, after case-splitting
on n, we still have a universally quantified proof obligation; however, in the inductive case,
we also have a universally quantified inductive assumption.

While the general pattern for proofs like this is just an instance of the standard induction
principle, it is worth analysing nevertheless:

To prove a property of the form

∀n ∈ N. ∀x ∈ A. P(n, x)

it is sufficient to prove

∀x ∈ A. P(0, x) and ∀k ∈ N. (∀y ∈ A. P(k, y)) =⇒ (∀x ∈ A. P(k+ 1, x))

The base case – which is usually seen as the “trivial” step – is now itself a universally
quantified statement which may not necessarily be easy to establish. Indeed, if the inner
quantification is over natural numbers as well, we may end up having to do another
inductive proof of ∀m ∈ N. P(0, m) if a direct proof (“Let m be an arbitrary natural number
and prove P(0, m). . . ”) is not possible.

The inductive step highlights the interplay between the two quantifications. Unwrapping
the formula, we get three assumptions: an arbitrary natural number k, an arbitrary element
x ∈ A, and a proof that P(k, y) holds for any choice of y ∈ A. In the process of the
proof, this induction hypothesis can be applied to any element y ∈ A, be it x ∈ A, a
value computed from x , or any other value arbitrarily chosen by us. There is a significant
difference between the inductive step above, and a formula such as

∀k ∈ N. ∀x ∈ A. P(k, x) =⇒ P(k+ 1, x)

which leaves us no flexibility in “tailoring” the IH to our needs by choosing an appropriate
value for x .

The question above had an inner universal quantification over the position of the missing
cell, so the proof cannot depend on any particular choice of position in the 2k+1 × 2k+1

grid. However, we do have control over the position of the missing cell when applying the
induction hypothesis to the 2k × 2k quarter grids: we can essentially think of the IH⃝ as a
“function” from coordinates (i, j) to the proof of “tileability”. To complete the inductive
step, we first apply the IH to the coordinates of the actual hole in the 2k+1 × 2k+1 within
the A quarter, then select the appropriate locations for the holes in the quarters B, C and
D to leave an L-shaped hole in the middle. We apply the IH⃝ both to the unknown values
(i, j) given to us by the universal quantifier on the LHS of the implication, as well as values
that we select deliberately to create space for an extra L-shaped tile.



D I S C R E T E M AT H E M AT I C S E X E R C I S E S 4 – S O LU T I O N S W I T H CO M M E N TA RY

� The phrase “without loss of generality” is often used to reduce repetition or make sim-
plifying assumptions that do not change the strength of the result. It is usually understood
that if the assumption is violated, it can be altered in an obvious way to make the rest of
the proof go through. It is important to ensure that the assumption really doesn’t affect
the generality of the statement: saying things like “w.l.o.g., assume n is even/nonzero/a
power of two” is sometimes tempting, but it’s rarely clear how the proof could be extended
to numbers which are odd/zero/not a power of two, and proving these cases may require
entirely different approaches to the one considered. Above, we assumed w.l.o.g. that the
hole is in quarter A so we don’t need to repeat the proof for all four quarters. The proofs
would not be exactly the same (e.g. if the hole was in quarter B, the IH would need to be
applied to the (i − k, j) coordinates of the 2k × 2k grid), but it’s clear that the general idea
would work in each case.

� The proof above doesn’t just show that a tiling is possible, it gives a concrete algorithm
for constructing it. Proofs like this are – unsurprisingly – called constructive proofs (also
known as effective proofs to avoid confusion with constructive mathematics), as opposed to
nonconstructive or pure existence proofs which show that a mathematical object exists, but
doesn’t give a concrete example or way of computing one. Constructive proofs by induction
naturally give rise to recursive algorithms, where the application of the IH⃝ corresponds to
a recursive call. Of course, when implementing the recursive algorithm, we don’t have the
luxury of saying that “without loss of generality, assume the user will never call the function
with the hole outside of quarter A” – we have to explicitly handle all four possibilities and
slightly different recursive calls to cover any possible input.

4.2. Core exercises
1. Establish the following:

(a) For all positive integers m and n,

(2n − 1) ·
m−1
∑

i=0

2i·n = 2m·n − 1

The first thing to note is that an inductive proof is not really necessary. Indeed, for
arbitrary positive integers m and n, one can calculate that

(2n − 1) ·
m−1
∑

i=0

2i·n =
m−1
∑

i=0

2(i+1)·n −
m−1
∑

i=0

2i·n

=
m−1
∑

i=1

2i·n + 2((m−1)+1)·n − 20·n −
m−1
∑

i=1

2i·n

= 2m·n − 1

However, as it is very instructive, two inductive proofs follow. Note the different,
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though subtle, ways in which the inductive hypothesis is used in each proof.

For the first proof, we show
∀m ∈ Z+. P(m)

for P(m) the statement

∀n ∈ Z+. (2n − 1) ·
m−1
∑

i=0

2i·n = 2m·n − 1

by the Principle of Induction.

Base case: m= 1. The statement P(1) amounts to

∀n ∈ Z+. (2n − 1) · 2i·n = 21·n − 1

which is vacuously true.

