Ordered pairing

Notation:

$$
(a, b) \text { or }\langle a, b\rangle
$$

Fundamental property:

$$
(a, b)=(x, y) \Longrightarrow a=x \wedge b=y
$$

A construction:

For every pair a and b, three applications of the pairing axiom provide the set

$$
\langle a, b\rangle=\{\{a\},\{a, b\}\}
$$

which defines an ordered pairing of a and b.

Proposition 109 （Fundamental property of ordered pairing） For all a, b, x, y ，

$$
\langle\mathrm{a}, \mathrm{b}\rangle=\langle\mathrm{x}, \mathrm{y}\rangle \Longleftrightarrow(\mathrm{a}=\mathrm{x} \wedge \mathrm{b}=\mathrm{y}) .
$$

YOUR PROOF：

$$
\begin{aligned}
& \text { 立\{as, }\{a, b \text { 至\}二和 }\{x\},\{x y\}\} \\
& \longleftrightarrow a=x \sim b=y \\
& \leftarrow \text { easy } \rightarrow \\
& \text { (L\{u\}=\{x\}v 余a\} }=\{x y\} \text {) } \\
& 1\left(\left\{4,53=\left\{\times 3 \vee\left\{\begin{array}{l}
\text { as }\} \\
=\{x y\})
\end{array}\right.\right.\right.\right. \\
& \text { dor causes — } \sum x \text { for you. }
\end{aligned}
$$

MY PROOF: Let $\mathrm{a}, \mathrm{b}, \mathrm{x}, \mathrm{y}$ be arbitrary.
$(\Longleftarrow$ Vacuous.
(\Longrightarrow) Assume $\{\{a\},\{a, b\}\}=\{\{x\},\{x, y\}\}$.
Then, $\{a\}=\{x\} \vee\{a\}=\{x, y\}$; and, in either case, $a=x$.
Hence, $\{\{a\},\{a, b\}\}=\{\{a\},\{a, y\}\}$ and, by Proposition 108.2 (on page 347), $\{a, b\}=\{a, y\}$ which, again by Proposition 108.2, implies $\mathrm{b}=\mathrm{y}$.

Products

The product $A \times B$ of two sets A and B is the set
where

$$
A \times \widehat{B}=\{x \mid \exists a \in A, b \in B \cdot x=(a, b)\}
$$

$$
\begin{aligned}
& \forall a_{1}, a_{2} \in A, b_{1}, b_{2} \in B . \\
& \qquad\left(a_{1}, b_{1}\right)=\left(a_{2}, b_{2}\right) \Longleftrightarrow\left(a_{1}=a_{2} \wedge b_{1}=b_{2}\right)
\end{aligned}
$$

Thus,

$$
\underline{\underbrace{}}^{\forall x \in A \times B . \exists!a \in A . \exists!} b \in B . x=(a, b) .
$$

More generally, for a fixed natural number n and sets A_{1}, \ldots, A_{n}, we have

where

$$
\begin{aligned}
& \forall a_{1}, a_{1}^{\prime} \in A_{1}, \ldots, a_{n}, a_{n}^{\prime} \in A_{n} \cdot \\
& \quad\left(a_{1}, \ldots, a_{n}\right)=\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right) \Longleftrightarrow\left(a_{1}=a_{1}^{\prime} \wedge \cdots \wedge a_{n}=a_{n}^{\prime}\right) .
\end{aligned}
$$

NB Cunningly enough, the definition is such that $\prod_{i=1}^{0} A_{i}=\{()\}$.
Notation 110 For a natural number n and a set A, one typically writes A^{n} for $\prod_{i=1}^{n} A$.

Pattern-matching notation

Example: The subset of ordered pairs from a set A with equal components is formally

$$
\left\{x \in A \times A \mid \exists a_{1} \in A \cdot \exists a_{2} \in A \cdot x=\left(\underline{\left.a_{1}, a_{2}\right)} \wedge \underline{\left.a_{1}=a_{2}\right\}}\right)\right.
$$

but often abbreviated using pattern-matching notation as

$$
\left.\left\{\left(a_{1}, a_{2}\right) \in A \times A \mid a_{1}=a_{2}\right\} .\right\}
$$

Notation: For a property $\mathrm{P}(\mathrm{a}, \mathrm{b})$ with a ranging over a set A and b ranging over a set B ,
abbreviates

$$
\{(a, b) \in A \times B \mid \underline{P(a, b)\}}\}\}
$$

$$
\begin{gathered}
\{x \in A \times B \mid \exists a \in A . \exists b \in B . x=(a, b) \wedge P(a, b)\} .) \\
-355-
\end{gathered}
$$

Proposition 111 For all finite sets A and B,

$$
\#(A \times B)=\# A \cdot \# B
$$

Proof idea ${ }^{a}$:

$$
\begin{aligned}
A= & \left\{a_{1} \ldots \ldots a_{k}\right\} \\
B= & \left\{b_{1} \ldots b_{j}\right\} \\
A \times B= & \left\{\left(a_{1} b_{1}\right) \cdots \cdots\left(a_{1} b_{j}\right)\right. \\
\vdots & \vdots \\
& \left.\left(a_{k}, b_{1}\right) \cdots\left(a_{k}, b_{j}\right)\right\}
\end{aligned}
$$

${ }^{\text {a }}$ See Theorem 162.2 on page 439.

