Principle of Strong Induction

from basis ℓ and Induction Hypothesis P(m).

Let P(m) be a statement for m ranging over the natural numbers greater than or equal a fixed natural number \(\ell. \)

Base (3)
$$P(\ell)$$
 and Inductive $\forall n \geq \ell \text{ in } \mathbb{N}. \ \left(\ (\forall k \in [\ell..n]. P(k) \) \implies P(n+1) \ \right)$

hold, then

 $ightharpoonup \forall m > \ell \text{ in } \mathbb{N}. P(m) \text{ holds.}$

Fundamental Theorem of Arithmetic

Proposition 95 Every positive integer greater than or equal 2 is a prime or a product of primes.

Proof: Bose cose: Holds becouse 2 is prime. Induchte step: Consider n 22. Assume for all $k = 2, 3, \dots, n$ ($2 \le k \le n$) kis prime or a product of primes. RTP: n+1 is prime or a product of primes.

Consider Two coses: (1) nH is prime; Then we are done. (2) n+1 is composite; Then nH=a.b mth a, b > 2. Observe a, b & n. Then, by (IH), a is a prime or a product of primes and 5 is a prime or a product of primes. Therefore n+1=a.b is a product of primes.

Theorem 96 (Fundamental Theorem of Arithmetic) For every positive integer n there is a unique finite ordered sequence of primes $(p_1 \le \cdots \le p_\ell)$ with $\ell \in \mathbb{N}$ such that

$$n = \prod(p_1, \ldots, p_\ell)$$
.

Proof:

Euclid's infinitude of primes

Theorem 99 The set of primes is infinite.

PROOF: Assume for a contradiction that there are a finite set of primes:

$$p_1=2$$
, $p_2=3$, $p_3=5$, ..., p_N for NEW

Concider $(\pi_{i=1}^N p_i)+1$. It is not a prime.

So it is a product of prime. So there is present that $p_N = 1$ and $p_N = 1$. Also $p_N = 1$ and $p_N = 1$.

Hence, $p_N = 1$ and $p_N = 1$.

Sets

Objectives

To introduce the basics of the theory of sets and some of its uses.

Abstract sets

It has been said that a set is like a mental "bag of dots", except of course that the bag has no shape; thus,

may be a convenient way of picturing a certain set for some considerations, but what is apparently the same set may be pictured as

or even simply as

for other considerations.

Naive Set Theory

We are not going to be formally studying Set Theory here; rather, we will be *naively* looking at ubiquituous structures that are available within it.

Set membership

We write \in for the *membership predicate*; so that

 $x \in A$ stands for x is an element of A.

We further write

$$x \notin A$$
 for $\neg(x \in A)$.

Example: $0 \in \{0, 1\}$ and $1 \notin \{0\}$ are true statements.

Extensionality axiom

Two sets are equal if they have the same elements.

Thus,

$$\forall$$
 sets A, B. $A = B \iff (\forall x. x \in A \iff x \in B)$.

Example:

$$\{0\} \neq \{0,1\} = \{1,0\} \neq \{2\} = \{2,2\}$$

$$B = C \Leftrightarrow (b = b + \sqrt{b^2 - c} \land b = b - \sqrt{b^2 - c})$$
est.

Proposition 100 For $b, c \in \mathbb{R}$, let

$$A = \{x \in \mathbb{C} \mid x^2 - 2bc + c = 0\}$$

$$B = \{b + \sqrt{b^2 - c}, b - \sqrt{b^2 - c}\}$$

$$C = \{b\}$$

$$Then, \qquad \forall x. \left(x \in \mathbb{C} \land x^2 - 2bc + c = 0\right)$$

$$A = B, and \qquad \forall x = b - \sqrt{b^2 - c}$$

$$A = B, and \qquad \forall x = b - \sqrt{b^2 - c}$$

$$A = B, and \qquad \forall x = b - \sqrt{b^2 - c}$$

$$A = B, and \qquad \forall x = b - \sqrt{b^2 - c}$$

Subsets and supersets

A=B
$$\iff$$
 $\forall x.(x \in A \iff x \in B)$
 \iff $\forall x.(x \in A \implies x \in B)$ $\land (x \in B \implies x \in A)$
 $A \subseteq B \iff$ $\forall x.(x \in A \implies x \in B)$
 $A = B \iff (A \subseteq B) \land (B \subseteq A)$

Lemma 103

1. Reflexivity.

For all sets A, $A \subseteq A$.

2. Transitivity.

For all sets A, B, C,
$$(A \subseteq B \land B \subseteq C) \implies A \subseteq C$$
.

3. Antisymmetry.

For all sets A, B, $(A \subseteq B \land B \subseteq A) \implies A = B$.

Separation principle

For any set A and any definable property P, there is a set containing precisely those elements of A for which the property P holds.

$$\{x \in A \mid P(x)\} \subseteq A$$

Russell's paradox

$$\mathcal{U} = \left\{ \begin{array}{ll} \chi \mid R(\chi) \end{array} \right\}$$
 $\mathcal{R}(\chi) \iff \chi \notin \chi$
 $\chi \in \mathcal{U} \iff R(\chi) \iff \chi \notin \chi$

 $x \in \mathcal{U} \iff x \notin x$

Vhln

UEU = UEU

$$\forall x. 7(x \in \emptyset) \iff \forall x. (x \in \emptyset \Rightarrow folse)$$

Empty set

Set theory has an

empty set,

typically denoted

∅ or {},

with no elements.

Cardinality

The *cardinality* of a set specifies its size. If this is a natural number, then the set is said to be *finite*.

Typical notations for the cardinality of a set S are S or S.

Example:

$$\#\emptyset = 0$$

Finite sets

The *finite sets* are those with cardinality a natural number.

Example: For $n \in \mathbb{N}$,

$$[n] = \{x \in \mathbb{N} \mid x < n\}$$

is finite of cardinality n. $= \{0, 1, 2, \dots, n-1\}$

Powerset axiom

For any set, there is a set consisting of all its subsets.

$$\mathcal{P}(\mathbf{U})$$

$$\forall X. X \in \mathcal{P}(U) \iff X \subseteq U$$
.