Inductive step: m = k+ 1. Let k be an arbitrary positive integer, and assume that the
Inductive Hypothesis P(k) holds for it; i.e. that

∀n ∈ Z+. (2n − 1) ·
k−1
∑

i=0

2i·n = 2k·n − 1 IH⃝1

We need show that P(k+ 1) follows; i.e. that

∀n ∈ Z+. (2n − 1) ·
(k+1)−1
∑

i=0

2i·n = 2(k+1)·n − 1

To this end, we let l be an arbitrary positive integer and proceed to show that

(2l − 1) ·
k
∑

i=0

2i·l = 2(k+1)·l − 1 1⃝

Indeed, instantiating the IH⃝1, we have that

(2l − 1) ·
k−1
∑

i=0

2i·l = 2k·l − 1 2⃝

and so that

(2l − 1) ·
k
∑

i=0

2i·l =

�

(2l − 1) ·
k−1
∑

i=0

2i·l

�

+ (2l − 1) · 2k·l

= 2k·l − 1+ (2l − 1) · 2k·l (by 2⃝)

= 2(k+1)·l − 1

establishing 1⃝ as required.
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For the second proof, to show

∀n ∈ Z+. ∀m ∈ Z+. (2n − 1) ·
m−1
∑

i=0

2i·n = 2m·n − 1

we let l be an arbitrary positive integer and prove

∀m ∈ Z+. Q(l, m)

for Q(l, m) the statement

(2l − 1) ·
m−1
∑

i=0

2i·l = 2m·l − 1

by the Principle of Induction.

Base case: m= 1. The statement Q(l, 1) amounts to

(2l − 1) · 20·l = 21·l − 1

which is vacuously true.

Inductive step: m = k+ 1. Let k be an arbitrary positive integer, and assume that the
Inductive Hypothesis Q(l, k) holds for it; i.e. that

(2l − 1) ·
k−1
∑

i=0

2i·l = 2k·l − 1 IH⃝2

We need show that Q(l, k+ 1) follows; i.e. that

Z+(2l − 1) ·
(k+1)−1
∑

i=0

2i·l = 2(k+1)·l − 1 1⃝

Indeed,

(2l − 1) ·
k
∑

i=0

2i·l =

�

(2l − 1) ·
k−1
∑

i=0

2i·l

�

+ (2l − 1) · 2k·l

= 2k·l − 1+ (2l − 1) · 2k·l (by IH⃝2)

= 2(k+1)·l − 1

establishing 1⃝ as required.

� The core of the proof is the same in both cases; the difference is how they set
up the induction hypothesis. The first proof includes the quantification over n in the
IH⃝1 and applies it to the arbitrary l in the proof to get a specific instance 2⃝. The
second proof fixes this l right from the start, introducing it as a new arbitrary variable
in the standard manner of proving universal quantification. Then, the predicate to
be established by inductively is “parameterised” by this l , so the statement Q(l, m)
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doesn’t actually need a nested quantification. Despite IH⃝2 not containing a universal
quantification, the proof only requires it at the specific l we already introduced. This
makes the second proof slightly simpler, but it would not work if we ever needed the
induction hypothesis at any other value of n.

(b) Suppose k is a positive integer that is not prime. Then 2k − 1 is not prime.

Let k be an arbitrary positive integer. We consider two cases:

• k = 1. The statement holds because 21 − 1= 1 is not prime.

• k ≥ 2. Assume that k ≥ 2 is not prime. Hence, it is of the form m · n for natural
numbers m, n greater than or equal 2. It follows from the previous item that
2k − 1 = 2m·n − 1 = (2n − 1) ·

∑m−1
i=0 2i·n; and, since 2n − 1 ≥ 22 − 1 = 3 and

∑m−1
i=0 2i·n ≥ 1 + 4 = 5, we have that 2k − 1 has a non-trivial decomposition.

Hence it is not prime.

2. Prove that
∀n ∈ N. ∀x ∈ R. x ≥ −1 =⇒ (1+ x)n ≥ 1+ n · x

We prove ∀n ∈ N. P(n) for P(n) the statement

∀x ∈ R. x ≥ −1=⇒ (1+ x)n ≥ 1+ n · x

by the Principle of Induction.

Base case: n= 0. The statement P(0) reduces to

∀x ∈ R. x ≥ −1=⇒ 1≥ 1

and holds vacuously.

Inductive step: n = k+1. Let k be an arbitrary natural number, and assume P(k); i.e. assume
the Inductive Hypothesis

∀x ∈ R. x ≥ −1=⇒ (1+ x)k ≥ 1+ k · x IH⃝

We need show that P(k+ 1) also holds; i.e. that

∀x ∈ R. x ≥ −1=⇒ (1+ x)k+1 ≥ 1+ (k+ 1) · x

To this end, we let y be an arbitrary real number, assume further that

y ≥ −1 1⃝

and proceed to show that
(1+ y)k+1 ≥ 1+ (k+ 1) · y 2⃝
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From IH⃝, by instantiation and Modus Ponens using 1⃝, one concludes that

(1+ y)k ≥ 1+ k · y

and from this, since by 1⃝ we have 1+ y ≥ 0, it follows that

(1+ y)k+1 = (1+ y)k · (1+ y)≥ (1+ k · y) · (1+ y) = 1+ (k+ 1) · y + k · y2

Thus, from the fact that k · y2 ≥ 0, 2⃝ holds.

