Big unions

Example:

- Consider the family of sets

$$
\begin{aligned}
\mathcal{T} & =\left\{T \subseteq[5] \left\lvert\, \begin{array}{l}
\text { the sum of the elements of } \\
T \text { is less than or equal } 2
\end{array}\right.\right\} \\
& =\{\emptyset,\{0\},\{1\},\{0,1\},\{0,2\}\}
\end{aligned}
$$

- The big union of the family \mathcal{T} is the set $\bigcup \mathcal{T}$ given by the union of the sets in \mathcal{T} :

$$
\mathrm{n} \in \bigcup \mathcal{T} \Longleftrightarrow \exists \mathrm{~T} \in \mathcal{T} . \mathrm{n} \in \mathrm{~T}
$$

Hence, $\bigcup \mathcal{T}=\{0,1,2\}$.

Big intersections

Example:

- Consider the family of sets

$$
\begin{aligned}
\mathcal{S} & =\{S \subseteq[5] \mid \text { the sum of the elements of } S \text { is } 6\} \\
& =\{\{2,4\},\{0,2,4\},\{1,2,3\}\}
\end{aligned}
$$

- The big intersection of the family \mathcal{S} is the set $\bigcap \mathcal{S}$ given by the intersection of the sets in \mathcal{S} :

$$
\mathrm{n} \in \bigcap \mathcal{S} \Longleftrightarrow \forall \mathrm{~S} \in \mathcal{S} . \mathrm{n} \in \mathrm{~S}
$$

Hence, $\bigcap \mathcal{S}=\{2\}$.

Theorem 114 Let
\longrightarrow closure property

$$
\mathcal{F}=\{S \subseteq \mathbb{R} \mid(0 \in S) \wedge(\forall x \in \mathbb{R} . x \in S \Longrightarrow(x+1) \in S)\}
$$

Then, (i) $\mathbb{N} \in \mathcal{F}$ and (ii) $\mathbb{N} \subseteq \bigcap \mathcal{F}$. Hence, $\cap \mathcal{F}=\mathbb{N}$.
Proof: Because o GN
Ex. RGF
and \mathbb{N} is closed
under succesors.

$$
(i) \Rightarrow \cap F \leq \mathbb{N} \sim \begin{aligned}
& \text { RIP } \\
& \\
& \text { Assume } x \in \cap \mathcal{F}, x \in \mathbb{N} \\
& \hline
\end{aligned}
$$

There fore $x \in S \quad \forall s \in F$
and sue $\mathbb{N} \in \mathcal{F} . \quad x \in \mathbb{N}$.
(ii) $\mathbb{N} \subseteq \cap F$ if $\mathbb{N} \leq s, \forall s \in \mathcal{F}$.
Let $s \in \mathcal{F}$.
\square RIP: $\mathbb{N} \subseteq S$
$\forall n \in \mathbb{N}, n \in S \quad$ Bare case : $0 \in S \checkmark$ $?$
By moluction: Induchre step: $n \in \mathbb{N}$

$$
n \in S \Rightarrow(n+1) \in S
$$

$$
\begin{aligned}
& \begin{array}{l}
\{1\{\times A=\{\langle 1, a\rangle \mid a \in A\} \\
\{22 \times B=\{\langle 2, b\rangle \mid b \in B\}
\end{array} \\
& \text { Disjoint/ unions }=\varnothing \\
& \text { Definition } 116 \text { The disjoint union } A \uplus B \text { of two sets } A \text { and } B \text { is the } \\
& \text { set } 1\{\times A) \cap(2\} \times \\
& A \uplus B=(\{1\} \times A) \cup(\{2\} \times B) .
\end{aligned}
$$

Thus,

$$
\forall x \cdot x \in(A \uplus B) \Longleftrightarrow(\exists a \in A \cdot x=(1, a)) \vee(\exists b \in B \cdot x=(2, b))
$$

datatype

Proposition 118 For all finite sets A and B,

$$
A \cap B=\emptyset \Longrightarrow \#(A \cup B)=\# A+\# B .
$$

Proof idea:

Corollary 119 For all finite sets A and B,

$$
\left[\begin{array}{l}
\#(A \times B) \\
=\#(A) \cdot \#(B)
\end{array}\right.
$$

$$
\begin{gathered}
\#(A \uplus B)=\# A+\# B \\
-373-
\end{gathered} \llbracket \neq P(X)=2^{\# X}
$$

Definition $121 A$ (binary) relation R from a set A to a set B

$$
R: A \longrightarrow B \quad \text { or } R \in \operatorname{Rel}(A, B) \text {, }
$$

is

$$
R \subseteq A \times B \quad \text { or } \quad R \in \mathcal{P}(A \times B) .
$$

Notation 122 One typically writes aRb for $(\mathrm{a}, \mathrm{b}) \in \mathrm{R}$.

Informal examples:

- Computation.
- Typing.
- Program equivalence.
- Networks.
- Databases.

