A proof strategy

To prove

$$
\forall x \cdot \exists!y \cdot P(x, y),
$$

for an arbitrary x construct the unique witness and name it, say as $f(x)$, showing that

$$
P(x, f(x))
$$

and

$$
\forall y \cdot P(x, y) \Longrightarrow y=f(x)
$$

hold.

Disjunctions

- How to prove them as goals.
- How to use them as assumptions.

Disjunction

Disjunctive statements are of the form
P or Q
or, in other words,

> either P, Q, or both hold
or, in symbols,

$$
P \vee Q
$$

The main proof strategy for disjunction:

To prove a goal of the form

$$
P \vee Q
$$

you may

1. try to prove P (if you succeed, then you are done); or
2. try to prove Q (if you succeed, then you are done); otherwise
3. break your proof into cases; proving, in each case, either P or Q .

Proposition 25 For all integers n, either $n^{2} \equiv 0(\bmod 4)$ or $n^{2} \equiv 1(\bmod 4)$.
Proof: $\forall \operatorname{int} n .\left(n^{2} \equiv 0(\bmod 4) \vee n^{2} \equiv 1(\operatorname{mor} 44)\right)$
Let n be an integer.
RTP: (1) $n^{2} \equiv 0(\bmod 4) \quad{ }^{2} n^{2}=1(\operatorname{mrd} 4)$
Let's see if (1) holds. $X \sim$ because $2 \neq 0$
Let's see of (2) holds. X
Case n is even; that is, $n=2 i$ for an int i. Then $n^{2}=(2 i)^{2}=4\left(i^{2}\right)$ and so we have (1)
Case n in odd; That is, $\eta=2 i+1$ for an int. i.

Then $n^{2}=(2 i+1)^{2}=4\left(i^{2}+i\right)+1$ so (2) holds.

$$
\begin{gathered}
a \equiv b a b \equiv c \Rightarrow a \equiv c \\
a \equiv b \wedge p \equiv q \Rightarrow a+p \equiv b+q \\
a \equiv b \Rightarrow a c \equiv b c
\end{gathered}
$$

$$
\begin{array}{r}
4 x \equiv 0(\bmod 4) \\
4\left(i^{2}+i\right) \equiv 0(\bmod 4) \\
4\left(i^{2}+i\right)+1 \equiv 0+1=1 \\
(\bmod 4)
\end{array}
$$

The use of disjunction:

To use a disjunctive assumption

$$
P_{1} \vee P_{2}
$$

to establish a goal Q , consider the following two cases in turn: (i) assume P_{1} to establish Q, and (ii) assume P_{2} to establish Q.

Scratch work:

Before using the strategy

Assumptions
 Goal

Q

$$
P_{1} \vee P_{2}
$$

After using the strategy
Assumptions Goal
Q
Assumptions

Goal
Q
\vdots
P_{2}

Proof pattern:

In order to prove Q from some assumptions amongst which there is

$$
P_{1} \vee P_{2}
$$

write: We prove the following two cases in turn: (i) that assuming P_{1}, we have Q ; and ($\mathfrak{i i}$) that assuming P_{2}, we have Q . Case (\mathfrak{i}): Assume P_{1}. and provide a proof of Q from it and the other assumptions. Case (ii): Assume P_{2}. and provide a proof of Q from it and the other assumptions.

A little arithmetic
Lemma 27 For all positive integers p and natural numbers m, if $\mathrm{m}=0$ or $\mathrm{m}=\mathrm{p}$ then $\binom{\mathrm{p}}{\mathrm{m}} \equiv 1(\bmod \mathrm{p})$.
Proof: Let p be a posit.
Let m be a nat. number.
Assume: $(m=0) \vee(m=p)$

$$
\begin{aligned}
\binom{p}{m} & =C_{m}^{p} \\
& =\frac{p!}{m!(p-m)!}
\end{aligned}
$$

Goal

Assume:m $m=0$
Then

$$
\binom{p}{m}=\binom{p}{0}=1
$$

Assume: $m=p$

$$
\binom{p}{m}=\binom{p}{p}=1 \text { so we are done }
$$

and we are done.