3. Recall that the Fibonacci numbers Fn for n ∈ N are defined recursively by F0 = 0, F1 = 1, and
Fn+2 = Fn + Fn+1 for n ∈ N.

a) Prove Cassini’s Identity: For all n ∈ N,

Fn · Fn+2 = Fn+1
2 + (−1)n+1

We prove
∀n ∈ N. Fn · Fn+2 = Fn+1

2 + (−1)n+1

by the Principle of Induction.

Base case: n= 0. We have that

F0 · F2 = F1
2 + (−1)1

because F0 = 0 and F1 = 1.

Inductive step: n = k+1. For any natural number k, assume the Induction Hypothesis

Fn · Fk+2 = Fk+1
2 + (−1)k+1

which can be rearranged to the following form by subtracting (−1)k+1:

Fk+1
2 = (−1)k + Fn · Fk+2 IH⃝

We need show that

Fk+1 · F(k+1)+2 = F(k+1)+1
2 + (−1)(k+1)+1

i.e. that
Fk+1 · Fk+3 = Fk+2

2 + (−1)k

for which one calculates as follows:

Fk+1 · Fk+3 = Fk+1
2 + Fk+1 · Fk+2 (Fk+3 = Fk+1 + Fk+2)

= (−1)k + Fn · Fk+2 + Fk+1 · Fk+2 (by IH⃝)
= (−1)k + Fk+2

2 (Fk+2 = Fk + Fk+1)

b) Prove that for all natural numbers k and n,

Fn+k+1 = Fn+1 · Fk+1 + Fn · Fk
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We prove that
∀k ∈ N. P(k)

for P(k) the statement

∀n ∈ N. Fn+k+1 = Fn+1 · Fk+1 + Fn · Fk

by the Principle of Induction.

Base case: We need show that

∀n ∈ N. Fn+1 = Fn+1 · F1 + Fn · F0

which holds because F1 = 1 and F0 = 0.

Inductive step: For an arbitrary natural number k, assume the Induction Hypothesis

∀n ∈ N. Fn+k+1 = Fn+1 · Fk+1 + Fn · Fk IH⃝

We need show that

∀n ∈ N. Fn+(k+1)+1 = Fn+1 · F(k+1)+1 + Fn · Fk+1

i.e. that
∀n ∈ N. Fn+k+2 = Fn+1 · Fk+2 + Fn · Fk+1 1⃝

To this end, we let m be an arbitrary natural number and proceed to show the
equivalent identity:

F(m+1)+k+1 = Fm+1 · Fk+2 + Fm · Fk+1 2⃝

Indeed, instantiating the universally-quantified Induction Hypothesis IH⃝ for the nat-
ural number m+ 1, one has that

F(m+1)+k+1 = F(m+1)+1 · Fk+1 + Fm+1 · Fk

from which one further calculates as follows:

F(m+1)+1 · Fk+1 + Fm+1 · Fk

= Fm · Fk+1 + Fm+1 · Fk+1 + Fm+1 · Fk (F(m+1)+1 = Fm + Fm+1)
= Fm · Fk+1 + Fm+1 · Fk+2 (Fk+2 = Fk + Fk+1)

to conclude 2⃝.

� This is an example of a proposition that could also be established by nested
induction: rather than show 1⃝ directly for an arbitrary n ∈ N, we could do another
base case for n= 0 and inductive case for n= m+ 1. It’s not always obvious when
this is required, but quite often results in a lengthier, but simpler proof.

� If either of k or n is positive, this identity gives a way of expanding Fn+k as a sum
of products of Fibonacci numbers – a useful property whenever the index is a sum.
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c) Deduce that Fn | Fl·n for all natural numbers n and l .

We prove that
∀l ∈ N. P(l)

for P(l) the statement
∀n ∈ N. Fn | Fl·n

by the Principle of Induction.

Base case: We need to show that

∀n ∈ N. Fn | F0·n

i.e. that
∀n ∈ N. Fn | 0

which holds because we know that every integer divides 0 from §1.2.1(b).

Inductive step: For an arbitrary natural number l , assume the Induction Hypothesis

∀n ∈ N. Fn | Fl·n IH⃝

We need to show that
∀n ∈ N. Fn | F(l+1)·n

i.e. that
∀n ∈ N. Fn | Fl·n+n

To this end, let n ∈ N be an arbitrary natural number. We first consider the case when
n = 0: we have F0 | Fl·0+0 from the fact that 0 | 0 (see §1.2.1(a)). Otherwise, we can
express Fl·n+n as Fl·n+(n−1)+1 and expand using §4.2.3(b) as follows:

Fl·n+(n−1)+1

= Fl·n+1 · F(n−1)+1 + Fl·n · Fn−1 (by §4.2.3(b))
= Fl·n+1 · Fn + k · Fn · Fn−1 (by IH⃝, ∃k ∈ Z. Fl·n = k · Fn)
= Fn · (Fl·n+1 + k · Fn−1)

Thus, F(l+1)·n = k′ · Fn for k′ = Fl·n+1 + k · Fn−1, showing that Fn | F(l+1)·n, as required.