Examples:

- Empty relation.
$\emptyset: A \longrightarrow B$

$$
(\mathrm{a} \emptyset \mathrm{~b} \Longleftrightarrow \text { false })
$$

- Full relation.

$$
(A \times B): A \longrightarrow B
$$

$$
(a(A \times B) b \Longleftrightarrow \text { true })
$$

- Identity (or equality) relation.

$$
\operatorname{id}_{\mathcal{A}}=\{(a, a) \mid a \in A\}: A \longrightarrow A
$$

$$
\left(\operatorname{aid}_{A} a^{\prime} \Longleftrightarrow a=a^{\prime}\right)
$$

- Integer square root.

$$
\begin{array}{rlrl}
R_{2}=\left\{(m, n) \mid m=n^{2}\right\}: \mathbb{N}+\mathbb{Z} & & \left(m R_{2} n \Longleftrightarrow m=n^{2}\right) \\
E \times: & 4 R_{2} 2 \\
& \wedge 379- & 4 R_{2}(-2)
\end{array}
$$

Internal diagrams

Example:

$$
\begin{aligned}
& R=\{(0,0),(0,-1),(0,1),(1,2),(1,1),(2,1)\}: \mathbb{N} \longrightarrow \mathbb{Z} \\
& S=\{(1,0),(1,2),(2,1),(2,3)\}: \mathbb{Z} \longrightarrow \mathbb{Z}
\end{aligned}
$$

Relational extensionality

$$
\mathrm{R}=\mathrm{S}: \mathrm{A} \longrightarrow \mathrm{~B}
$$

iff

$$
\forall a \in A . \forall b \in B . a R b \Longleftrightarrow a S b
$$

Relational composition

$$
\begin{aligned}
& A \xrightarrow{R} B \Leftrightarrow R \subseteq A \times B \Leftrightarrow R \in P(A \times B) \\
& \xrightarrow[{A \xrightarrow[\longrightarrow]{\text { SOR }}} C]{B \xrightarrow{S} C}
\end{aligned}
$$

$$
\begin{aligned}
& A \xrightarrow{R} B \xrightarrow{i d_{B}} B\left[\begin{array}{ccc}
b & d_{B} b^{\prime} \\
\Leftrightarrow & b=b^{\prime}
\end{array}\right] \\
& A \xrightarrow{\stackrel{I_{B} \circ R}{ } B} \\
& a\left(A_{B} \circ R\right) b \Leftrightarrow \exists b^{\prime} \in B . a R b^{\prime} \wedge b^{\prime} a A_{B} b \\
& \Leftrightarrow \mathcal{F} b^{\prime} \in B \cdot a R b^{\prime} \wedge b^{\prime}=b \\
& \Leftrightarrow a R b \\
& \Rightarrow i d_{B} \circ R=R
\end{aligned}
$$

Theorem 124 Relational composition is associative and has the identity relation as neutral element.

- Associativity.

For all $\mathrm{R}: \mathrm{A} \longrightarrow \mathrm{B}, \mathrm{S}: \mathrm{B} \longrightarrow \mathrm{C}$, and $\mathrm{T}: \mathrm{C} \longrightarrow \mathrm{D}$,

- Neutral element.

$$
(T \circ S) \circ R=T \circ(S \circ R)
$$

For all $\mathrm{R}: \mathrm{A} \longrightarrow \mathrm{B}$,

$$
R \circ \operatorname{id}_{A}=R=\operatorname{id}_{B} \circ R
$$

$$
\begin{aligned}
& a\left(\left(\tau_{0} S\right) \circ R\right) d \\
& \quad \Leftrightarrow \exists b \cdot a R b \wedge b\left(\tau_{0} S\right) d \\
& \quad \Leftrightarrow \exists b \cdot a R b \wedge \exists c \cdot b S c \wedge c \tau d \\
& \quad \Leftrightarrow \exists b \cdot \exists c \cdot a R b \wedge b S c \wedge c T d
\end{aligned}
$$

$a\left(T_{0}\left(\delta_{0} R\right)\right) d$

$$
\begin{aligned}
& \Leftrightarrow \exists c \cdot a(S 0 R) c \wedge c T d \\
& \Leftrightarrow \exists c \cdot(\exists b \cdot a R b \wedge b s c) \wedge c T d \\
& \Leftrightarrow \exists c \cdot \exists b \cdot a R b a b s c \wedge c T d .
\end{aligned}
$$

Relations and matrices

Definition 125

1. For positive integers m and n, an $(m \times n)$-matrix M over a semiring $(S, 0, \oplus, 1, \odot)$ is given by entries $M_{i, j} \in S$ for all $0 \leq i<m$ and $0 \leq j<n$.

$$
(m \times n)-\text { matres }
$$

$$
\begin{array}{ll}
(M+N)_{i, j}=M_{i, j} \oplus N_{i, j} & (m \times n)-w d \\
(N \not M)_{i, j}=\underset{k}{m \times l} & \left(M_{i, R} \odot N_{k, j}\right)
\end{array}
$$

Theorem 126 Matrix multiplication is associative and has the identity matrix as neutral element.

