The division theorem and algorithm

Theorem 53 (Division Theorem) For every natural number m and positive natural number n, there exists a unique pair of integers q and r such that $q \geq 0$, $0 \leq r < n$, and $m = q \cdot n + r$.

Definition 54 The natural numbers q and r associated to a given pair of a natural number m and a positive integer n determined by the Division Theorem are respectively denoted $\text{quo}(m, n)$ and $\text{rem}(m, n)$.
PROOF OF Theorem 53:

\[0 \leq m - qn < n\]

\[m = i \cdot n + r_i\]
The Division Algorithm in ML:

\[\text{divalg}(m, n) = \text{diviter}(0, m) \]

\[
\begin{align*}
\text{fun divalg}(m, n) &= \text{let} \\
\quad \text{fun diviter}(q, r) &= \text{if } r < n \text{ then } (q, r) \\
\quad &\quad \text{else diviter}(q+1, r-n) \\
\quad \text{in} \\
\quad \text{diviter}(0, m) \end{align*}
\]

\[\text{fun quo}(m, n) = \#1(\text{divalg}(m, n)) \]

\[m = q \cdot n + r \quad \Rightarrow \quad m = (q+1) \cdot n + (r-n) \]

\[\text{fun rem}(m, n) = \#2(\text{divalg}(m, n)) \]

\[(\star) \quad \text{NB: } m = \text{first arg of } \text{diviter} \times n \]
\[\quad + \text{second arg of } \text{diviter} \]

\[\text{NB: Suppose } (\star) \text{ holds for } \text{diviter}(q, r) \]

Then it also holds for \[\text{diviter}(q+1, r-n) \].
Theorem 56 For every natural number m and positive natural number n, the evaluation of $\text{divalg}(m, n)$ terminates, outputing a pair of natural numbers (q_0, r_0) such that $r_0 < n$ and $m = q_0 \cdot n + r_0$.

Proof:

$$
\begin{align*}
\text{divalg}(q, r) & \quad r \geq 0 \\
\text{r < n} & \quad r > n \quad r - n \geq 0 \\
(q, r) & \quad \text{divalg}(q+1, r-n)
\end{align*}
$$

For all calls of $\text{divalg}(a, b)$ we have $m = a \cdot n + b$.
Proposition 57 Let m be a positive integer. For all natural numbers k and l,

$$k \equiv l \pmod{m} \iff \text{rem}(k, m) = \text{rem}(l, m)$$

Proof: Let m be a positive integer. Consider natural numbers k and l.

(\Rightarrow) \[k = \text{quo}(k, m) \cdot m + \text{rem}(k, m) \]

\[l = \text{quo}(l, m) \cdot m + \text{rem}(l, m) \]

Assume $k = l$ Then \[\text{rem}(k, m) = \text{rem}(l, m) \]

and \[\text{rem}(k, m) = \text{rem}(l, m) \]

(\Leftarrow) Exercise.
Corollary 58 Let \(m \) be a positive integer.

1. For every natural number \(n \),
 \[
 n \equiv \text{rem}(n, m) \pmod{m}.
 \]

2. For every integer \(k \) there exists a unique integer \([k]_m\) such that \(0 \leq [k]_m < m \) and \(k \equiv [k]_m \pmod{m} \).

PROOF:

(2) Say \(k \) is a nat. Then \([k]_m = \text{rem}(k, m)\). For \(k < 0 \) an integer, \([k]_m = [k + am]_m\)

\[[k]_m = m - \text{rem}(-k, m) \text{ if } \text{rem}(-k, m) \neq 0 \text{ for a s.t. } \]

Exercise. \[0 \quad m \quad k+am \geq 0 \]

\[\not\exists \]

\[182-a \]
Modular arithmetic

For every positive integer m, the integers modulo m are:

$$\mathbb{Z}_m : 0, 1, \ldots, m-1.$$

with arithmetic operations of addition $+_m$ and multiplication \cdot_m defined as follows

$$k+_m l = [k+l]_m = \text{rem}(k+l, m),$$

$$k \cdot_m l = [k \cdot l]_m = \text{rem}(k \cdot l, m)$$

for all $0 \leq k, l < m$.
For \(k \) and \(l \) in \(\mathbb{Z}_m \),
\[
 k +_m l \quad \text{and} \quad k \cdot_m l
\]
are the unique modular integers in \(\mathbb{Z}_m \) such that
\[
 k +_m l \equiv k + l \pmod{m} \\
 k \cdot_m l \equiv k \cdot l \pmod{m}
\]
Example 60 The addition and multiplication tables for \mathbb{Z}_4 are:

\[
\begin{array}{c|cccc}
+ & 0 & 1 & 2 & 3 \\
\hline
0 & 0 & 1 & 2 & 3 \\
1 & 1 & 2 & 3 & 0 \\
2 & 2 & 3 & 0 & 1 \\
3 & 3 & 0 & 1 & 2 \\
\end{array}
\quad
\begin{array}{c|cccc}
\cdot & 0 & 1 & 2 & 3 \\
\hline
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 2 & 3 \\
2 & 0 & 2 & 0 & 2 \\
3 & 0 & 3 & 2 & 1 \\
\end{array}
\]

