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2. On numbers
2.1. Basic exercises

1. Let i, j be integers and let m, n be positive integers. Show that:

a) i ≡ i (mod m)

By §1.2.1(b), every number divides i − i = 0, so m | i − i.

b) i ≡ j (mod m) =⇒ j ≡ i (mod m)

Assume i ≡ j (mod m). Then m | i − j; i.e. i − j = k ·m for some integer k. Thus,
j − i = (−k) ·m, and as −k is an integer m | j − i; i.e. j ≡ i (mod m).

c) i ≡ j (mod m) ∧ j ≡ k (mod m) =⇒ i ≡ k (mod m)

Assume i ≡ j (mod m) ∧ j ≡ k (mod m). Then, m | i − j and m | j − k. Hence, by
§1.2.6(a), m | (i − j) + j − k = i − k and thus i ≡ k (mod m).

� When working with congruence, we have three layers of definitions: i ≡ j (mod m),
defined as m | i− j, defined as ∃k ∈ Z. i− j = k ·m. To prove fundamental properties
about congruence (symmetry or transitivity), we usually need to go “down a level”
and reason about divisibility. At this level, we may be able to use known properties
of divisibility, such as in part (c); other times it may be easier to go further down, and
talk about the primitive definition of divisibility, such as in part (b). In the second
case we are essentially proving a lemma about divisibility “inline”: that d | m implies
d | −m. Alternatively, we may notice that this property follows as a direct corollary of
§1.2.6(b), with the multiplicative constant k = −1. The statement we prove is valid
either way, but in some cases writing a quick inline proof may be easier or harder
than finding if it is an instance of some existing property.

2. Prove that for all integers i, j, k, l , m, n with m positive and n nonnegative,

a) i ≡ j (mod m) ∧ k ≡ l (mod m) =⇒ i + k ≡ j + l (mod m)

Assume i ≡ j (mod m) ∧ k ≡ l (mod m). Then, m | i − j and m | k − l . Hence, by
§1.2.6(a), m | (i − j) + (k− l) = (i + k)− ( j + l) and i + k ≡ j + l (mod m).

b) i ≡ j (mod m) ∧ k ≡ l (mod m) =⇒ i · k ≡ j · l (mod m)

Assume i ≡ j (mod m) ∧ k ≡ l (mod m). Then, m | (i− j) and m | (k− l). By §1.2.6(b),
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m | i · (k− l) and m | l · (i− j); and, by §1.2.6(a), m | i · (k− l)+ l · (i− j) = i · k− j · l .
Hence, i · k ≡ j · l (mod m).

c) i ≡ j (mod m) =⇒ in ≡ jn (mod m)

For n = 0, in ≡ jn (mod m) always. Assume now 1⃝ i ≡ j (mod m). Then, for n = 1, we
are done by assumption. For n = 2, by the previous item, we have 2⃝ i2 ≡ j2 (mod m).
From 1⃝ and 2⃝, again by the previous item, we have i3 ≡ j3 (mod m). Iterating this
process we get in ≡ jn (mod m) for every value of n.

� If you’re familiar with it, you may be screaming “induction!” – indeed, a formal
proof requires the mathematical Principle of Induction, which will be studied later in
the course.

� These properties of congruence are fairly simple to state and prove, but combined
with the previous exercise they form the basis of equational proofs about congruence.
They allow us to extend a congruence between two integers into a congruence between
two algebraic (polynomial) expressions of arbitrary nesting which differ in those two
integers. For example, if we know that i ≡ j (mod m), we also know (3i2 + 5i − 7)4 ≡
(3 j2 + 5 j − 7)4 (mod m) by repeatedly applying the properties proved in this exercise:
i ≡ j (mod m) implies i2 ≡ j2 (mod m) implies 3i2 ≡ 3 j2 (mod m) and so on. This
is really helpful in equational proofs in modular arithmetic, because we can rewrite
parts of an expression not only if they are equal, but also when they are merely
congruent. We will see examples of this shortly.

3. Prove that for all natural numbers k, l and positive integers m,

a) rem(k ·m+ l, m) = rem(l, m)

By the Division Theorem,

l = quo(l, m) ·m+ rem(l, m)

and hence
k ·m+ l =
�

k+ quo(l, m)
�

·m+ rem(l, m)

from which it follows by the Division Theorem that

quo(k ·m+ l, m) = k+ quo(l, m) and rem(k ·m+ l, m) = rem(l, m) .

