The division theorem and algorithm

Theorem 53 (Division Theorem) For every natural number m and positive natural number n, there exists a unique pair of integers q and r such that $q \ge 0$, $0 \le r < n$, and $m = q \cdot n + r$.

Definition 54 The natural numbers q and r associated to a given pair of a natural number m and a positive integer n determined by the Division Theorem are respectively denoted quo(m, n) and rem(m, n).

PROOF OF Theorem 53:

The Division Algorithm in ML:

$$div \partial g(m, n) = div fler(o, m)$$
fun divalg(m, n) MB : $m = first \partial rg$ of $diviter(o, m)$
= let $(X) = first \partial rg$ of $diviter(n)$
fun diviter(q, r)
= if r < n then (q, r)
else diviter(q+1, r-n)
in NB: Support (X) holds for $div der(q, r)$
diviter(0, m)
end Then it doso holds for
 $diviter(0, m)$
fun quo(m, n) = #1(divalg(m, n))
 $m = q \cdot h + r \implies m = (q+1) \cdot n + (r-n)$
fun rem(m', n) = #2(divalg(m, n))

Theorem 56 For every natural number m and positive natural number n, the evaluation of divalg(m, n) terminates, outputing a pair of natural numbers (q_0, r_0) such that $r_0 < n$ and $m = q_0 \cdot n + r_0$.

PROOF:

$$\frac{dwitter(q,r)}{r < n} \xrightarrow{r > 0} r > n$$

$$r < n / r > n r - n > 0$$

$$(q,r) \qquad diviter(q+1,r-n)$$

Proposition 57 Let m be a positive integer. For all natural numbers k and l,

$$k \equiv l \pmod{m} \iff \operatorname{rem}(k, m) = \operatorname{rem}(l, m) .$$
PROOF: Let m be a protitive integer.
Confider natural numbers k and l .
(=)) $k = q_{100}(k, n) \cdot m + \operatorname{rem}(k, m)$
 $l = q_{100}(l, m) \cdot m + \operatorname{rem}(l, m)$
Assume $k \equiv l$ Then $\operatorname{rem}(k, m) \equiv \operatorname{rem}(l, m)$
and $\operatorname{rem}(k, m) = \operatorname{rem}(l, m)$
 $M = \operatorname{rem}(k, m) = \operatorname{rem}(l, m)$

<u>— 180 —</u>

Corollary 58 Let m be a positive integer.

 $n \equiv \operatorname{rem}(n,m) \pmod{m}$.

2. For every integer k there exists a unique integer $[k]_m$ such that $0 \le [k]_m < m$ and $k \equiv [k]_m \pmod{m}$.

Modular arithmetic

For every positive integer m, the *integers modulo* m are:

$$\mathbb{Z}_m$$
: 0, 1, ..., $m-1$.

with arithmetic operations of addition $+_{\mathfrak{m}}$ and multiplication $\cdot_{\mathfrak{m}}$ defined as follows

$$k +_{m} l = [k + l]_{m} = \operatorname{rem}(k + l, m) ,$$

$$k \cdot_{m} l = [k \cdot l]_{m} = \operatorname{rem}(k \cdot l, m)$$

for all $0 \leq k, l < m$.

For k and l in \mathbb{Z}_m , $k +_m l$ and $k \cdot_m l$ are the unique modular integers in \mathbb{Z}_m such that $k +_m l \equiv k + l \pmod{m}$ $k \cdot_m l \equiv k \cdot l \pmod{m}$ **Example 60** The addition and multiplication tables for \mathbb{Z}_4 are:

$+_{4}$	0	1	2	3	•4	0	1	2	3
0	0	1	2	3	0	0	0	0	0
1	1	2	3	0	1	0		2	3
2	2	3	0	1	2	0	2	0	2
3	3	0	1	2	3	0	3	2(

Note that the addition table has a cyclic pattern, while there is no obvious pattern in the multiplication table.

From the addition and multiplication tables, we can readily read tables for additive and multiplicative inverses:

	additive inverse		<i>multiplicative</i> <i>inverse</i>					
0	0	0						
1	3	1	1					
2	2	2						
3	1	3	3					

Interestingly, we have a non-trivial multiplicative inverse; namely, 3.

Example 61 The addition and multiplication tables for \mathbb{Z}_5 are:

$+_{5}$	0	1	2	3	4	•5	0	1	2	3	4
0	0	1	2	3	4	0	0	0	0	0	0
1	1	2	3	4	0	1	0	1	2	3	4
2	2	3	4	0	1	2	0	2	4	\bigcirc	3
3	3	4	0	1	2	3	0	3	1) 4	2
4	4	0	1	2	3	4	0	4	3	2	

Again, the addition table has a cyclic pattern, while this time the multiplication table restricted to non-zero elements has a permutation pattern.

From the addition and multiplication tables, we can readily read tables for additive and multiplicative inverses:

	additive inverse		<i>multiplicative</i> <i>inverse</i>
0	0	0	
1	4	1	1
2	3	2	3
3	2	3	2
4	1	4	4

Surprisingly, every non-zero element has a multiplicative inverse.

NB Quite surprisingly, modular-arithmetic number systems have further mathematical structure in the form of multiplicative inverses

Proposition 63 Let m be a positive integer. A modular integer k in \mathbb{Z}_m has a reciprocal if, and only if, there exist integers i and j such that $k \cdot i + m \cdot j = 1$.

PROOF: Let m be à positive intéger. Let k be 2 natural under smaller than m. (=) Let l'be a reciprocal of k: That is, $0 \leq l \leq m$ and $k \cdot l \equiv 1 \pmod{m}$. In other words k.l-1=j.m for some mt.j. Then, $k \cdot l + (-j) \cdot m = 1$ and io = l and jo = -jave int. nith the property kio+ m. jo=1.

Ø

Then,

$$1 = k \cdot i_0 + m \cdot j_0 \equiv k \cdot i_0 \pmod{m}$$

and consider $\ell = [i_0]_m$ in \mathbb{Z}_m
So $1 \equiv k \cdot i_0 \equiv k \cdot \ell \pmod{m}$.

Integer linear combinations

Definition 64 An integer r is said to be a linear combination of a pair of integers m and n whenever there are integers s and t such that $s \cdot m + t \cdot n = r$.

Proposition 65 Let m be a positive integer. A modular integer k in \mathbb{Z}_m has a reciprocal if, and only if, 1 is an integer linear combination of m and k.