Boolean Matrices
($\{$ true, $f d x\}, v$, poss, \wedge, true)
($m \times n$) Boolean matrix.

$$
\begin{aligned}
& M=\left(M_{i, j}\right)_{\substack{0 \leq i<m \\
0 \leq j<n}} \quad M_{i, j} \in\left\{t \underline{u}, \underline{f} b_{x}\right\} \\
& M \mapsto \operatorname{rel}(M) \subseteq[m] \times[n] \\
& \quad \| \operatorname{def}\left\{(i, j) \in[m] \times[n] \mid M_{i, j}=\text { true }\right\} .
\end{aligned}
$$

$R \subseteq[m] \times[n]$
I
mat $(\mathbb{R})(m \times n)$ - Boolean matrix.

$$
\left(\frac{m a t}{1}(\mathbb{R})_{i, j}\right)_{0 \leq i<m} \quad \text { show }
$$

$$
\text { mat }^{(R)_{i, j} \text { al f }}=\text { true } \Leftrightarrow(i, j) \in R
$$

Claim:
$B i^{j e^{j o g}} \cos (M) \longmapsto \operatorname{met}(\underline{\operatorname{rel}}(M))=M$

$$
R \mapsto \operatorname{mat}(R) \mapsto \operatorname{rel}(\operatorname{mat}(R))=R
$$

$$
\frac{\begin{array}{c}
M \\
(m \times n)-\text { Bool.mAtre }(n \times l) \text {-Bool. motrix }
\end{array}}{N(m \times l) m c h i x}
$$

Crim:

$$
\begin{aligned}
& m_{2 t}(R) \not m_{0} t(S)=m_{2 t}(R 0 S) \\
& M, N(m \times n)-B_{\operatorname{od}} \cdot m_{2} t . \\
& (M \oplus N)_{i, j}=\text { of } M_{i, j} \vee N_{i, j}
\end{aligned}
$$

Caim:

$$
\operatorname{rel}(M \oplus N)=\operatorname{rel}(M) \cup \operatorname{rel}(N)
$$

Relations from [m] to [n] and ($\mathrm{m} \times \mathrm{n}$)-matrices over Booleans provide two alternative views of the same structure.

This carries over to identities and to composition/multiplication .

Directed graphs
Definition 130 A directed graph (A, R) consists of a set A and a relation R on A (ie. a relation from A to A).

Corollary 132 For every set A, the structure
is a monoid.

$$
\left(\operatorname{Rel}(\mathcal{A}), \operatorname{id}_{\mathcal{A}}, \circ\right)
$$

Definition 133 For $R \in \operatorname{Rel}(A)$ and $n \in \mathbb{N}$, we let

$$
R^{\circ n}=\underbrace{R \circ \cdots \circ R}_{n \text { times }} \in \operatorname{Rel}(A)
$$

be defined as id_{A} for $\mathrm{n}=0$, and as $\mathrm{R} \circ \mathrm{R}^{\circ \mathrm{m}}$ for $\mathrm{n}=\mathrm{m}+1$.

Paths

Proposition 135 Let (A, R) be a directed graph. For all $n \in \mathbb{N}$ and $s, t \in A, s R^{\circ n} t$ ff there exists a path of length n in R with source s and target t .
Proof: by moduction:

$$
\begin{aligned}
& \mathbb{N} \\
& s \operatorname{d}_{A} t
\end{aligned} s^{\prime} t_{0} t \mathbb{N}^{\mathbb{N}}
$$

Thduche step: $(n \in \mathbb{N}) s R^{\circ n} t \Leftrightarrow$ 习 path of len n from s \%o t

RIP: $S R^{0(n+1)} t \stackrel{?}{\Leftrightarrow}$ Jp orth of len. $n+1$ from

$$
s\left(R_{0} R^{R_{0 m}}\right) t
$$

$\exists n \cdot \underbrace{\delta R^{o m} u}_{\pi(\pm H)} \wedge u R t_{\mathbb{~}}^{\pi}$ \exists path of len. n frons to n

REFLEXIVE-TRANSITIVE CLOSURE.