� The Division Theorem may seem like a dramatic name for a fairly obvious and
unremarkable statement: that numbers can be divided with a remainder. But, in fact,
the theorem is quite powerful and allows one to prove properties surprisingly easily.
Let’s remind ourselves of the full statement:

For every natural number m and positive natural number n, there exists a unique
pair of integers q and r such that 0≤ q, 0≤ r < n, and m= q · n+ r .

https://www.cl.cam.ac.uk/teaching/current/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=156
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This is a unique existence statement, a form very common in mathematics. The
associated proof technique relies both on the existence and uniqueness components.
To highlight the former, consider the following alternative statement of the Division
Theorem:

Given any natural number m and for any choice of positive integer n, we can write m
as m= q · n+ r where q and r are unique integers satisfying 0≤ q and 0≤ r < n.

This form emphasises the fact that if we have a natural number m, we can choose
any natural number n, and the theorem guarantees that it’s possible to write m in
terms of n in the specific form m= q · n+ r for two unique naturals satisfying 0≤ q
and 0 ≤ r < n. In essence, we get immediate “access” to two naturals q and r and
two new assumptions about these naturals, as well as their uniqueness proofs.

Since q and r are uniquely determined by m and n, we can write them as quo(m, n)
and rem(m, n) as if quo and rem were functions. In reality, they are just shorthands
for “the natural q (resp. r) determined from m and n by the Division Theorem”. With
these, you can succinctly state the Division Theorem as

Any natural number m can be expressed as m= quo(m, n) · n+ rem(m, n) for any
choice of positive integer n, with quo(m, n), rem(m, n) ∈ N and rem(m, n)< n.

You may well ask “why go through all this when we have the integer division and
remainder operators”? Well, we haven’t formally defined them yet (and one way to
define them formally is precisely via quo and rem!), but even ignoring that, proofs
using uniqueness wouldn’t really work if we just treated rem and quo as operators.
To see how this works, let’s expand the solution to the question above.

We are required to show that for all natural numbers k, l and positive integers m,
rem(k ·m+ l, m) = rem(l, m) – any multiple of m can be cancelled out in a remainder
by m. If we think of rem as the remainder operator (e.g. % in Java), this seems obvious –
but other than spelling out the details of division as repeated subtraction (the Division
Algorithm), it’s quite tricky to prove! Instead, as we said above, rem(l, m) should be
treated as “the unique r determined by l and m by the Division Theorem”. This is where
uniqueness comes in: we know that for any other expansion l = quo(l, m) ·m+ r ′ with
r ′ < m, r ′ must be equal to rem(l, m). Thus, equality of remainders can be derived
from showing that they satisfy the same property: that they can appear in the same
expansion of l (via m) and are both strictly less than m.

The question is exactly a proof of equality of two remainders: rem(k ·m+ l, m) and
rem(l, m). If we show that they appear in two “different” expansions of the same
natural number, they must be equal. What expansion would rem(l, m) appear in?
Easy: the Division Theorem tells us that l can always be rewritten in terms of m as

l = quo(l, m) ·m+ rem(l, m)
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Similarly, rem(k ·m+ l, m) appears in the expansion

k ·m+ l = quo(k ·m+ l, m) ·m+ rem(k ·m+ l, m)

All we did is apply the streamlined form of the Division Theorem, expanding both l
and k ·m+ l in terms of m. They can’t directly be compared yet, because they are
expansions of different naturals. To resolve that, we just add k ·m to the first equation
and factorise to get:

k ·m+ l =
�

k+ quo(l, m)
�

·m+ rem(l, m)

And with that, we are done! How? Well, we have two different expansions of the
number k ·m+ l : it’s equal both to

quo(k ·m+ l, m) ·m+ rem(k ·m+ l, m) and
�

k+ quo(l, m)
�

·m+ rem(l, m)

where both rem(k ·m+ l, m) and rem(l, m) are less than m. But the Division Theorem
tells us that there is exactly one such expansion of k ·m+ l possible, so these two
remainders cannot be different! That is to say,

rem(k ·m+ l, m) = rem(l, m)

which was precisely our proof goal.

