Fermat’s Little Theorem

The Many Dropout Lemma (Proposition 35) gives the first part of the
following very important theorem as a corollary.

Theorem 36 (Fermat’s Little Theorem) For all natural numbers i
and primes p,

1. i =1 (mod p), and

[ 2. i*71 =1 (mod p) whenever i is not a multiple of p.

‘f@j Siwrafﬁceﬁm
e fact that the first part of Fermat’'s Little Theorem implies the
second one will be proved later on .
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Every natural number i not a multiple of a
prime number p has a reciprocal modulo p,

namely iP7%, as i- (iP) = 1 (mod p).
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Btw

1. Fermat’s Little Theorem has applications to:
(a) primality testing?,
(b) the verification of floating-point algorithms, and

(c) cryptographic security.

“For instance, to establish that a positive integer m is not prime one may

proceed to find an integer i such that i™ # i (mod m).
— 129 —



Negation

Negations are statements of the form

or, in other words,

or

or

or, in symbols,

not P

P is not the case

P is absurd

P leads to contradiction
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A first proof strategy for negated goals and assumptions:

If possible, reexpress the negation in an equivalent
form and use instead this other statement.

Logical equivalences

P»Q & 1 -(P=0Q) =1 Q) )e~Pvn @

(P<:>Q) —  Pe= Q| v
-(Vx.P(x)) <=  Ix.—P(x)
(PAQ) & (~P)V (-Q)
-(I.P(x)) &=  Wx.—P(x)
-(PV Q) <« (=P)A(=Q)
-(-P) & P
—P &= (P = false)
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Theorem 37 For all statements P and Q,

P = Q) = (—Q = —P) .

croor: Jut Pord O be sletinen’ls .
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Proof by contradiction

Amongst the equivalences for negation, we have postulated the
somewhat controversial:

——P &< P
which is classically accepted.

Assumplong Goel
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Proof by contradiction

Amongst the equivalences for negation, we have postulated the
somewhat controversial:

——P & P
which is classically accepted.

In this light,
to prove P
one may equivalently
prove —P — f{alse;
that is,
assuming — P leads to contradiction.

This technique is known as proof by contradiction.
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The strategy for proof by contradiction:

To prove a goal P by contradiction is to prove the equivalent
statement =P — false

Proof pattern:
In order to prove

P

1. Write: We use proof by contradiction. So, suppose

P is false.
2. Deduce a logical contradiction.

3. Write: This is a contradiction. Therefore, P must

be true.
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Scratch work:

Before using the strategy
Assumptions Goal

After using the strategy
Assumptions Goal

contradiction
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Theorem 39 For all statements P and Q,
(—Q =— —P) = (P = Q) .

PROOF: Z-o/t’ O ol & be ghlrulo .
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Proof by contrapositive

Corollary 40 For all statements P and Q,

(P = Q) & (/Q = —P)

Btw Using the above equivalence to prove an implication is
Known as proof by contrapositive.

Corollary 41 For every positive irrational number x, the real
number +/x is irrational.
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Lemma 42 A positive real number x is rational iff

1 positive integers m,n :
x=m/n A =(3primep: plm Apln)
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