Big unions

Example:

Consider the family of sets

 $\mathfrak{T} = \left\{ \begin{array}{c} \mathsf{T} \subseteq [5] \\ \mathsf{T} \text{ is less than or equal 2} \end{array} \right\}$

 $= \left\{ \emptyset, \{0\}, \{1\}, \{0,1\}, \{0,2\} \right\}$

► The big union of the family T is the set UT given by the union of the sets in T:

 $n \in \bigcup \mathfrak{T} \iff \exists \, T \in \mathfrak{T}.\, n \in T$.

Hence, $\bigcup \mathfrak{T} = \{0, 1, 2\}.$

Big intersections

Example:

• Consider the family of sets $S = \left\{ S \subseteq [5] \mid \text{the sum of the elements of } S \in 6 \right\}$

 $= \{\{2,4\},\{0,2,4\},\{1,2,3\}\}$

► The big intersection of the family \$\\$ is the set ∩\$ given by the intersection of the sets in \$:

 $n\in\bigcap \mathbb{S}\iff \forall\,S\in \mathbb{S}.\,n\in S$.

Hence, $\bigcap S = \{2\}$.

Theorem 114 Let

$$f = \left\{ S \subseteq \mathbb{R} \mid (0 \in S) \land (\forall x \in \mathbb{R}. x \in S \implies (x+1) \in S) \right\}.$$
Then, (i) $\mathbb{N} \in \mathcal{F}$ and (ii) $\mathbb{N} \subseteq \bigcap \mathcal{F}$. Hence, $\bigcap \mathcal{F} = \mathbb{N}$.
PROOF:
Because 0 GoN
and \mathbb{N} is dived
 $\mathbb{P} \notin \mathcal{F}$
 $\mathbb{P} \oplus \mathbb{P} \oplus \mathbb{P} \oplus \mathbb{P}$
 $\mathbb{P} \oplus \mathbb{P} \oplus \mathbb{P} \oplus \mathbb{P} \oplus \mathbb{P}$
 $\mathbb{P} \oplus \mathbb{P} \oplus \mathbb{P} \oplus \mathbb{P} \oplus \mathbb{P} \oplus \mathbb{P} \oplus \mathbb{P}$
 $\mathbb{P} \oplus \mathbb{P} \oplus \mathbb{P}$

FACT: ACNF (ii) $N \subseteq \cap F$ ₩ VSEF. THINGS, YSEF. Let SEF. RTP: INCS $\int_{1}^{1} 0 \in S \qquad A \subseteq S$ $\int_{1}^{1} V \times E R \times E S = (x+1) \in S$ VNEN. NES Bosecost: DES / By induction: Inductive styp: nea $n \in S \Rightarrow (n+1) \in S$

$$\begin{cases} 1 \{ x A = \{ \langle 1, a \rangle | a \in A \} \\ \{ 2 \} \times B = \{ \langle 2, b \rangle | b \in B \} \\ Disjoint unions \neq \\ \end{cases}$$
Definition 116 The disjoint union $A \uplus B$ of two sets A and B is the set
$$A \uplus B = (\{1\} \times A\} \cup (\{2\} \times B)$$

Thus,

 $\forall x. x \in (A \uplus B) \iff (\exists a \in A. x = (1, a)) \lor (\exists b \in B. x = (2, b)).$

detatype
$$(\alpha, \beta)$$
 dunion = one of α [two of β
-371-

Proposition 118 For all finite sets A and B,

 $A \cap B = \emptyset \implies \#(A \cup B) = \#A + \#B$. ROOF IDEA: $A=Sa_{1},...,a_{m}$ $B=Sb_{1},...,b_{m}$ HPROOF IDEA: AUB={a1...an b1....bn} #(mtn) $\begin{bmatrix} \#(A \times B) \\ = \#(A) \cdot \#(B) \end{bmatrix}$ **Corollary 119** For all finite sets A and B, $\#(A \uplus B) = \#A + \#B$ $f_{\#}^{*}P(x) = 2^{\#x}$

Notation 122 One typically writes a R b for $(a, b) \in R$.

, values. P.1

Informal examples:

- ► Computation.
- ► Typing.
- ► Program equivalence.

P: 2 types

► Networks.

► Databases.

n eg. relational DBS.

Examples:

- ▶ Empty relation. $\emptyset : A \longrightarrow B$
- ► Full relation. $(A \times B) : A \longrightarrow B$

- $(a \emptyset b \iff false)$
- $(a (A \times B) b \iff true)$

 $(a \operatorname{id}_A a' \iff a = a')$

 $(m R_2 n \iff m = n^2)$

Identity (or equality) relation. $\operatorname{id}_{A} = \{ (\mathfrak{a}, \mathfrak{a}) \mid \mathfrak{a} \in A \} : A \longrightarrow A$

Integer square root. $\mathbf{R}_2 = \{ (\mathbf{m}, \mathbf{n}) \mid \mathbf{m} = \mathbf{n}^2 \} : \mathbb{N} \longrightarrow \mathbb{Z}$ EX: $^{4}R_{2}2$ $^{4}R_{2}(-2)$ **— 379 —**

Internal diagrams

Example:

- $\mathbf{R} = \left\{ (0,0), (0,-1), (0,1), (1,2), (1,1), (2,1) \right\} : \mathbb{N} \longrightarrow \mathbb{Z}$
- $S = \{ (1,0), (1,2), (2,1), (2,3) \} : \mathbb{Z} \to \mathbb{Z}$

Relational extensionality

$$R = S : A \longrightarrow B$$
iff
$$\forall a \in A. \forall b \in B. a R b \iff a S b$$

Relational composition

 $\begin{array}{c} A \xrightarrow{R} B \xrightarrow{MAB} B \xrightarrow{B} b \ Ddg \ b' \\ \hline dg \ oR \\ A \xrightarrow{Idg \ oR} \\ A \xrightarrow{Idg \ oR} \end{array}$ a (idgor) b (=) 7 b' cB. a R b' n b' idg b <⇒ 76'∈B. aRb' ∧ b'=5 to arb

-> lidgo R = R

Theorem 124 *Relational composition is associative and has the identity relation as neutral element.*

Associativity.
For all R : A → B, S : B → C, and T : C → D, (T ∘ S) ∘ R = T ∘ (S ∘ R)
Neutral element. For all R : A → B, $R ∘ id_A = R = id_B ∘ R$.

a ((ToS) o R) d (=> 76. aRb~b(tos)d <⇒ Fb. aRb ∧ Fc. bScn cTd (=) Jb. Jc. aRb. bSc. cTd

a (To(SoR)) d <⇒ Jc. a(SoR) c ~ c T d ⇒ Jc. (Ib. aRbabse) ncTd (=) Fc. Fb. aRSAbscac7d

Relations and matrices

Definition 125

1. For positive integers m and n, an $(m \times n)$ -matrix M over a semiring $(S, 0, \oplus, 1, \odot)$ is given by entries $M_{i,j} \in S$ for all $0 \le i < m$ and $0 \le j < n$.

$$(M+M)_{i,j} = M_{i,j} \oplus N_{i,j} \qquad (m \times n) - m \times m \times \ell \qquad (m \times n)$$

$$(M \oplus M)_{i,j} = \bigoplus_{k} (M_{i,k} \oplus N_{k,j}) \qquad M(m \times n)$$

$$N \oplus M_{i,j} = \bigoplus_{k} (M_{i,k} \oplus N_{k,j}) \qquad N(n \times \ell)$$

Theorem 126 Matrix multiplication is associative and has the identity matrix as neutral element.