Such surprising and abrupt conclusions are very much characteristic of proofs by
universal properties: rather than proving equality directly, we show that both remain-
ders satisfy the universal property (specified by the Division Theorem) of the same
number k ·m+ l and therefore must be equal. We will see a lot of examples of this in
the course and the exercises: while many statements can be proved by alternative
means, proofs by universal properties are often remarkably compact and elegant,
achieving the same goal with only a few clever reasoning steps.

b) rem(k+ l, m) = rem(rem(k, m) + l, m)

Because

rem(k+ l, m) = rem
�

quo(k, m) ·m+ rem(k, m) + l, m
�

(by DT on k with m)
= rem
�

rem(k, m) + l, m
�

(by §2.1.3(a))

Note that, as a corollary, rem(k+ l, m) = rem
�

rem(k, m) + rem(l, m), m
�

.

� The previous property of remainders is quite useful, especially in combination
with the Division Theorem: since we have a choice of expanding k in terms of any
positive integer, we can choose m to then ensure that the term quo(k, m) ·m – being
a multiple of m – can be cancelled out.

c) rem(k · l, m) = rem(k · rem(l, m), m)
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Because

rem(k · l, m) = rem
�

k · quo(l, m) ·m+ k · rem(l, m), m
�

(by DT on l with m)
= rem
�

k · rem(l, m), m
�

(by §2.1.3(a))

Note that, as a corollary, rem(k · l, m) = rem
�

rem(k, m) · rem(l, m), m
�

.

� Once again, we start by expanding a natural in terms of m, then use part §2.1.3(a)
to cancel the whole term. In this case, we choose l : this was guided by the need to
end up with a rem(l, m), which we wouldn’t get by expanding k.

4. Let m be a positive integer.

a) Prove the associativity of the addition and multiplication operations in Zm; that is:

∀i, j, k ∈ Zm. (i +m j) +m k = i +m ( j +m k) and (i ·m j) ·m k = i ·m ( j ·m k)

Consider arbitrary i, j, k in Zm, and calculate as follows:

(i +m j) +m k =
�

[i + j]m + k
�

m
(by definition of +m)

= rem
�

rem(i + j, m) + k, m
�

(by definition of [·]m)
= rem
�

(i + j) + k, m
�

(by §2.1.3(b))
= rem
�

i + ( j + k), m
�

(by associativity of addition)
= rem
�

i + rem( j + k, m), m
�

(by §2.1.3(b))
=
�

i + [ j + k]m
�

m
(by definition of [·]m)

= i +m ( j +m k) (by definition of +m)

Similarly, consider arbitrary i, j, k in Zm, and calculate as follows:

(i ·m j) ·m k =
�

[i · j]m · k
�

m
(by definition of ·m)

= rem
�

rem(i · j, m) · k, m
�

(by definition of [·]m)
= rem
�

(i · j) · k, m
�

(by §2.1.3(c))
= rem
�

i · ( j · k), m
�

(by associativity of multiplication)
= rem
�

i · rem( j · k, m), m
�

(by §2.1.3(c))
=
�

i · [ j · k]m
�

m
(by definition of [·]m)

= i ·m ( j ·m k) (by definition of ·m)

� When defining something in terms of an existing construction, its properties will
often directly follow from the known properties of the underlying definition. In this
case, associativity of +m relies on the associativity of + in terms of which +m is
defined. However, we needed a lemma about addition and remainders to simplify the
expressions until we can directly appeal to the associativity of +.
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� These are examples of equational proofs, a very common and useful technique for
mathematical reasoning, generalising the algebraic calculations you are familiar with
from school. Whenever we need to prove equality or equivalence of two mathematical
objects (numbers, sets, functions, etc.), we can build it up as a chain of equalities,
each rewriting some part of the expression via some known property, definition, or
lemma. There’s often a symmetry in the proofs, nicely showcased in this exercise: the
first half unwraps several layers of definitions and simplifies the resulting expressions;
the second half does the same in reverse. Indeed, it’s often helpful to write equational
proofs starting from both ends, until they meet in the middle.

b) Prove that the additive inverse of k in Zm is [−k]m.