� Words like “deduce” and “conclude” are a dead giveaway that you should be using
properties you showed in a previous part of the question, so you should always try
to transform the proposition or play around with your assumptions until a previous
lemma could be applied – this step often takes care of the “hard part” of the proof.
In this exercise the inductive step gave us Fl·n+n; since the index is a sum of two
natural numbers with n positive, we notice that the previous identity can be applied
to expand the term into two more “manageable” subterms.

d) Prove that gcd(Fn+2, Fn+1) terminates with output 1 in n steps for all positive integers n.
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We prove that

∀n ∈ N. gcd(Fn+2, Fn+1) terminates with output 1 in n steps

by the Principle of Induction.

Base case: We need to show that

gcd(F3, F2) terminates with output 1 in 1 step

Since F3 = 2 and F2 = 1 and 1 | 2, the algorithm terminates with the base case of
F2 = 1 after one step.

Inductive step: For an arbitrary natural number k, assume the Induction Hypothesis

gcd(Fk+2, Fk+1) terminates with output 1 in k steps IH⃝

We need to prove that

gcd(Fk+3, Fk+2) terminates with output 1 in k+ 1 steps

By the definition of Fibonacci numbers, Fk+3 = Fk+2+ Fk+1. Since Fk+2 ≥ Fk+1, this is a
valid quotient-remainder decomposition of Fk+3 so by the Division Theorem we have
that quo(Fk+3, Fk+2) = 1 and rem(Fk+3, Fk+2) = Fk+1. As Fk+1 is positive, Fk+2 ∤ Fk+3

and gcd(Fk+3, Fk+2) steps to gcd(Fk+2, rem(Fk+3, Fk+2)) = gcd(Fk+2, Fk+1). By the IH⃝,
this terminates with output 1 in k steps; thus, starting with the additional computation
step, gcd(Fk+3, Fk+2) terminates with output 1 in k+ 1 steps.

e) Deduce also that:

(i) for all positive integers n< m, gcd(Fm, Fn) = gcd(Fm−n, Fn),

and hence that:

(ii) for all positive integers m and n, gcd(Fm, Fn) = Fgcd(m,n).

Firstly, we prove the following statement equivalent to (i):

For all positive integers n and natural numbers k,

gcd(Fn+k+1, Fn) = gcd(Fk+1, Fn)

We make use of the following corollary/restatement of Theorem 61, which allows us
to use properties of Euclid’s Algorithm in reasoning about gcds:

For all positive integers m and n, gcd(m, n) = gcd(m, n).

In particular, we can adapt the recursive case of the definition of gcd into:

∀m, n ∈ Z+. gcd(m, n) = gcd(rem(m, n), n) 1⃝

https://www.cl.cam.ac.uk/teaching/current/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=192
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and the previous part §4.2.3(d) (shifted to positive integers) into:

∀m ∈ Z+. gcd(Fm+1, Fm) = 1 2⃝

Now, let n be a positive integer and k a natural number. Then,

gcd(Fn+k+1, Fn) = gcd(Fn+1 · Fk+1 + Fn · Fk, Fn) (by §4.2.3(b))
= gcd(rem(Fn+1 · Fk+1 + Fn · Fk, Fn), Fn) (by 1⃝)
= gcd(Fn+1 · Fk+1, Fn) (by §2.1.3(a))
= gcd(Fk+1, Fn) (by §3.2.2 and 2⃝)

Secondly, we prove the following statement from which (ii) follows:

for all positive integers l , P(l)

where P(l) is the statement:

for all positive integers m, n,
if gcd0(n, m) terminates in l steps then gcd(Fm, Fn) = Fgcd(m,n)

for gcd0 the function from §3.3.3. The proof is by the Principle of Induction.

Base case: Let m, n be arbitrary positive integers. Assume that gcd0(m, n) terminates
in 1 step. Then m= n and gcd(Fm, Fn) = Fm = Fgcd(m,n).

Inductive step: Let l be an arbitrary positive integer, and assume the Induction
Hypothesis P(l). Further, let m, n be arbitrary positive integers, and assume that
gcd0(m, n) terminates in l + 1 steps Then, for p = min(m, n) and q = max(m, n),
gcd0(m, n) = gcd0(p, q− p) and gcd0(p, q− p) terminates in l steps. Thus, by the
Induction Hypothesis, we have that gcd(Fq−p, Fp) = Fgcd(q−p,p). Finally, since by the
previous item, gcd(Fm, Fn) = gcd(Fq, Fp) = gcd(Fq−p, Fp) and Fgcd(q−p,p) = Fgcd(q,p) =
Fgcd(m,n) we are done.

� One can intuitively deduce that property (ii) holds because we are performing the
simplified Euclid’s Algorithm (with repeated subtraction rather than remainder) on
the indices of the Fibonacci number via a repeated application of property (i). This is
indeed the case, but formulating this into a proof is far from obvious. Given that this
is an exercise sheet on inductive proofs, we could try doing induction on m or n, only
to notice that we can’t make use of the inductive hypothesis in any meaningful way.
Indeed, the “repetition” that we’re trying to capture has nothing to with the numerical
value of m or n directly, but rather the number of times we have to apply property (i)
to compute their gcd. Given m, n ∈ Z+, we either cannot apply (i) because m and n
are equal, or we can apply it once to get gcd(Fm−n, Fn), recursively apply it l more
times to get Fgcd(m−n,n), and then “unapply” one step of gcd0 to get Fgcd(m,n).

