
Ordered pairing

Notation:

(a, b) or 〈a, b〉

Fundamental property:

(a, b) = (x, y) =⇒ a = x ∧ b = y
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A construction:

For every pair a and b, three applications of the pairing axiom

provide the set

〈a, b〉 =
{
{a } , {a, b }

}

which defines an ordered pairing of a and b.
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Proposition 109 (Fundamental property of ordered pairing)

For all a, b, x, y,

〈a, b〉 = 〈x, y〉 ⇐⇒
(

a = x ∧ b = y
)

.

YOUR PROOF:
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MY PROOF: Let a, b, x, y be arbitrary.

(⇐=) Vacuous.

(=⇒) Assume
{
{a }, {a, b }

}
=
{
{ x }, { x, y }

}
.

Then, {a } = { x } ∨ {a } = { x, y }; and, in either case, a = x.

Hence,
{
{a }, {a, b }

}
=
{
{a }, {a, y }

}
and, by Proposition 108.2

(on page 347), {a, b } = {a, y } which, again by Proposition 108.2,

implies b = y.
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Products

The product A× B of two sets A and B is the set

A× B =
{
x | ∃a ∈ A,b ∈ B. x = (a, b)

}

where

∀a1, a2 ∈ A,b1, b2 ∈ B.

(a1, b1) = (a2, b2) ⇐⇒ (a1 = a2 ∧ b1 = b2) .

Thus,

∀ x ∈ A× B.∃!a ∈ A.∃!b ∈ B. x = (a, b) .
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More generally, for a fixed natural number n and sets A1, . . . , An, we

have

∏n
i=1 Ai = A1 × · · ·×An

=
{
x | ∃a1 ∈ A1, . . . , an ∈ An. x = (a1, . . . , an)

}

where

∀a1, a
′
1 ∈ A1, . . . , an, a

′
n ∈ An.

(a1, . . . , an) = (a ′
1, . . . , a

′
n) ⇐⇒ (a1 = a ′

1 ∧ · · · ∧ an = a ′
n) .

NB Cunningly enough, the definition is such that
∏0

i=1 Ai = { () }.

Notation 110 For a natural number n and a set A, one typically

writes An for
∏n

i=1 A.
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Pattern-matching notation

Example: The subset of ordered pairs from a set A with equal

components is formally

{ x ∈ A×A | ∃a1 ∈ A.∃a2 ∈ A. x = (a1, a2) ∧ a1 = a2 }

but often abbreviated using pattern-matching notation as

{ (a1, a2) ∈ A×A | a1 = a2 } .

Notation: For a property P(a, b) with a ranging over a set A and b

ranging over a set B,

{ (a, b) ∈ A× B | P(a, b) }

abbreviates

{ x ∈ A× B | ∃a ∈ A.∃b ∈ B. x = (a, b) ∧ P(a, b) } .
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Proposition 111 For all finite sets A and B,

# (A× B) = #A ·#B .

PROOF IDEA a :

aSee Theorem 162.2 on page 439.
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Sets and logic

P(U)
{
false , true

}

∅ false

U true

∪ ∨

∩ ∧

(·)c ¬(·)
⋃

∃
⋂

∀
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Big unions

Example:

! Consider the family of sets

T =





T ⊆ [5]

the sum of the elements of

T is less than or equal 2






=
{
∅ , {0} , {1} , {0, 1} , {0, 2}

}

! The big union of the family T is the set
⋃

T given by the union of

the sets in T:

n ∈
⋃

T ⇐⇒ ∃ T ∈ T. n ∈ T .

Hence,
⋃

T = { 0, 1, 2 }.
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Definition 112 Let U be a set. For a collection of sets F ∈ P(P(U)),

we let the big union (relative to U) be defined as

⋃

F =
{
x ∈ U | ∃A ∈ F. x ∈ A

}
∈ P(U) .