We need show that k+m [−k]m ≡ 0 (mod m); and indeed, since

l ≡ [l]m (mod m) for all l ∈ Z

one has that

k+m [−k]m =
�

k+ [−k]m
�

m
≡ k+ [−k]m ≡ k+ (−k) = 0 (mod m)

� This is an example of a congruence proof : a weaker form of an equational proof
where some of the steps are not strict equalities, but congruences modulo m ∈ Z+.
Since congruence is a so-called equivalence relation (it’s reflexive, symmetric, and
transitive, all proved in §2.1.1), a chain of congruences establishes a congruence
between the endpoints. Reflexivity allows us to strengthen some of the congruences
into equalities: in the example above, k+m [−k]m =

�

k+[−k]m
�

m
is a strict equality,

since it is the definition of +m. Importantly, all congruences must be modulo the
same m ∈ Z+, which is denoted at the end of the proof, ranging over the entire chain
of congruences.

2.2. Core exercises
1. Find an integer i, natural numbers k, l and a positive integer m for which k ≡ l (mod m) holds

while ik ≡ i l (mod m) does not.

Take i = 2, k = 0, l = 3, and m = 3. Then, k = 0 ≡ 3= l (mod 3), yet 20 = 1 ̸≡
8= 23 (mod 3).

2. Formalise and prove the following statement: A natural number is a multiple of 3 iff so is the
number obtained by summing its digits. Do the same for the analogous criterion for multiples
of 9 and a similar condition for multiples of 11.

For all natural numbers n and digits a1, . . . , an,

•
� ∑n

i=0 ai · 10i
�

≡ 0 (mod 3) ⇐⇒
� ∑n

i=0 ai

�

≡ 0 (mod 3)

•
� ∑n

i=0 ai · 10i
�

≡ 0 (mod 9) ⇐⇒
� ∑n

i=0 ai

�

≡ 0 (mod 9)
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•
� ∑n

i=0 ai · 10i
�

≡ 0 (mod 11) ⇐⇒
� ∑n

i=0(−1)i · ai

�

≡ 0 (mod 11)

The above follow from the following stronger statements

•
� ∑n

i=0 ai · 10i
�

≡
� ∑n

i=0 ai

�

(mod 3)

•
� ∑n

i=0 ai · 10i
�

≡
� ∑n

i=0 ai

�

(mod 9)

•
� ∑n

i=0 ai · 10i
�

≡
� ∑n

i=0(−1)i · ai

�

(mod 11)

The rule for 3 uses the fact that 10≡ 1 (mod 3), which, by the exponentiation property
shown in §2.1.2(c), implies 10l ≡ 1 (mod 3) for all l ∈ Z+. This can be applied in every term
of the sum (since congruences can be applied within sums and products as shown in §2.1.2,
reducing the 10l coefficients to 1. The technique works the same for divisibility by 9, since
10≡ 1 (mod 9); for 11, we notice that 102n ≡ 1 (mod 11), but 102n+1 ≡ 10≡ −1 (mod 11)
for all n ∈ N.

There are also other proofs. Below is one based on the Binomial Theorem, rather than on
the theory of divisibility and/or congruences for the case of divisibility by 11. Please study
it and re-adapt it to the cases of divisibility by 3 and by 9.

First we calculate that
n
∑

i=0

ai · 10i =
n
∑

i=0

ai · (11− 1)i

=
n
∑

i=0

ai ·
i
∑

j=0

�

i
j

�

· 11 j · (−1)i− j

=
n
∑

i=0

ai ·
�

(−1)i + 11 ·
i
∑

j=1

�

i
j

�

· 11 j−1 · (−1)i− j
�

=
�

n
∑

i=0

(−1)i · ai

�

+ 11 ·
�

n
∑

i=1

ai ·
i
∑

j=1

�

i
j

�

· 11 j−1 · (−1)i− j
�

and then argue as follows:

(⇒) Assume 11 |
� ∑n

i=0 ai · 10i
�

; so that
∑n

i=0 ai · 10i = 11 · k for some integer k. Then,
∑n

i=0 (−1)i · ai = 11 ·
�

k−
� ∑n

i=1 ai ·
∑i

j=1

�i
j

�

· 11 j−1 · (−1)i− j
�

�

showing that 11 |
� ∑n

i=0(−1)i · ai

�

.

(⇐) Assume 11 |
� ∑n

i=0(−1)i · ai

�

; so that
∑n

i=0(−1)i · ai = 11 · l for some integer l . Then,
∑n

i=0 ai · 10i = 11 ·
�

l +
� ∑n

i=1 ai ·
∑i

j=1

�i
j

�

· 11 j−1 · (−1)i− j
�

�

showing that 11 |
∑n

i=0 ai · 10i .

