A proof strategy

To prove
Vx.3ly.P(x,y) ,

for an arbitrary x construct the unigue witness and name it,
say as f(x), showing that

and

hold.
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D1isjunctions

» How to prove them as goals.

» How to use them as assumptions.
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Disjunction

Disjunctive statements are of the form

or, in other words,

or, in symbols,

PorQ

either P, Q, or both hold

PV Q
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The main proof strategy for disjunction:

To prove a goal of the form
PV Q
you may

1. try to prove P (if you succeed, then you are done); or

2. try to prove Q (if you succeed, then you are done);
otherwise

3. break your proof into cases; proving, in each case,
either P or Q.
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Proposition 25 For all integers n, either n* = 0 (mod 4) or
n? = 1 (mod 4).
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The use of disjunction:

To use a disjunctive assumption
P; V P,

to establish a goal Q, consider the following two cases in
turn: (i) assume P, to establish Q, and (ii) assume P, to
establish Q.

— 112 —



Scratch work:

Before using the strategy
Assumptions Goal

Q
Py V P,

After using the strategy
Assumptions Goal Assumptions Goal

Q Q
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Proof pattern:
In order to prove Q from some assumptions amongst which there
IS

P; V P,
write: We prove the following two cases in turn: (i) that assuming
Pi, we have Q; and (ii) that assuming P,, we have Q. Case (1):
Assume P;. and provide a proof of Q from it and the other as-
sumptions. Case (ii): Assume P,. and provide a proof of Q from
it and the other assumptions.
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A little arithmetic

Lemma 27 For all positive integers p and natural numbers m, if
m=0orm=p then (?) =1 (mod p).
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Lemma 28 For all integers p and m, ifp is prime and 0 < m < p
then (7) = 0 (mod p).

P
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Proposition 29 For all prime numbers p and integers 0 < m < p,
either (¥) =0 (mod p) or (7) =1 (mod p).

PROOF:
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A little more arithmetic

Corollary 33 (The Freshman’s Dream) For all natural numbers m,
n and primes p,

(M +n)? = mP 4+ nP (mod p) .
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