Definition 136 For $R \in \operatorname{Rel}(\mathcal{A})$, let

$$
R^{\circ *}=\bigcup\left\{R^{\circ n} \in \operatorname{Rel}(A) \mid n \in \mathbb{N}\right\}=\bigcup_{n \in \mathbb{N}} R^{\circ n}
$$

Corollary 137 Let (A, R) be a directed graph. For all $s, t \in A$, $s R^{\circ *} t$ iff there exists a path with source s and target t in R .
$N B:$

$$
M_{k}=I_{n}+M+M^{2}+\cdots+M^{k}
$$

The $(n \times n)$-matrix $M=\operatorname{mat}(R)$ of a finite directed graph $([n], R)$ for n a positive integer is called its adjacency matrix.

The adjacency matrix $M^{*}=\operatorname{mat}\left(\mathrm{R}^{\circ *}\right)$ can be computed by matrix multiplication and addition as M_{n} where

$$
\left\{\begin{aligned}
M_{0} & =I_{n} \\
M_{k+1} & =I_{n}+\left(M \cdot M_{k}\right)
\end{aligned}\right.
$$

This gives an algorithm for establishing or refuting the existence of paths in finite directed graphs.

Partial functions
Definition $141 A$ relation $R: A \longrightarrow B$ is said to be functional, and called a partial function, whenever it is such that

$$
\forall a \in A . \forall b_{1}, b_{2} \in \text { B. } a R b_{1} \wedge a R b_{2} \Longrightarrow b_{1}=b_{2}
$$

Examples:

$$
\operatorname{PFun}(A, B) \subseteq \operatorname{Rel}(A, B)
$$

- OCaml program.

$$
\| \mathrm{dif}
$$

- $(-)^{-1}: \mathbb{R} \rightarrow \mathbb{R}$ not defined at 0 .

$$
\begin{aligned}
x \longmapsto x^{-1} & (x \neq 0) \\
& -403-
\end{aligned}
$$

Theorem 143 The identity relation is a partial function, and the composition of partial functions yields a partial function.

NB

$$
f=g: A \rightharpoonup B
$$

jiff

$$
\forall a \in A .(f(a) \downarrow \Longleftrightarrow g(a) \downarrow) \wedge f(a)=g(a)
$$

Notation: $f: A \rightarrow B$ partial function

$$
f(a) \downarrow \Leftrightarrow \exists b \in B . a f b
$$

$$
f(a) \uparrow \Leftrightarrow \neg(f(a) \downarrow)
$$

Proposition 144 For all finite sets A and B,

$$
\#(A \neq B)=(\# B+1)^{\# A}
$$

Proof idea:

$$
A=\left\{a_{1}, \ldots, a_{m}\right\}
$$

Functions (or maps)
Definition 145 A partial function is said to be total, and referred to as a (total) function or map, whenever its domain of definition coincides with its source.
NB: If f is
a total fuctis Fun $(A, B) \subseteq$ Fun $(A, B) \subseteq \operatorname{Bef}(A, B)$
from A to B
Then $\forall a \in A$,
M the partial functions with $f(a) \downarrow$ outputs for all inputs.

Theorem 146 For all $f \in \operatorname{Rel}(A, B)$,

$$
f \in(A \Rightarrow B) \Longleftrightarrow \underset{-413-}{\forall a \in A . \exists!b \in B . a f b .}
$$

$$
\begin{aligned}
& \text { Exouples: } \\
& \operatorname{Rel}([m],[n]) \\
& \text { rel } \\
& \text { function. }
\end{aligned}
$$

Proposition 147 For all finite sets A and B,

$$
\#(A \Rightarrow B)=\# B^{\# A}
$$

Proof idea:

Theorem 148 The identity partial function is a function, and the composition of functions yields a function.

NB

1. $f=g: A \rightarrow B$ iff $\forall a \in A . f(a)=g(a)$.
2. For all sets A, the identity function $\operatorname{id}_{A}: A \rightarrow A$ is given by the rule

$$
\operatorname{id}_{\mathcal{A}}(\mathrm{a})=\mathrm{a}
$$

and, for all functions $f: A \rightarrow B$ and $g: B \rightarrow C$, the composition function $g \circ f: A \rightarrow C$ is given by the rule

$$
(g \circ f)(a)=g(f(a)) .
$$

