Inductive definitions

Examples:

- add: $\mathbb{N}^{2} \rightarrow \mathbb{N}$

$$
\left\{\begin{aligned}
\operatorname{add}(\mathfrak{m}, 0) & =\mathfrak{m} \\
\operatorname{add}(\mathfrak{m}, \mathfrak{n}+1) & =\operatorname{add}(\mathfrak{m}, \mathfrak{n})+1
\end{aligned}\right.
$$

- $\mathrm{S}: \mathbb{N} \rightarrow \mathbb{N}$

$$
\left\{\begin{aligned}
S(0) & =0 \\
S(n+1) & =\operatorname{add}(n, S(n))
\end{aligned}\right.
$$

The function

$$
\rho_{\mathrm{a}, \mathrm{f}}: \mathbb{N} \rightarrow A
$$

inductively defined from

$$
\left\{\begin{array}{l}
a \in A \\
f: \mathbb{N} \times A \rightarrow A
\end{array}\right.
$$

is the unique such that

$$
\left\{\begin{aligned}
\boldsymbol{\rho}_{a, f}(0) & =a \\
\rho_{a, f}(n+1) & =f\left(n, \rho_{a, f}(n)\right)
\end{aligned}\right.
$$

Examples:

$-\operatorname{add}: \mathbb{N}^{2} \rightarrow \mathbb{N}$
$\operatorname{add}(m, n)=\rho_{m, f}(n)$ for $f(x, y)=y+1$

- $\mathrm{S}: \mathbb{N} \rightarrow \mathbb{N}$

$$
S=\rho_{0, \mathrm{add}}
$$

$$
\begin{aligned}
& \text { BiJECTIONS } \\
& A_{K, \ldots}^{f}{ }_{B} \text { byection } \\
& \text { 下曰" } \\
& \left\{\begin{array}{l}
g \circ f=i d_{A} \\
f \circ g=i d_{B}
\end{array} \Rightarrow \begin{array}{l}
\text { gis unsique } \\
\text { Typrcally denvted } \\
f^{-1}
\end{array}\right.
\end{aligned}
$$

Proposition 153 For all finite sets A and B,

$$
\# \operatorname{Bij}(A, B)= \begin{cases}0 & , \text { if } \# A \neq \# B \\ n! & , \text { if } \# A=\# B=n\end{cases}
$$

Proof idea:

$$
\begin{aligned}
& A=\left\{a_{1}, \ldots, a_{n}\right\} \\
& B=\left\{b_{1}, \ldots, b_{m}\right\}
\end{aligned}
$$

If $n \neq m, A$ ad B are not in biechire correppindance, suppose $n=m$. $\varepsilon^{n c l u s i c e s . ~} \xi^{(n-1)}$ claries $(n-2)$ divines

Theorem 154 The identity function is a bijection, and the composition of bijections yields a bijection.

Definition 155 Two sets A and B are said to be isomorphic (and to have the same cardinatity) whenever there is a bijection between them; in which case we write

$$
A \cong B \quad \text { or } \quad \# A=\# B .
$$

Examples: exerax:

1. $\{0,1\} \cong\{$ false, true $\}$.
2. $\mathbb{N} \cong \mathbb{N}^{+},(\mathbb{N} \cong \mathbb{Z}, \mathbb{N} \cong \mathbb{N} \times \mathbb{N}, \quad \mathbb{N} \cong \mathbb{Q}$.

$$
\{n \in \mathbb{N} \mid n \geq 1\}
$$

$$
\mathbb{N}_{\substack{\text { pred }}}^{\overbrace{}^{\text {Suce }}} \mathbb{N}^{+} \quad \begin{aligned}
& 0 \leqslant n \mapsto n+1 \mapsto(n+1)-1=n \\
& 1 \leqslant n \mapsto(n-1) \mapsto(n-1)+1=n
\end{aligned}
$$

	0	1	2	\cdots	m	\cdots
0	0	1	3	6		
1	2	4	7	\cdot		
2	5	8				
\vdots	9					
n	.					
i						

$$
\begin{gathered}
\mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \\
(m, n) \longmapsto 2^{m} \cdot(2 n+1)-1 \\
\}
\end{gathered}
$$

claim bigetise.