Extracting a strong enough induction hypothesis from this intuition is still nontrivial
and requires us to explicitly refer to the termination of gcd0. Moreover, m and n
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are universally quantified in the induction statement and the required property
gcd(Fm, Fn) = Fgcd(m,n) is made dependent on a termination hypothesis that refers to
the induction variable l , rather than relating the two with a conjunction. This means
that when proving the inductive case, we can assume that gcd0(n, m) terminates
in more than one step, and execute one step of the algorithm manually by applying
property (i). It may take several attempts to construct sufficiently strong induction
hypotheses, and as this exercise shows, they are not always as direct as case-analysing
on a positive/nonnegative integer that is quantified over in the proposition.

f) Show that for all positive integers m and n, (Fm · Fn) | Fm·n if gcd(m, n) = 1.

Since m and n are coprime, §4.2.3(e) gives:

gcd(Fm, Fn) = Fgcd(m,n) = F1 = 1

implying that Fm and Fn are themselves coprime. From §4.2.3(c) we know that Fm | Fm·n

and Fn | Fm·n. This, together with coprimality of Fm and Fn and §3.2.2 implies that
Fm · Fn | Fm·n, as required.

g) Conjecture and prove theorems concerning the following sums for any natural number n:

(i)
∑n

i=0 F2·i

After some test cases we conjecture the following identity:
n
∑

i=0

F2·i = F2n+1 − 1

and prove it by the Principle of Induction.

Base case: n= 0. The sum consists of a single term F2·0 = F0 = 0, which equals
F2·0+1 − 1= F1 − 1= 0.

Inductive step: n= k+ 1. We assume the Induction Hypothesis
k
∑

i=0

F2·i = F2k+1 − 1 IH⃝

and prove that
k+1
∑

i=0

F2·i = F2(k+1)+1 − 1

We can calculate as follows:
k+1
∑

i=0

F2·i = F2·(k+1) +
k
∑

i=0

F2·i

= F2k+2 + F2k+1 − 1 (by IH⃝)
= F2k+3 − 1= F2(k+1)+1 − 1

(ii)
∑n

i=0 F2·i+1
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We conjecture the following identity:
n
∑

i=0

F2·i+1 = F2n+2

and prove it by the Principle of Induction.

Base case: n = 0. The sum consists of a single term F2·0+1 = F1 = 1, which equals
F2·0+2 = F2 = 1.

Inductive step: n= k+ 1. We assume the Induction Hypothesis
k
∑

i=0

F2·i+1 = F2k+2 IH⃝

and prove that
k+1
∑

i=0

F2·i+1 = F2(k+1)+2

We can calculate as follows:
k+1
∑

i=0

F2·i+1 = F2·(k+1)+1 +
k
∑

i=0

F2·i+1

= F2k+3 + F2k+2 (by IH⃝)
= F2k+4 = F2(k+1)+2

(iii)
∑n

i=0 Fi

We conjecture the following identity:
n
∑

i=0

Fi = Fn+2 − 1

We can prove this by induction as before. Instead, we derive it from the previous
two results by case-analysis on n:

Case n = 2k. If k is 0, the sum is 0 = F0+2 − 1. Otherwise, the sum consists of
the first k even Fibonacci numbers plus the first (k− 1) odd Fibonacci numbers:

2k
∑

i=0

Fi =

�

k
∑

i=0

F2·i

�

+

�

k−1
∑

i=0

F2·i+1

�

= F2k+1 + F2k − 1= F2k+2 − 1

Case n = 2k + 1. The sum consists of the sum of the first k even Fibonacci
numbers plus the first k odd Fibonacci numbers:

2k
∑

i=0

Fi =

�

k
∑

i=0

F2·i

�

+

�

k
∑

i=0

F2·i+1

�

= F2k+1 − 1+ F2k+2 = F(2k+1)+2 − 1



D I S C R E T E M AT H E M AT I C S E X E R C I S E S 4 – S O LU T I O N S W I T H CO M M E N TA RY

4.3. Optional exercises
1. Recall the gcd0 function from §3.3.3. Use the Principle of Mathematical Induction from basis 2

to formally establish the following correctness property of the algorithm:

For all natural numbers l ≥ 2, we have that for all positive
integers m, n, if m+ n≤ l then gcd0(m, n) terminates.

As suggested, we proceed by Mathematical Induction from basis 2.

Base case: We need show that for all positive integers m, n, if m+ n≤ 2 then gcd0(m, n)
terminates. To this end, we let m and n be arbitrary positive integers, and assume that
m+ n≤ 2. Then, m= n= 1 and gcd0(m, n) terminates.

Inductive step: Let l be an arbitrary natural number greater than or equal 2, and assume
the Induction Hypothesis

For all positive integers m, n, if m+ n≤ l then gcd0(m, n) terminates. IH⃝

We need show that for all positive integers m, n, if m+n≤ l+1 then gcd0(m, n) terminates.
To this end, we let a, b be arbitrary positive integers, assume that a+ b ≤ l + 1, and
proceed to prove that gcd0(a, b) terminates.