Note that the addition table has a cyclic pattern, while there is no obvious pattern in the multiplication table.
From the addition and multiplication tables, we can readily read tables for additive and multiplicative inverses:

<table>
<thead>
<tr>
<th>additive inverse</th>
<th>multiplicative inverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>2</td>
<td>-2</td>
</tr>
<tr>
<td>3</td>
<td>-3</td>
</tr>
</tbody>
</table>

Interestingly, we have a non-trivial multiplicative inverse; namely, 3.
Example 61 *The addition and multiplication tables for \mathbb{Z}_5 are:*

\[
\begin{array}{c|ccccc}
+_{5} & 0 & 1 & 2 & 3 & 4 \\
\hline
0 & 0 & 1 & 2 & 3 & 4 \\
1 & 1 & 2 & 3 & 4 & 0 \\
2 & 2 & 3 & 4 & 0 & 1 \\
3 & 3 & 4 & 0 & 1 & 2 \\
4 & 4 & 0 & 1 & 2 & 3 \\
\end{array}
\quad \quad
\begin{array}{c|ccccc}
\cdot_{5} & 0 & 1 & 2 & 3 & 4 \\
\hline
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 2 & 3 & 4 \\
2 & 0 & 2 & 4 & 1 & 3 \\
3 & 0 & 3 & 1 & 4 & 2 \\
4 & 0 & 4 & 3 & 2 & 1 \\
\end{array}
\]

Again, the addition table has a cyclic pattern, while this time the multiplication table restricted to non-zero elements has a permutation pattern.
From the addition and multiplication tables, we can readily read tables for additive and multiplicative inverses:

<table>
<thead>
<tr>
<th>additive inverse</th>
<th>multiplicative inverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Surprisingly, every non-zero element has a multiplicative inverse.
Proposition 62 For all natural numbers $m > 1$, the modular-arithmetic structure

$$(\mathbb{Z}_m, 0, +_m, 1, \cdot_m)$$

is a commutative ring.

NB Quite surprisingly, modular-arithmetic number systems have further mathematical structure in the form of multiplicative inverses.
Proposition 63 Let m be a positive integer. A modular integer k in \mathbb{Z}_m has a reciprocal if, and only if, there exist integers i and j such that $k \cdot i + m \cdot j = 1$.

PROOF: Let m be a positive integer.

Let k be a natural number smaller than m.

(\Rightarrow) Let l be a reciprocal of k; that is, $0 \leq l < m$ and $k \cdot l \equiv 1 \pmod{m}$. In other words, $k \cdot l - 1 = j \cdot m$ for some int. j.

Then, $k \cdot l + (-j) \cdot m = 1$ and $i_0 = l$ and $j_0 = -j$ are int. with the property $k \cdot i_0 + m \cdot j_0 = 1$.

— 192 —
(⇐) Assume: \(\exists i, j, \text{int. } k \cdot i + m \cdot j = 1 \) (*)

\[
RTD: \exists \ell \text{ in } \mathbb{Z}_m. \ k \cdot \ell \equiv 1 \pmod{m}.
\]

From (*), let \(i_0, j_0 \) be integers such that

\[
k \cdot i_0 + m \cdot j_0 = 1
\]

Then,

\[
1 = k \cdot i_0 + m \cdot j_0 \equiv k \cdot i_0 \pmod{m}
\]

and consider \(\ell = [i_0]_m \) in \(\mathbb{Z}_m \)

So \(1 \equiv k \cdot i_0 \equiv k \cdot \ell \pmod{m}. \) \(\Box \)
Definition 64 An integer r is said to be a **linear combination** of a pair of integers m and n whenever there are integers s and t such that $s \cdot m + t \cdot n = r$.

Proposition 65 Let m be a positive integer. A modular integer k in \mathbb{Z}_m has a reciprocal if, and only if, 1 is an integer linear combination of m and k.