Ordered pairing

Notation:

(a,b) or (a,b)

Fundamental property:

(a,b) =(%y) = a=x A b=y
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A construction:

For every pair a and b, three applications of the pairing axiom
provide the set

<Cl,b> — {{(l}, {a>b}}

which defines an ordered pairing of a and b.
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Proposition 109 (Fundamental property of ordered pairing)
For all a, b, x,y,

(a,b) = (x,y) &= (a=xNb=y) .

YOUR PROOF:
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MY PROOF: Leta,b,x,y be arbitrary.

(&=| Vacuous.
(=) Assume {{a},{a,b}} = {{X}>{X>y}}-

—

Then, {a}={x}V {’&}’—{X y} and, in either case, a = x.

Hence, {{a}, {a,b} } {{ a},{a\_y}} and, by Proposition 108.2
(on page 347), {a b} ={a,y} which, again by Proposition 108.2,

impliesb =vy. —

f
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Products

The product A x B of two sets A and B is the set
<Z§% {x|JaeAbeB.x=(ab))}
A -

Va;,a; € A,by, by € B.
(a7,b1) = (az,b2) &= (a1 =a, /\ b; =b;)

where

Thus,

Yx €A xB.3lacA.3beB.x=(a,b)
. - s 2

— 353 —



More generally, for a fixed natural number n and sets A;,..., A, we

have
w\\/

{X\E'ChEAh ydn € Ap. X = (ay...,04) }
where \
(CCQ// ) %B
Vay,a € Ay,...,aq,a € A,
(ary...,an) =(afy...,al) & (a;=a; N\ -+ N ap=a))
e

NB Cunningly enough, the definition is such that [T, ; A; = { () }.

Notation 110 For a natural number n and a set A, one typically
Write@or@
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Pattern-matching notation

Example: The subset of ordered pairs from a set A with equal
components is formally /

{(xeAXA |daeAda, e Ax=(a,a;) N\ ag=aqa;}

/

but often abbreviated using pattern-matching notation as

{lay,m) e AXxAlar=a;} %

Notation: For a property P(a, b) with a ranging over a set A and b
ranging over a set B,

{(ab)EAxBIP (a,b)} %?
abbreviates

[xeAXxB|dacA.IbeB.x=(a,b) A P(a,bw
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Proposition 111 For all finite sets A and B,
# (A XxB) = #A-#B .
PROOF IDEA * :
A= Fe - A §
b= 5 - b1 5

/42”3 — Z (5‘((2[>“ S éd( 97)

(

<

Z“;(/ &) - -’o(él’(/}f)j

2See Theorem 162.2 on page 439.
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Sets and logic

P(U) { false, true }

0 false
u true
U \Y4
N N\

() ()
/D \) g
N A e
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Big unions

» Consider the family of sets
.

/

the sum of the elements of
T = < TC[5] >

\ — | Tisless than or equal 2 j

= {0, 0, M, 10,1, 0.2}

» The big union of the family T is the set | J T given by the union of
the sets in T

nelJT &< dTeT.neT .
Hence, | JT ={0,1,2}.

s ‘
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Definition 112 Let U be a set. For a collection of sets F € P(P(U)),

we let the big union (relative to U) be defined as —

UF = {xeU|IAecTF.xcA} €P(U)
o A

Btw To get some intuition behind this definition, it might be useful
to compare the construction with the ML function

———

flatten : ’a list list —-> ’a list

— e —

associated with the ML 1ist datatype constructor.
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Examples:
1. For A, A, A, € P(U),

J0 =10
U{A}=A
U{AL, A= A1 UA;
U{A A, A=AUATUA,
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2. For F € P(P(P(U))), let us introduce the notation

—_—
e

- '{UAET(U)!AEFLK
for the set JTM”‘(F U %

{xeopW) [3acax=ya } ePPW)
noticing that this is justified by the fact that, for all x € U,

xeU{XePWI|[IAeTFX=UA}
& IXeP(U).FAcF.X={JA A xeX
— JAeTF.xel|JA
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We then have the following associativity law:

Proposition 113 For all F € P(P(P(U))),

_UUF) =Uu{uaerw [aeg} erm

Btw In trying to understand this statement, ponder about the
following analogous identity for the ML 1ist datatype
constructor: forall F : ’a 1list list list,

<i;flatten ( flatten F )

= flatten ( map flatten F ) : ’a list

"‘——’_\J
T ——

The above two identities are the associativity law of a mathematical

structure known as a monad, which has become a fundamental tool
A

In functional programming.
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MY PROOF: For F € P(P(P(U))) and x € U, one calculates
that:

xeU(U9)
& IXelUTF. xeX
— JAeTF. dXeA.xeX
— dJAeTF. xelJA
= xeJ{UA ePU) | AT}
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Big intersections

Example:

» Consider the family of sets

y

S= < SC[5]

\

— {{2>4}> {O>2>4}> {1’2’3}}

the sum of the elements of
S is less than or equal 6

\

N,

$ <<

» The big intersection of the family S is the set (S given by the
iIntersection of the sets in S
ne()d & vSed.neSs

Hence, | JS ={2}.
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Definition 114 Let U be a set. For a collection of sets & C P(U),
we let the big intersection (relative to U) be defined as

NF = {(xcUfAgTxeA} .

Examples: For A, A;, A, € P(U),

A0 =U
N{A}=A

(AL A2l =A1NA;

NA AL A = ANA N A,
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Theorem 115 Let

F = {ﬁ\(gsS)A(v@c_eﬂsﬁ (x+1)es) |}

SN

Then, (i) N e Fand (ii) N C (F. Hence, (\F = N.

NB This result is typically interpreted as stating that:
§ N is the least set of numbers containing 0 and closed under

success&s?\? @/’OG ”@ 2
Marg(lo wil ix(&[y, \/
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Proposition 116 Let U be a set and let & C P(U) be a family of
subsets of U.

1. Forall S € P(U),
S =7 C
. S)
iff 4Q
VAecF. ACS]
A VX e P(U). (VAE?ACX)éSCX}

————————

2. Forall T € P(U) 9“"(" )QEQL
g Q&)

iff
VA E€TF.TC AD@%{»
A [VY e PU. (VAEF.YCA)=YC T
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Union axiom

Every collection of sets has a union.

The set whose existence is postulated by the union axiom for a
collection & is typically denoted

UF
and, in the case & = {A, B}, abbreviated to

AUB

Thus,
C;EU97<:> I1XeF.xeX |

\

and hence

GE(AUB) e (xEA)V (x€B)
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Using the separation and union axioms, for every collection F,
consider the set

{(xeUTFIVXeTFxeX} .

For non-empty & this set is denoted

aki

because, in this case, _
v xeT o (XeTrex) D

In particular, for & = {A, B}, this is abbreviated to

ANB
with defining property

Vx. x € (ANB) < (x € A) N\ (x € B)
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