
Lemma 73 For all positive integers m and n,

CD(m,n) =





D(n) , if n | m

CD
�

n, rem(m,n)
�

, otherwise

Since a positive integer n is the greatest divisor in D(n), the lemma

suggests a recursive procedure:

gcd(m,n) =





n , if n | m

gcd
�

n, rem(m,n)
�

, otherwise

for computing the greatest common divisor, of two positive integers

m and n. This is

Euclid ′s Algorithm
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gcd

fun gcd( m , n )

= let

val ( q , r ) = divalg( m , n )

in

if r = 0 then n

else gcd( n , r )

end
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Theorem 78 Euclid’s Algorithm gcd terminates on all pairs of

positive integers and, for such m and n, the positive integer

gcd(m,n) is the greatest common divisor of m and n in the

sense that the following two properties hold:

(i) both gcd(m,n) | m and gcd(m,n) | n, and

(ii) for all positive integers d such that d | m and d | n it necessarily

follows that d | gcd(m,n).

PROOF:
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gcd(m,n)

n|m

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

m = q · n + r

q > 0 , 0 < r < n
0<m<n

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗

n gcd(n, r)

r|n

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣

n = q ′
· r + r ′

q ′ > 0 , 0 < r ′ < r

gcd(n,m)

r gcd(r, r ′)
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Definition 77 For natural numbers m,n the unique natural number

k such that

◮ k | m ∧ k | n, and

◮ for all natural numbers d, d | m ∧ d | n =⇒ d | k.

is called the greatest common divisor of m and n, and denoted

gcd(m,n).
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Fractions in lowest terms

fun lowterms( m , n )

= let

val gcdval = gcd( m , n )

in

( m div gcdval , n div gcdval )

end
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Some fundamental properties of gcds

Lemma 80 For all positive integers l, m, and n,

1. (Commutativity) gcd(m,n) = gcd(n,m),

2. (Associativity) gcd
�

l, gcd(m,n)
�

= gcd(gcd(l,m), n),

3. (Linearity)a gcd(l ·m, l · n) = l · gcd(m,n).

PROOF:

aAka (Distributivity).
— 226 —









Coprimality

Definition 81 Two natural numbers are said to be coprime when-

ever their greatest common divisor is 1.

Euclid ′s Theorem

Theorem 82 For positive integers k, m, and n, if k | (m · n) and

gcd(k,m) = 1 then k | n.

PROOF:
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Corollary 83 (Euclid’s Theorem) For positive integers m and n,

and prime p, if p | (m · n) then p | m or p | n.

Now, the second part of Fermat’s Little Theorem follows as a

corollary of the first part and Euclid’s Theorem.

PROOF:
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Fields of modular arithmetic

Corollary 85 For prime p, every non-zero element i of Zp

has [ip−2]p as multiplicative inverse. Hence, Zp is what in

the mathematical jargon is referred to as a field.
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