We consider three cases.

• If a = b, then gcd0(a, b) terminates.

• If a < b, then gcd0(a, b) = gcd0(a, b− a). Moreover, by the Inductive Hypothesis IH⃝,
we have that

if a+ (b− a)≤ l then gcd0(a, b− a) terminates,

and since
a+ (b− a) = b ≤ l + 1− a ≤ l

it follows that gcd0(a, b− a) terminates and therefore that so does gcd0(a, b).

• If b < a, then gcd0(a, b) = gcd0(a, a− b). Moreover, by the Inductive Hypothesis IH⃝,
we have that

if b+ (a− b)≤ l then gcd0(a, a− b) terminates,

and since
b+ (a− b) = a ≤ l + 1− b ≤ l

it follows that gcd0(a, a− b) terminates and therefore that so does gcd0(a, b).

2. The set of univariate polynomials (over the rationals) on a variable x is defined as that of
arithmetic expressions equal to those of the form

∑n
i=0 ai · x i , for some n ∈ N and some

coefficients a0, a1, . . . , an ∈Q.

(a) Show that if p(x) and q(x) are polynomials then so are p(x) + q(x) and p(x) · q(x).



D I S C R E T E M AT H E M AT I C S E X E R C I S E S 4 – S O LU T I O N S W I T H CO M M E N TA RY

Let p(x) =
∑m

i=0 ai · x i and q(x) =
∑n

j=0 b j · x j be polynomials, and assume without
loss of generality that m> n. For simplicity, we extend the coefficients ai and b j to all
natural indices, with ai = 0 for m< i and b j = 0 for n< j. Then, the sum p(x)+q(x)
is a polynomial (of degree m) because it is of the form:

p(x) + q(x) =
m
∑

i=0

(ai + bi) · x i

where the coefficients ai + bi are rational numbers since Q is closed under addition.

For the product p(x) ·q(x), we calculate using the distributivity of multiplication over
addition:

p(x) · q(x) =

�

m
∑

i=0

ai · x i

�

·

�

n
∑

j=0

b j · x j

�

=
m
∑

i=0

�

ai · x i ·
n
∑

j=0

b j · x j

�

=
m
∑

i=0

n
∑

j=0

ai · x i · b j · x j

=
m
∑

i=0

n
∑

j=0

ai · b j · x i+ j

The number of terms in the sum of a fixed degree d will be equal to the number of
ways one can construct d as a sum of an i ≤ m and a j ≤ n; for example there will
be at most one term of degree 0 or m+ n, two terms of degree 1 = 1+ 0 = 0+ 1
and m+ n− 1 = m+ (n− 1) = (m− 1) + n, three of degree 2 and m+ n− 2 and
so on. Terms of the same degree can be combined, with their coefficients getting
added together. Using our extended coefficient indexing, the coefficient of the term
of degree k can be concisely expressed as:

ck =
k
∑

j=0

a j · bk− j

As expected, c0 = a0 · b0 (the constant terms), cm+n = a0 · b+m+ n+ · · ·+ am · bn +
· · ·+ am+n b0 = 0+ · · ·+ am · bn + · · ·+ 0 (most of the coefficients are “out of range”
and are 0) and cn = a0 · bn + a1 · bn−1 + · · ·+ an · b0 (n nonzero coefficients). Since
these are all rational numbers, the product of two polynomials is indeed a polynomial
(of degree m+ n) because it is of the form:

p(x) · q(x) =
m+n
∑

k=0

ck · x k

(b) Deduce as a corollary that, for all a, b ∈Q, the linear combination a · p(x) + b · q(x) of
two polynomials p(x) and q(x) is a polynomial.
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Every rational number a can be seen as a polynomial of degree 0, with its only
coefficient being a. Thus, a·p(x) is a product of polynomials and hence is a polynomial.
The sum of two such expressions is still a polynomial, so we can conclude that the
linear combination a · p(x)+ b ·q(x) of two polynomials for a, b ∈Q is a polynomial.

(c) Show that there exists a polynomial p2(x) such that p2(n) =
∑n

i=0 i2 = 02 + 12 + · · ·+ n2

for every n ∈ N.1

Hint: Note that for every n ∈ N,

(n+ 1)3 =
n
∑

i=0

(i + 1)3 −
n
∑

i=0

i3

The required polynomial is

p2(n) =
1
3

n3 +
1
2

n2 +
1
6

n

We show that this is a sum of squares for any n ∈ N by induction.

Base case: n = 0. The polynomial reduces to 0, which is the sum of the square number
0= 02.

Inductive step: n= k+ 1. Assume the Induction Hypothesis:

p2(k) =
1
3

k3 +
1
2

k2 +
1
6

k =
k
∑

i=0

i2 IH⃝

We need to prove that

p2(k+ 1) =
k+1
∑

i=0

i2

The polynomial expands as follows:

p2(k+ 1) =
1
3
(k+ 1)3 +

1
2
(k+ 1)2 +

1
6
(k+ 1)

=
1
3

k3 + k2 + k+
1
3
+

1
2

k2 + k+
1
2
+

1
6

k+
1
6

=
�

1
3

k3 +
1
2

k2 +
1
6

k
�

+ k2 + 2k+
1
3
+

1
2
+

1
6

=
k
∑

i=0

i2 + (k2 + 2k+ 1) (by IH⃝)

=
k
∑

i=0

i2 + (k+ 1)2 =
k+1
∑

i=0

i2

Thus p2(k+ 1) is the sum of consecutive squares, as required.