3. Show that for every integer n, the remainder when n2 is divided by 4 is either 0 or 1.
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This is Lemma 26 of the notes.

� The question here refers to the “intuitive” notions of division and remainder, but by
recognising their connection to congruence we can refer to the known number-theoretic
properties of modular arithmetic.

4. What are rem(552, 79), rem(232, 79), rem(23 · 55, 79) and rem(5578, 79)?

rem(552, 79) = 23, rem(232, 79) = 55, rem(23 · 55,79) = 1, and

rem
�

(552)39, 79
�

= rem
�

23 · (232)19, 79
�

= rem
�

23 · 55 · (552)9, 79
�

= rem
�

23 · (232)4, 79
�

= rem
�

23 · (552)2, 79
�

= rem
�

23 · 232, 79
�

= rem(23 · 55, 79)

= 1

Of course, since we know the last one from Fermat’s Little Theorem, there was really no
need to calculate it!

5. Calculate that 2153 ≡ 53 (mod 153). At first sight this seems to contradict Fermat’s Little The-
orem, why isn’t this the case though? Hint: Simplify the problem by applying known congruences
to subexpressions using the properties in §2.1.2.

One possible sequence of steps, using the fact that 153= 27 + 25:

2153 = 26 ·
�

27
�21
= 26 · 27 ·
�

27
�20

≡ 26 · (−25) · (−25)20 = 26 · (−25) ·
�

252
�10
= 26 · (−25) · 62510

≡ 26 · (−25) · (132)5 = 26 · (−25) · 1695

≡ (−25) · 26 · 165 = (−25) · 26 ·
�

24
�5
= (−25) · 25 · (27)3

≡ (−25) · 25 · (−25) · 252 = 25 · (252)2

≡ 25 · 132 ≡ 25 · 16= 22 · 27 ≡ 4 · (−25)

≡ 53 (mod 153)

This doesn’t contradict Fermat’s Little Theorem, since 153= 32 · 17 is composite.

� This may seem like a daunting exercise, but we actually didn’t need to do anything
more complicated than squaring and addition. The key is being able to make impactful
simplifications using congruence: as soon as we have a number greater than 153, we can
replace it with the remainder after dividing by 153.

6. Calculate the addition and multiplication tables, and the additive and multiplicative inverses
tables for Z3, Z6 and Z7.

https://www.cl.cam.ac.uk/teaching/current/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=104
https://www.cl.cam.ac.uk/teaching/current/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=122
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• Z3

+ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

· 0 1 2

0 0 0 0
1 0 1 2
2 0 2 1

−(·)
0 0
1 2
2 1

(·)−1

0
1 1
2 2

• Z6

+ 0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

· 0 1 2 3 4 5

0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

−(·)
0 0
1 5
2 4
3 3
4 2
5 1

(·)−1

0
1 1
2
3
4
5 5

• Z7

+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5

· 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2
6 0 6 5 4 3 2 1

−(·)
0 0
1 6
2 5
3 4
4 3
5 2
6 1

(·)−1

0
1 1
2 4
3 5
4 2
5 3
6 6

� Great demonstration of the property that every element of Zp has a multiplicative
inverse if p is a prime. Algebraically, this makesZp a field: a place where you can do division.

7. Let i and n be positive integers and let p be a prime. Show that if n ≡ 1 (mod p− 1) then
in ≡ i (mod p) for all i not multiple of p.

Assume that i and n are positive integers and that p is a prime. Assume further that
n≡ 1 (mod p− 1); so that n− 1 = k · (p− 1) for some natural number k. Then, for i not a
multiple of p, we have that

in = i · (ip−1)k

≡ i · 1k (mod p) (by Fermat’s Little Theorem)
= i

� When the question involves prime numbers, you should expect to require properties
and theorems specific to primes. In this course – which is only an introduction to number
theory – this will quite often be Fermat’s Little Theorem.
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8. Prove that n3 ≡ n (mod 6) for all integers n.

We can proceed by case analysis: since either n ≡ 0 (mod 6), or n ≡ 1 (mod 6), or
n ≡ 2 (mod 6), or n ≡ 3 (mod 6), or n ≡ 4 (mod 6), or n ≡ 5 (mod 6), we check that
n3 ≡ n (mod 6) in each case.