Calculus of bijections

- $A \cong A, A \cong B \Longrightarrow B \cong A,(A \cong B \wedge B \cong C) \Longrightarrow A \cong C$
- If $A \cong X$ and $B \cong Y$ then

$$
\begin{gathered}
\mathcal{P}(A) \cong \mathcal{P}(X) \quad, \quad A \times B \cong X \times Y, \quad A \uplus B \cong X \uplus Y, \\
\operatorname{Rel}(A, B) \cong \operatorname{Rel}(X, Y) \quad, \quad(A \rightleftharpoons B) \cong(X \rightleftharpoons Y), \\
(A \Rightarrow B) \cong(X \Rightarrow Y) \quad, \quad \operatorname{Bij}(A, B) \cong \operatorname{Bij}(X, Y)
\end{gathered}
$$

$$
(b \cdot c)^{a}=b^{a} \cdot c^{a}
$$

- $A \cong[1] \times A,(A \times B) \times C \cong A \times(B \times C), A \times B \cong B \times A$
- [0] $\uplus A \cong A, \quad(A \uplus B) \uplus C \cong A \uplus(B \uplus C), A \uplus B \cong B \uplus A$
- $[0] \times A \cong[0],(A \uplus B) \times C \cong(A \times C) \uplus(B \times C)$
- $(A \Rightarrow[1]) \cong[1],(A \Rightarrow(B \times C)) \cong(A \Rightarrow B) \times(A \Rightarrow C)$
- $([0] \Rightarrow A) \cong[1],((A \uplus B) \Rightarrow C) \cong(A \Rightarrow C) \times(B \Rightarrow C)$
- $([1] \Rightarrow A) \cong A, \quad((A \times B) \Rightarrow C) \cong(A \Rightarrow(B \Rightarrow C))$
- $(A \geq B) \cong(A \Rightarrow(B \uplus[1]))$
$c^{a \cdot b}=\left(c^{b}\right)^{a}$

Characteristic (or indicator) functions

$$
\begin{aligned}
& \mathcal{P}(\boldsymbol{A}) \cong(\boldsymbol{A} \Rightarrow[2])
\end{aligned}
$$

$$
\begin{aligned}
& \{a \in A . \mid f(a)=1\} \subseteq A \longleftarrow \quad f: A \rightarrow\{0,1\} \\
& \text { NB: } \forall f: A \rightarrow[2] . \exists!S \subseteq A . \chi_{S}=f .
\end{aligned}
$$

Finite cardinality

Definition 160 A set A is said to be finite whenever $A \cong[n]$ for some $n \in \mathbb{N}$, in which case we write $\# A=n$.

Theorem 161 For all $m, n \in \mathbb{N}$,

1. $\mathcal{P}([n]) \cong\left[2^{n}\right]$
2. $[m] \times[n] \cong[m \cdot n]$
3. $[m] \uplus[n] \cong[m+n]$
4. $([m] \Longrightarrow[n]) \cong\left[(n+1)^{m}\right]$
5. $([\mathrm{m}] \Rightarrow[\mathrm{n}]) \cong\left[\mathrm{n}^{\mathrm{m}}\right]$
6. $\operatorname{Bij}([n],[n]) \cong[n!]$

Infinity axiom

There is an infinite set, containing \emptyset and closed under successor.

Bisections
Fact: Let $f: A \rightarrow B$. f is bigeche.
If

$$
\forall b \in B . \exists!a \in A . f(a)=b
$$

If $\quad \forall b \in B . \exists a \in A . f(a)=b]^{\text {surjection }}$
and

$$
\forall a_{1}, a_{2} \in A . \quad f\left(a_{1}\right)=f\left(a_{2}\right) \Rightarrow a_{1}=a_{2}
$$

injection

Axiom of choice

$N B$
Unbounded cardinality
顺 $H>P(N)$
Theorem 180 (Cantor's diagonalisation argument) For every set A, no surjection from A to $\mathcal{P}(A)$ exists.
Proof: Suppose we have a surjection

Corollary 183 The sets

$$
\mathcal{P}(\mathbb{N}) \cong(\mathbb{N} \Rightarrow[2]) \cong[0,1] \cong \mathbb{R}
$$

are not enumerable.

Corollary 184 There are non-computable infinite sequences of bits.

Replacement axiom

The direct image of every definable functional property on a set is a set.

Set-indexed constructions

For every mapping associating a set A_{i} to each element of a set I, we have the set

$$
\bigcup_{i \in \mathrm{I}} A_{i}=\bigcup\left\{A_{i} \mid \mathfrak{i} \in \mathrm{I}\right\}=\left\{a \mid \exists i \in \mathrm{I} . a \in A_{i}\right\} .
$$

Examples:

1. Indexed disjoint unions:

$$
\biguplus_{i \in I} A_{i}=\bigcup_{i \in I}\{i\} \times A_{i}
$$

2. Finite sequences on a set A :

$$
A^{*}=\biguplus_{\mathfrak{n} \in \mathbb{N}} A^{n}
$$

Foundation axiom

The membership relation is well-founded.

Thereby, providing a
Principle of \in-Induction .