Sets and logic

$\mathcal{P}(\mathrm{U})$	$\{$ false, true $\}$
\emptyset	false
U	true
\cup	\vee
\cap	\wedge
$(\cdot)^{c}$	$\neg(\cdot)$
\cup	$\checkmark 3$
\cap	$\subset\}$

Big unions

Example:

- Consider the family of sets

$$
\left.\begin{array}{rl}
\mathcal{T} & =\{T \subseteq[5] \\
\begin{array}{l}
\text { the sum of the elements of } \\
T \text { is less than or equal } 2
\end{array}
\end{array}\right\}
$$

- The big union of the family \mathcal{T} is the set $\bigcup \mathcal{T}$ given by the union of the sets in \mathcal{T} :

$$
\mathrm{n} \in \bigcup \mathcal{T} \Longleftrightarrow \exists \mathrm{~T} \in \mathcal{T} . \mathrm{n} \in \mathrm{~T}
$$

Hence, $\bigcup \mathcal{T}=\{0,1,2\}$.

Definition 112 Let U be a set. For a collection of sets $\mathcal{F} \in \mathcal{P}(\mathcal{P}(\mathrm{U}))$, we let the big union (relative to U) be defined as

$$
\underline{U \mathcal{F}}=\{\underline{x \in \mathrm{U} \mid \exists A \in \mathcal{F}} . \underline{x \in \mathcal{A}}\} \in \underline{\mathcal{P}(\mathrm{U})} .
$$

Btw To get some intuition behind this definition, it might be useful to compare the construction with the ML function
flatten : 'a list list -> 'a list
associated with the ML list datatype constructor.

Examples:

1. For $A, A_{1}, A_{2} \in \mathcal{P}(U)$,

$$
\begin{gathered}
\bigcup \emptyset=\emptyset \\
\bigcup\{A\}=A \\
\bigcup\left\{A_{1}, A_{2}\right\}=A_{1} \cup A_{2} \\
\bigcup\left\{A, A_{1}, A_{2}\right\}=A \cup A_{1} \cup A_{2}
\end{gathered}
$$

2. For $\mathcal{F} \in \mathcal{P}(\mathcal{P}(\mathcal{P}(\mathrm{U}))$), let us introduce the notation

noticing that this is justified by the fact that, for all $x \in \mathrm{U}$,

$$
\begin{aligned}
& \tilde{F} \in \mathbb{P}(\mathbb{P}(\mathbb{R}(u))) \\
& v(u v)=\text { ? } \\
& J=\{\cdots \theta, \ldots B, \ldots\} \\
& \theta=\left\{A_{1}, 1_{2} \cdots A_{x}\right\} \\
& B=\left\{B_{1}, B_{d} \quad B_{j}\right\} \\
& U(U j)= \\
& \left.\begin{array}{r}
\cup\left\{\ldots-A_{1}, G_{1}, \cdots A_{x}, \ldots\right. \\
B_{1}, B_{2}, \ldots
\end{array}\right\} \\
& \left.\begin{array}{rl}
= & \left\{\cdots A_{1} \cup A_{\Omega} \cup \cdots K_{k} \cup \cdots\right. \\
& \left.\ldots \cup B_{1} \cup B_{2} \cup \cdots B_{y} \cup-\cdots\right\}
\end{array}\right\} \\
& =\{\cdots \cup(\underline{1} \theta) \cup \cdots \cup(U B)\} \\
& =\underline{U}(\operatorname{map} \cup \mathcal{F})
\end{aligned}
$$

We then have the following associativity law:
Proposition 113 For all $\mathcal{F} \in \mathcal{P}(\mathcal{P}(\mathcal{P}(\mathrm{U}))$),

$$
\underline{U(\bigcup \mathcal{F})}=\bigcup\{\underline{\mathcal{A} \in \mathcal{P}(\mathrm{U}) \mid \mathcal{A} \in \mathcal{F}\}}\} \in \mathcal{P}(\mathrm{U}) .
$$

Btw In trying to understand this statement, ponder about the following analogous identity for the ML list datatype constructor: for all F : 'a list list list,
flatten (flatten F)
= flatten (map flatten F) : 'a list
The above two identities are the associativity law of a mathematical
structure known as a monad, which has become a fundamental tool
in functional programming.