• Case n≡ 0 (mod 6): n3 ≡ 03 = 0≡ n (mod 6).

• Case n≡ 1 (mod 6): n3 ≡ 13 = 1≡ n (mod 6).

• Case n≡ 2 (mod 6): n3 ≡ 23 = 8≡ 2≡ n (mod 6).

• Case n≡ 3 (mod 6): n3 ≡ 33 = 27≡ 3≡ n (mod 6).

• Case n≡ 4 (mod 5): n3 ≡ 43 = 64≡ 4≡ n (mod 6).

• Case n≡ 5 (mod 6): n3 ≡ 53 = 125≡ 5≡ n (mod 6).

Of course, this wouldn’t really work for larger moduli – see next question. A more elegant
solution is proving 6 | n3 − n, which, by the well-known divisibility rule for 6, follows from
showing 3 | n3 − n and 2 | n3 − n. Now,

n3 − n= n · (n2 − 1) = (n− 1) · n · (n+ 1);

but this is a product of three consecutive integers, so at least one of them must be even
and one must be divisible by 3. That is, n3−n = 2 ·3 · k for some k ∈ Z, so n3 ≡ n (mod 6).

Yet another approach is formally establishing the lemma (which can be seen as the gener-
alisation of the divisibility rule of 6):

�

a ≡ b (mod 2) ∧ a ≡ b (mod 3)
�

⇐⇒ a ≡ b (mod 6)

In one direction, we have that a = 2k+ b = 3l + b, so 2k = 3l for integers k and l ; since
3l must be even and 3 is odd, l must itself be even: l = 2m for some m ∈ Z. Substituting
back, we have a = 3 ·2m+ b, so a− b = 6m. In the opposite direction, a− b = 6k = 2 ·3 ·k,
which immediately implies 2 | a− b and 3 | a− b.

Now, it is sufficient to prove that n3 ≡ n (mod 2) and n3 ≡ n (mod 3). The latter is a direct
instance of Fermat’s Little Theorem for the prime 3; the former holds by the congruence
chain n3 ≡ n2 ≡ n (mod 2), with both steps using Fermat’s Little Theorem n2 ≡ n (mod 2),
multiplied by n in the first step using the product property of §2.1.2.

� There are usually many ways of approaching a proof, ranging from “brute force” methods
to elegant and concise number-theoretic arguments. It doesn’t technically matter what
you do as long as the proof is correct – but just like how “working” code doesn’t always
mean “neat and readable” code, you should strive to make your proofs as streamlined as
possible. It’s also very useful to practice recognising patterns and realising where some
known lemma or property can be applied, since they often end up doing the bulk of the
work: you shouldn’t need to reprove a specific case of a known, more general statement.

9. Prove that n7 ≡ n (mod 42) for all integers n.
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An exhaustive case analysis would be impractical in this case. Instead, we adapt our more
conceptual solutions above.

First, we use a very similar proof as above for the lemma
�

a ≡ b (mod 6) ∧ a ≡ b (mod 7)
�

⇐⇒ a ≡ b (mod 42)

(notice how the crucial step is 6k = 7l implying that 6 | l , because 6 ∤ 7 – the lemma
wouldn’t hold for non-coprime numbers (see §1.2.5). Another trick in this case is recognising
that a − b = 7(a − b)− 6(a − b), and, since by assumption a − b = 6k = 7l , we have
a− b = 7 · 6k− 6 · 7l = 42 · (k− l).

Now, n7 ≡ n (mod 7) holds by Fermat’s Little Theorem. To show n7 ≡ n (mod 6), we
can equivalently show n7 ≡ n (mod 2) and n7 ≡ n (mod 3); both follow by repeated
applications of Fermat’s Little Theorem.

2.3. Optional exercises
1. Prove that for all integers n, there exist natural numbers i and j such that n= i2 − j2 iff either

n≡ 0 (mod 4) or n≡ 1 (mod 4) or n≡ 3 (mod 4).

Consider an arbitrary integer n.