1Chapter 2.5 of Concrete Mathematics by R.L. Graham, D.E. Knuth and O. Patashnik looks at this in great detail.
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� As is usual with existence proofs, the hard work is done behind the scenes and we
start off the formal proof by magically producing a witness that just so happens to
satisfy the required property. The required witness for the existence was calculated
from the supplied hint:

(n+ 1)3 =
n
∑

i=0

(i + 1)3 −
n
∑

i=0

i3

=
n
∑

i=0

(i3 + 3i2 + 3i + 1)−
n
∑

i=0

i3

=

�

n
∑

i=0

3i2 + 3i + 1

�

+
n
∑

i=0

i3 −
n
∑

i=0

i3

=
n
∑

i=0

3i2 + 3i + 1= 3 ·
n
∑

i=0

i2 +
n
∑

i=0

3i + 1

Rearranging, we get that
n
∑

i=0

i2 =
1
3

�

(n+ 1)3 −
n
∑

i=0

3i + 1

�

=
1
3

�

n3 + 3n2 + 3n+ 1−
�

n+ 1+
3
2
(n2 + n)
��

=
1
3

n3 + n2 + n+
1
3
−

1
3

n−
1
3
−

1
2

n2 +
1
2

n

=
1
3

n3 +
1
2

n2 +
1
6

n

Now, we suspect that this is the right answer, but the formal proof should start with
the statement of the answer followed by a proof that it satisfies the required property.
This is especially important in this case, when the proposed witness was calculated
using the (unverified) hint; separately proving that the polynomial is a sum of squares
makes our answer independent of the hint. The formal proof may well be done using a
different technique (in this case, induction), but it should not present any unpleasant
surprises since our proposed witness is almost certainly correct.

Of course, the statement for this question is a rather obfuscated way of saying “find a
formula for the sum of the first n square numbers”. You may already have it memorised
as

n
∑

i=0

i2 =
n(n+ 1)(2n+ 1)

6

Multiplying things out indeed leads to the formula for the polynomial p2(n) we had
above. Even if we recognise this shortcut (instead of deriving it from the hint), we still
need to prove that the formula works – this is still best accomplished using induction.

(d) Show that, for every k ∈ N, there exists a polynomial pk(x) such that, for all n ∈ N,
pk(n) =
∑n

i=0 ik = 0k + 1k + · · ·+ nk.
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Hint: Generalise the hint above, and the similar identity

(n+ 1)2 =
n
∑

i=0

(i + 1)2 −
n
∑

i=0

i2

For k ∈ N, P(k) be the statement

There exists a polynomial pk(x) such that, for all n ∈ N, pk(n) =
∑n

i=0 ik.

We prove this by the Principle of Strong Induction.

Base case: The polynomial needs to satisfy p0(n) =
∑n

i=0 i0; since i0 = 1, this is
simply equal to p0(n) = n+ 1, which is a polynomial.

Inductive step: Assume the Strong Induction Hypothesis: for all 0≤ l ≤ k,

there exists a polynomial pl(x) such that, for all n ∈ N, pl(n) =
n
∑

i=0

i l . IH⃝S

We need to show that P(k+ 1) holds, that is

there exists a polynomial pk+1(x) such that, for all n ∈ N, pk+1(n) =
∑n

i=0 ik+1

The required witness of existence is

pk+1(n) =
1

k+ 2

�

(n+ 1)k+2 −
k
∑

j=0

�

k+ 2
j

�

· p j(n)

�

E⃝

This is indeed a polynomial since:

• p j(n) is a polynomial for all 0≤ j ≤ k by the Strong Induction Hypotheses, and
∑k

j=0

�k+2
j

�

p j(n) is a linear combination of polynomials which is a polynomial;

• (n+ 1)k+1 can be expanded using the Binomial Theorem into a sum of powers of
n with binomial coefficients, so it too is a polynomial;

• the sum of two polynomials is a polynomial, and 1
k+2 is a rational coefficient.

We prove that pk+1(n) =
∑n

i=0 ik+1 for all n ∈ N by induction on n.

Base case: As before, pk+1(0) = 0.

