Lemma 73 For all positive integers m and n,

$$CD(m,n) = \begin{cases} D(n) & , \text{ if } n \mid m \\ CD(n, rem(m,n)) & , \text{ otherwise} \end{cases}$$

Since a positive integer n is the greatest divisor in D(n), the lemma suggests a recursive procedure:

$$gcd(m,n) = \begin{cases} n & , \text{ if } n \mid m \\ gcd(n, rem(m,n)) & , \text{ otherwise} \end{cases}$$

for computing the *greatest common divisor*, of two positive integers m and n. This is

Euclid's Algorithm

```
gcd
fun gcd( m , n )
  = let
      val ( q , r ) = divalg( m , n )
     in
       if r = 0 then n
      else gcd( n , r )
     end
```

Theorem 78 Euclid's Algorithm gcd terminates on all pairs of positive integers and, for such m and n, the positive integer gcd(m,n) is the greatest common divisor of m and n in the sense that the following two properties hold:

- (i) both gcd(m, n) | m and gcd(m, n) | n, and
- (ii) for all positive integers d such that $d \mid m$ and $d \mid n$ it necessarily follows that $d \mid gcd(m, n)$.

PROOF: We know that if gcd(m,n)terminates then CD(m,n) = D(gcd(m,n))and gcd(m,n) satisfies (i) and (vi).

Definition 77 For natural numbers m, n the unique natural number k such that

- $\mathbf{k} \mid \mathbf{m} \land \mathbf{k} \mid \mathbf{n}$, and
- ► for all natural numbers d, d | m \land d | n \implies d | k.

is called the greatest common divisor of m and n, and denoted gcd(m, n).

$$m_{n} = \frac{i \cdot gcd(m,n)}{j \cdot gcd(m,n)} = \frac{i}{j}$$

Fractions in lowest terms

```
fun lowterms( m , n )
= let
    val gcdval = gcd( m , n )
    in
    ( m div gcdval , n div gcdval )
    end
```

Some fundamental properties of gcds

Lemma 80 For all positive integers 1, m, and n, (1) (Commutativity) gcd(m, n) = gcd(n, m), (2.) (Associativity) gcd(l, gcd(m, n)) = gcd(gcd(l, m), n), 3. (Linearity)^a $gcd(l \cdot m, l \cdot n) = l \cdot gcd(m, n)$. PROOF: Because: CD(m,h) = CD(n,m)Because: both $g_{cd}(l, g_{cd}(m, n))$ and $g_{cd}(g_{cd}(l, m), n)$ are the greatest in CP(l, m, n) = SdEN[dllnd|mnd|n]

^aAka (Distributivity).

hibearily: gcd(l.m, l.n) = l.gcd(m,n). Bloor; Thmore proof role: Composes the computations of gcd (l.m., l.n) and gcd (m.n) $g_{cd}(m,n)$ <u>ycd</u>(*l.m.l.n*) l·n m = iqn + r \parallel $lm = q \cdot ln + lr$ l·m=q[!]·ln+r[!]: 9'=9 ~ r'= lr

Mathematical proof rdee: Slow $g_{cd}(l.m,l.n) \stackrel{?}{=} l.g_{cd}(m,n)$. by showing (i) ligod(m,n) | lim ~ Ligod(m,n) | lin / (vi) for all d such That d lim and d lin and he have d leged(m,n) (i) We know gcd(m,n)|m from which it follows That l.gcd (m,n) [l.m. Similarly for l-gcd (m,n) le.n.

(iv) Assume: dlem and dlen RTP: dl(e.gcd(m,n))Know: d|gcd(lm, ln) Know: l(l.m) and l(l.n)

Coprimality

Definition 81 Two natural numbers are said to be coprime whenever their greatest common divisor is 1.

Euclid's Theorem

Theorem 82 For positive integers k, m, and n, if $k \mid (m \cdot n)$ and gcd(k, m) = 1 then $k \mid n$. PROOF: Suppose $k \mid (m \cdot n) \cdot That is, m \cdot n = k \cdot l$ for some l. Suppose also $g \leq q \leq (k, m) = 1$. Then, $gcd(n\cdot k, n\cdot m) = n \cdot gcd(k, m) = n$ \Rightarrow k|n. $^{11}gcd(n\cdot k,k\cdot e)=k\cdot gcd(n,e)$

Corollary 83 (Euclid's Theorem) For positive integers m and n, and prime p, if $p \mid (m \cdot n)$ then $p \mid m$ or $p \mid n$.

Now, the second part of Fermat's Little Theorem follows as a corollary of the first part and Euclid's Theorem.

PROOF: Assume p((m·n) Corse 1: plm uie are done. Case2: ptmThen gcd(p,m) = 1 and so pln.

Corollary 85 For prime p, every non-zero element i of \mathbb{Z}_p has $[i^{p-2}]_p$ as multiplicative inverse. Hence, \mathbb{Z}_p is what in the mathematical jargon is referred to as a <u>field</u>.