(⇒) Assume there exist natural numbers i and j such that n = i2− j2. By Proposition 25 of
the notes, we have that

either i2 ≡ 0 (mod 4) or i2 ≡ 1 (mod 4)

and

either j2 ≡ 0 (mod 4) or j2 ≡ 1 (mod 4)

We therefore have four cases:

• i2 ≡ 0 (mod 4) and j2 ≡ 0 (mod 4), in which case n≡ 0 (mod 4);
• i2 ≡ 0 (mod 4) and j2 ≡ 1 (mod 4), in which case n≡ −1≡ 3 (mod 4);
• i2 ≡ 1 (mod 4) and j2 ≡ 0 (mod 4), in which case n≡ 1 (mod 4);
• i2 ≡ 1 (mod 4) and j2 ≡ 1 (mod 4), in which case n≡ 0 (mod 4);

Hence, either n≡ 0 (mod 4), or n≡ 1 (mod 4), or n≡ 3 (mod 4) as required.

(⇐) Assume that either n≡ 0 (mod 4), or n≡ 1 (mod 4), or n≡ 3 (mod 4). We need to
find natural numbers i and j such that n= i2 − j2.

Graphically, we want to show that one can distribute any number
of balls (as long as it’s congruent to 0, 1 or 3 modulo 4) in a
square grid leaving an empty square sub-grid, for instance as
follows (for i = 7, j = 3, and n= 40):

• • • • • • •
• • • • • • •
• • • • • • •
• • • •
• • • •
• • • •
• • • • • • •

We split our analysis in three cases.

https://www.cl.cam.ac.uk/teaching/current/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=101
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• Case n is zero.

There are natural numbers i = j = 0 such that n= i2 − j2, and we are done.

• Case n is a non-zero even integer.

As rem(n, 4) = n− quo(n, 4) · 4 (by the Division Theorem), it follows that rem(n, 4) is
even and since hence it is necessarily 0. Thus, n is in fact a non-zero multiple of 4; say
of the form 4 · k for some non-zero integer k. Then,

n = (k+ 1)2 − (k− 1)2 = (−k− 1)2 − (1− k)2

and since either

k+ 1 and k− 1 are natural numbers

or

−k− 1 and 1− k are natural numbers

there are natural numbers i, j such that n= i2 − j2. (Note that this argument slightly
generalises that of Proposition 22 of the notes.)

Graphically, we are in the following kind of situation:

•2 •2 •2 •2 •2 •2 •2 •3
•1 •3
•1 •3
•1 •3
•1 •3
•1 •3
•1 •3
•1 •4 •4 •4 •4 •4 •4 •4

• Case n is odd.

Then n= 2 · k+ 1 for some integer k, and

n = (k+ 1)2 − k2 = (−k− 1)2 − (−k)2 .

Since either

k+ 1 and k are natural numbers

or

−k− 1 and −k are natural numbers

there are natural numbers i, j such that n= i2 − j2.
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Graphically, we are in the following kind of situation:

• •2 •2 •2 •2 •2 •2
•1
•1
•1
•1
•1
•1

� Graphical proofs are great for intuition: so called “proofs without words” are often as
illuminating as they are beautiful. However, they are not (usually) a substitute for a formal
proof by logical reasoning, especially if the proposition to be shown is more general than
what could be encoded graphically. In this case, the statement is about all integers n, while
the graphical proof can only work for a natural number n.

2. A decimal (respectively binary) repunit is a natural number whose decimal (respectively binary)
representation consists solely of 1’s.

a) What are the first three decimal repunits? And the first three binary ones?

The first three decimal repunits are 1, 11, and 111; while the first three binary repunits
are 1, 3, and 7.

b) Show that no decimal repunit strictly greater than 1 is a square, and that the same holds
for binary repunits. Is this the case for every base? Hint: Use Lemma 27 of the notes.

Let n be a decimal repunit greater than 1; that is, n=
∑l

i=0 10i for some l ≥ 1. Then,

n≡
l
∑

i=0

2i ≡ 1+ 2= 3 (mod 4)

and, by Proposition 25 of the notes, we deduce that n is not square.

Incidentally, the calculation above already contains the proof of the property for
binary repunits, since they are of the form n=

∑l
i=0 2i

The statement:

For every base r , there are no r-ary repunits greater than 1 that are square.

is false. As a counterexample, take the base r = 3 and the 3-ary repunit 4 consisting
of two 1’s.

https://www.cl.cam.ac.uk/teaching/current/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=103
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