Btw To get some intuition behind this definition, it might be useful

to compare the construction with the ML function

flatten : ’a list list -> ’a list

associated with the ML list datatype constructor.
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Examples:

1. For A,A1,A2 ∈ P(U),

⋃

∅ = ∅
⋃

{A} = A
⋃

{A1,A2} = A1 ∪A2
⋃

{A,A1,A2} = A ∪A1 ∪A2
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2. For F ∈ P(P(P(U))), let us introduce the notation
{

⋃

A ∈ P(U) A ∈ F
}

for the set
{

X ∈ P(U) ∃A ∈ F. X =
⋃

A
}

∈ P(P(U))

noticing that this is justified by the fact that, for all x ∈ U,

x ∈
⋃
{
X ∈ P(U) | ∃A ∈ F. X =

⋃

A
}

⇐⇒ ∃X ∈ P(U).∃A ∈ F. X =
⋃

A ∧ x ∈ X

⇐⇒ ∃A ∈ F. x ∈
⋃

A

— 361 —





We then have the following associativity law :

Proposition 113 For all F ∈ P(P(P(U))),
⋃

(
⋃

F
)

=
⋃

{
⋃

A ∈ P(U) A ∈ F
}

∈ P(U) .

Btw In trying to understand this statement, ponder about the

following analogous identity for the ML list datatype

constructor: for all F : ’a list list list,

flatten ( flatten F )

= flatten ( map flatten F ) : ’a list

The above two identities are the associativity law of a mathematical

structure known as a monad, which has become a fundamental tool

in functional programming.
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MY PROOF: For F ∈ P(P(P(U))) and x ∈ U, one calculates

that:

x ∈
⋃

(
⋃

F)

⇐⇒ ∃X ∈
⋃

F. x ∈ X

⇐⇒ ∃A ∈ F. ∃X ∈ A. x ∈ X

⇐⇒ ∃A ∈ F. x ∈
⋃

A

⇐⇒ x ∈
⋃
{
⋃

A ∈ P(U) | A ∈ F
}
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Big intersections

Example:

! Consider the family of sets

S =





S ⊆ [5]

the sum of the elements of

S is less than or equal 6






=
{
{ 2, 4 } , { 0, 2, 4 } , { 1, 2, 3 }

}

! The big intersection of the family S is the set
⋂

S given by the

intersection of the sets in S:

n ∈
⋂

S ⇐⇒ ∀S ∈ S. n ∈ S .

Hence,
⋃

S = { 2 }.
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Definition 114 Let U be a set. For a collection of sets F ⊆ P(U),

we let the big intersection (relative to U) be defined as

⋂

F =
{
x ∈ U | ∀A ∈ F. x ∈ A

}
.

Examples: For A,A1,A2 ∈ P(U),

⋂

∅ = U
⋂

{A} = A
⋂

{A1,A2} = A1 ∩A2
⋂

{A,A1,A2} = A ∩A1 ∩A2
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Theorem 115 Let

F =
{

S ⊆ R (0 ∈ S) ∧
(

∀x ∈ R. x ∈ S =⇒ (x+ 1) ∈ S
)

}
.

Then, (i) N ∈ F and (ii) N ⊆
⋂

F. Hence,
⋂

F = N.

NB This result is typically interpreted as stating that:

N is the least set of numbers containing 0 and closed under

successors.
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Proposition 116 Let U be a set and let F ⊆ P(U) be a family of

subsets of U.

1. For all S ∈ P(U),

S =
⋃

F

iff
[

∀A ∈ F. A ⊆ S
]

∧
[

∀X ∈ P(U). (∀A ∈ F. A ⊆ X)⇒ S ⊆ X
]

2. For all T ∈ P(U),

T =
⋂

F

iff
[

∀A ∈ F. T ⊆ A
]

∧
[

∀Y ∈ P(U). (∀A ∈ F. Y ⊆ A)⇒ Y ⊆ T
]
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Union axiom

Every collection of sets has a union.

The set whose existence is postulated by the union axiom for a

collection F is typically denoted
⋃

F

and, in the case F = {A,B}, abbreviated to

A ∪ B .

Thus,

x ∈
⋃

F ⇐⇒ ∃X ∈ F. x ∈ X ,

and hence

x ∈ (A ∪ B) ⇐⇒ (x ∈ A) ∨ (x ∈ B) .
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Using the separation and union axioms, for every collection F,

consider the set
{
x ∈

⋃

F | ∀X ∈ F. x ∈ X
}

.

For non-empty F this set is denoted
⋂

F

because, in this case,

∀x. x ∈
⋂

F ⇐⇒
(

∀X ∈ F. x ∈ X
)

.

In particular, for F = {A,B}, this is abbreviated to

A ∩ B

with defining property

∀ x. x ∈ (A ∩ B) ⇐⇒ (x ∈ A) ∧ (x ∈ B) .
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