My PROOF: For $\mathcal{F} \in \mathcal{P}(\mathcal{P}(\mathcal{P}(\mathrm{U})))$ and $x \in \mathrm{U}$, one calculates that:

$$
\begin{aligned}
& x \in \bigcup(\bigcup \mathcal{F}) \\
& \Longleftrightarrow \exists X \in \bigcup \mathcal{F} . x \in X \\
& \Longleftrightarrow \exists \mathcal{A} \in \mathcal{F} . \exists X \in \mathcal{A} . x \in X \\
& \Longleftrightarrow \exists \mathcal{A} \in \mathcal{F} . x \in \cup \mathcal{A} \\
& \Longleftrightarrow x \in \bigcup\{\cup \mathcal{A} \in \mathcal{P}(\mathrm{U}) \mid \mathcal{A} \in \mathcal{F}\}
\end{aligned}
$$

Big intersections

Example:

- Consider the family of sets

$$
\begin{aligned}
\mathcal{S} & =\left\{S \subseteq[5] \left\lvert\, \begin{array}{l}
\text { the sum of the elements of } \\
S \text { is less than or equal } 6
\end{array}\right.\right\} \\
& =\{\{2,4\},\{0,2,4\},\{1,2,3\}\}
\end{aligned}
$$

- The big intersection of the family \mathcal{S} is the set $\bigcap \mathcal{S}$ given by the intersection of the sets in \mathcal{S} :

$$
\mathrm{n} \in \bigcap \mathcal{S} \Longleftrightarrow \forall \mathrm{~S} \in \mathcal{S} . \mathrm{n} \in \mathrm{~S}
$$

Hence, $\bigcup \mathcal{S}=\{2\}$.

Definition 114 Let U be a set. For a collection of sets $\mathcal{F} \subseteq \mathcal{P}(\mathrm{U})$, we let the big intersection (relative to U) be defined as

$$
\bigcap \mathcal{F}=\{x \in U, \nexists \mathcal{A} . x \in A\} .
$$

Examples: For $A, A_{1}, A_{2} \in \mathcal{P}(U)$,

Theorem 115 Let

$$
\mathcal{F}=\{\underbrace{S \subseteq \mathbb{R}} \mid(0 \in S) \wedge(\forall x \in \mathbb{R} \cdot x \in S \Longrightarrow(x+1) \in S)\}
$$

Then, (i) $\underbrace{\mathbb{N} \in \mathcal{F}}$ and $(i i) \mathbb{N} \subseteq \bigcap \mathcal{F}$. Hence, $\bigcap \mathcal{F}=\mathbb{N}$.
NB This result is typically interpreted as stating that:
$\{\mathbb{N}$ is the least set of numbers containing 0 and closed under successors.
prop. 116 ?
Morello will sorexplain

Proposition 116 Let U be a set and let $\mathcal{F} \subseteq \mathcal{P}(\mathrm{U})$ be a family of subsets of U.

1. For all $S \in \mathcal{P}(\mathrm{U})$,

$$
\text { inf } \begin{aligned}
S & =\bigcup \mathcal{F} \\
& {[\forall A \in \mathcal{F} \cdot A \subseteq S]=} \\
& \wedge[\forall X \in \mathcal{P}(\mathrm{U}) \cdot(\forall A \in \mathcal{F} \cdot A \subseteq X) \Rightarrow S \subseteq X]
\end{aligned}
$$

2. For all $\mathrm{T} \in \mathcal{P}(\mathrm{U})$,

$$
\begin{aligned}
& \mathrm{T}=\bigcap_{\mathcal{F}} \\
& \text { eff } \\
& [\forall A \in \mathcal{F} . T \subseteq A]) Q^{\prime}(T)
\end{aligned}
$$

$$
\begin{aligned}
& \delta \Omega
\end{aligned}
$$

Union axiom

Every collection of sets has a union.

The set whose existence is postulated by the union axiom for a collection \mathcal{F} is typically denoted

and, in the case $\mathcal{F}=\{A, B\}$, abbreviated to

$$
A \cup B .
$$

Thus,

$$
x \in \bigcup \mathcal{F} \Longleftrightarrow \exists X \in \mathcal{F} . x \in X
$$

and hence

$$
(\underline{x} \in(A \cup B) \Longleftrightarrow \underset{370-}{\underset{-1}{(x \in A})} \vee(\underline{x \in B}) .
$$

Using the separation and union axioms, for every collection \mathcal{F}, consider the set

$$
\{x \in \bigcup \mathcal{F} \mid \forall X \in \mathcal{F} . x \in X\} .
$$

For non-empty \mathcal{F} this set is denoted

$$
\bigcap \mathcal{F}
$$

because, in this case,

$$
\forall x . x \in \bigcap \mathcal{F} \Longleftrightarrow(\forall X \in \mathcal{F} . x \in X)
$$

In particular, for $\mathcal{F}=\{A, B\}$, this is abbreviated to

$$
A \cap B
$$

with defining property

$$
\begin{aligned}
\forall x . x \in(A \cap B) & \Longleftrightarrow(x \in A) \wedge(x \in B) .
\end{aligned}
$$