Lemma 28 For all integers p and m, if p is prime and $0<m<p$ then $\binom{\mathrm{p}}{\mathrm{m}} \equiv 0(\bmod \mathrm{p})$.
Proof: Let p be a prime.
Let m be an int. st. $0<m<p$.
RTP: $\binom{p}{m}=\frac{p!}{m!(p-m)!}$ is a multiple of p.
$\binom{p}{m}=p \cdot\left[\frac{(p-1)!}{m!(p-m)!}\right] \quad$ and we wish To show That A is an integer.

$$
\binom{p}{m}=p \cdot\left[\frac{(p-1)!}{m!(p-m)!}\right]
$$

AmEND MENT

Know $m!(p-m)$! divides $p \cdot(p-1)$!
Can it be that $m!(p-m)!$ divides p ?
Noble that $m<p, m-1<p, \ldots$
So very fetor of m ! so below p.
Also $p-m<p, p-m-1<p, \ldots$
So every factor of $(p-m)$! is below p.

AMEND MEN 7

If $m!(p-m)!=1$ then $\frac{(p-1)!}{m!(p-m)!}$ is an integer.
Otherwise, p is not a prime factor of $m!(p-m)$! and
Therefore, $m!(p-m)!$ † p and oo $m!(p-m)!\mid(p-1)!$ m

Proposition 29 For all prime numbers p and integers $0 \leq m \leq p$, either $\binom{\mathfrak{p}}{\mathfrak{m}} \equiv 0(\bmod \mathfrak{p})$ or $\binom{\mathfrak{p}}{m} \equiv 1(\bmod \mathfrak{p})$.

Proof:
Consider cases:

$$
\begin{aligned}
& -m=0 \\
& -m=p \\
& -0<m<p
\end{aligned}
$$

NB: \langle predicate
$a \equiv b(\bmod m) \sim$ either true or false!
\neq

$$
\left(5 \frac{\bmod }{3} 2\right)=1
$$

operation

$$
(m+n)^{p} \stackrel{?}{\equiv} m^{p}+n^{p} \quad(\bmod p)
$$

A little more arithmetic
Corollary 33 (The Freshman's Dream) For all natural numbers m, n and primes p,

$$
(\mathfrak{m}+\mathfrak{n})^{\mathfrak{p}} \equiv \mathfrak{m}^{\mathfrak{p}}+\mathfrak{n}^{\mathfrak{p}}(\bmod \mathfrak{p}) .
$$

Proof: Let m and n be nat numbers.
Let p be a prime.

$$
\begin{aligned}
&(m+n)^{p}= \sum_{i=0}^{p}\binom{p}{i} m^{i} n^{p-i} \\
&= m^{p}+n^{p}+\sum_{i=1}^{p-1}\binom{p}{i} m^{i} n^{p-i} \\
&-122-
\end{aligned}
$$

$$
\begin{array}{ll}
\sum_{i=1}^{p-1}\binom{p}{i} m^{i} n^{p-i} & \\
\equiv \sum_{i=1}^{p-1} 0 \cdot m^{i} \cdot n^{p-i}, & \text { because } \\
=0 & \binom{p}{i} \equiv 0(m \text { rd } p) \\
& \text { for all } \\
& \text { or ic }
\end{array}
$$

AMENDMENT

$$
\begin{aligned}
& (m+n)^{P} \equiv m^{P}+n^{P} \\
& (m+1)^{P} \equiv m^{P}+1 \\
& \left.m^{p}=\frac{(1+1+\cdots+1}{m \text { times }}\right)^{p} \equiv(\underbrace{1+\cdots+1}_{m-1 \text { times }})^{p}+1 \\
& \equiv \underbrace{(1+\cdots+1}_{m-2 \text { times }})^{p}+2 \equiv \underbrace{(1+\cdots+1)^{p}}_{m-k \text { times }}+k \\
& m^{p} \equiv m \quad \cdots(\text { when } k=m)
\end{aligned}
$$