Inductive step: Assume the Induction Hypothesis

pk+1(n) =
n
∑

i=0

ik+1 IH⃝

and prove that

pk+1(n+ 1) =
n+1
∑

i=0

ik+1



D I S C R E T E M AT H E M AT I C S E X E R C I S E S 4 – S O LU T I O N S W I T H CO M M E N TA RY

First, we note the following two calculations:

(n+ 2)k+2 = ((n+ 1) + 1)k+2 =
k+2
∑

i=0

�

k+ 2
i

�

(n+ 1)i (Binomial Theorem)

= (n+ 1)k+2 + (k+ 2) · (n+ 1)k+1 +
k
∑

i=0

�

k+ 2
i

�

(n+ 1)i (extract two summands)

k
∑

j=0

�

k+ 2
j

�

· p j(n+ 1)

=
k
∑

j=0

�

k+ 2
j

�

·
n+1
∑

a=0

a j =
n+1
∑

a=0

k
∑

j=0

�

k+ 2
j

�

· a j (by IH⃝S and distributivity)

=
k
∑

j=0

�

k+ 2
j

�

· (n+ 1) j +
n
∑

a=0

k
∑

j=0

�

k+ 2
j

�

· a j (extract last summand)

Combining the two, we have that

(n+ 2)k+2 −
k
∑

j=0

�

k+ 2
j

�

· p j(n+ 1)

= (n+ 1)k+2 + (k+ 1) · (n+ 1)k+1 −
n
∑

a=0

k
∑

j=0

�

k+ 2
j

�

· a j 1⃝

Now we are ready to expand the polynomial of the inductive step:

pk+1(n+ 1)

=
1

k+ 2

�

(n+ 2)k+2 −
k
∑

j=0

�

k+ 2
j

�

· p j(n+ 1)

�

=
1

k+ 2

�

(n+ 1)k+2 + (k+ 2) · (n+ 1)k+1 −
n
∑

a=0

k
∑

j=0

�

k+ 2
j

�

· a j

�

(by 1⃝)

=
1

k+ 2

�

(n+ 1)k+2 −
n
∑

a=0

k
∑

j=0

�

k+ 2
j

�

· a j

�

+ (n+ 1)k+1

=
1

k+ 2

�

(n+ 1)k+2 −
k
∑

j=0

�

k+ 2
j

�

·
n
∑

a=0

a j

�

+ (n+ 1)k+1

=
1

k+ 2

�

(n+ 1)k+2 −
k
∑

j=0

�

k+ 2
j

�

· p j(n)

�

+ (n+ 1)k+1 (by IH⃝S)

= pk+1(n) + (n+ 1)k+1 =
n
∑

i=0

ik+1 + (n+ 1)k+1 =
n+1
∑

i=0

ik+1 (by E⃝ and IH⃝)

Thus, we have shown (by the nested Mathematical Induction) that our definition of
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pk+1(n) by E⃝ indeed satisfies pk+1(n) =
∑n

i=0 ik+1 for all n ∈ N. Then, by the outer
Strong Induction, we can conclude that there exists a polynomial pk(n) for all k ∈ N
that satisfies pk(n) =

∑n
i=0 ik for all n ∈ N.

� Once again, we found the witness E⃝ by calculating backwards from the (conjec-
tured) generalisation of the hint

(n+ 1)k =
n
∑

i=0

(i + 1)k −
n
∑

i=0

ik

We could prove that this holds, but we can also use it without proof to derive the
witness, as long as we then formally show that the witness is correct. Given that the
property is only used behind the scenes as an “educated guess”, it will not invalidate
the proof even if the conjecture is actually incorrect. The calculation of the witness is
as follows:

(n+ 1)k+2 =
n
∑

m=0

(m+ 1)k+2 −
n
∑

m=0

mk+2

=

�

n
∑

m=0

k+2
∑

j=0

�

k+ 2
j

�

·m j

�

−
n
∑

m=0

mk+2 (Binomial Theorem)

=

�

k+2
∑

j=0

n
∑

m=0

�

k+ 2
j

�

·m j

�

−
n
∑

m=0

mk+2 (commute summation)

=
k+1
∑

j=0

n
∑

m=0

�

k+ 2
j

�

·m j (subtract last summand)

=
n
∑

m=0

�

k+ 2
k+ 1

�

·mk+1 +
k
∑

j=0

n
∑

m=0

�

k+ 2
j

�

·m j (extract last summand)

= (k+ 2)
n
∑

m=0

mk+1 +
k
∑

j=0

�

k+ 2
j

�

·
n
∑

m=0

m j (binom. coefficient)

= (k+ 2)
n
∑

m=0

mk+1 +
k
∑

j=0

�

k+ 2
j

�

· p j(n) ( IH⃝S)

We rearrange this to get
∑n

m=0 mk+1 and set that as the witness formula for pk+1(n).

� This proof is a rather involved example of a nested, mixed induction proof: we do
strong induction over k ∈ N and mathematical induction over n ∈ N when proving
that our proposed witness E⃝ for pk+1(n) (the inductive case of the outer induction)
is correct. The strong induction hypothesis IH⃝S is used throughout the proof, both in
the derivation of the witness and the proof of its correctness.

� Note that we haven’t actually constructed a closed-form expression for pk(n), but
a recursive algorithm for computing it from formulae for lower degrees. Importantly,
we established that the recursive expression is indeed a polynomial using the clos-
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ure properties proved in earlier parts. This is sufficient to prove that there exists a
polynomial expression for

∑n
i=0 ik, but of course one has to do quite some additional

work to extract the degree and the coefficients of the polynomial from the recursive
construction. The general, closed-form expression is known as Faulhaber’s Formula
and features the Bernoulli numbers, a rather irregular-looking sequence of rational
numbers used throughout mathematics; for instance, B14 =

7
6 , B15 = 0, B16 = −

3617
510 .
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