Bi-implication

Some theorems can be written in the form

\[P \text{ is equivalent to } Q \]

or, in other words,

\[P \text{ implies } Q, \text{ and vice versa} \]

or

\[Q \text{ implies } P, \text{ and vice versa} \]

or

\[P \text{ if, and only if, } Q \]

or, in symbols,

\[P \iff Q \]
Proof pattern:
In order to prove that

\[P \iff Q \]

1. Write: \((\implies)\) and give a proof of \(P \implies Q\).
2. Write: \((\iff)\) and give a proof of \(Q \implies P\).
Divisibility and congruence

Definition 12 Let d and n be integers. We say that d **divides** n, and write $d \mid n$, whenever there is an integer k such that $n = k \cdot d$.

Example 13 The statement $2 \mid 4$ is true, while $4 \mid 2$ is not.
Divisibility and congruence

Definition 12 Let \(d \) and \(n \) be integers. We say that \(d \) divides \(n \), and write \(d \mid n \), whenever there is an integer \(k \) such that \(n = k \cdot d \).

Example 13 The statement \(2 \mid 4 \) is true, while \(4 \mid 2 \) is not.

Definition 14 Fix a positive integer \(m \). For integers \(a \) and \(b \), we say that \(a \) is congruent to \(b \) modulo \(m \), and write \(a \equiv b \pmod{m} \), whenever \(m \mid (a - b) \).

Example 15

1. \(18 \equiv 2 \pmod{4} \)
2. \(2 \equiv -2 \pmod{4} \)
3. \(18 \equiv -2 \pmod{4} \)
number line

modular arithmetic (modulus m)

\[m + 1 \equiv 1 \pmod{m} \]
Proposition 17 For every integer n,

1. n is even if, and only if, $n \equiv 0 \pmod{2}$, and

2. n is odd if, and only if, $n \equiv 1 \pmod{2}$.

Proof:

(2)\implies Assume n odd; i.e. $n = 2k + 1$ for an int k.

RTP: $n \equiv 1 \pmod{2}$; $n-1 = 2i$ for an int i.

By assumption, it follows that $n-1 = 2k$ and we are done.

(\Leftarrow) Assume $n \equiv 1 \pmod{2}$; i.e. $n-1 = 2k$ for an int k.

RTP: $n = 2j + 1$ for an int j.

By assumption, $n = 2k + 1$ and we are done.

\Box
The use of bi-implications:

To use an assumption of the form $P \iff Q$, use it as two separate assumptions $P \implies Q$ and $Q \implies P$.
Universal quantifications

- How to \textit{prove} them as goals.
- How to \textit{use} them as assumptions.
Universal quantification

Universal statements are of the form

for all individuals \(x \) of the universe of discourse, the property \(P(x) \) holds

or, in other words,

no matter what individual \(x \) in the universe of discourse one considers, the property \(P(x) \) for it holds

or, in symbols,

\[
\forall x. P(x) \quad \text{equivalent to} \quad \forall y. P(y) = \forall z. P(z)
\]

\[\text{...} \]
Example 18

2. For every positive real number x, if \sqrt{x} is rational then so is x.

3. For every integer n, we have that n is even iff so is n^2.
The main proof strategy for universal statements:

To prove a goal of the form

$$\forall x. P(x)$$

let x stand for an arbitrary individual and prove $P(x)$.
Proof pattern:
In order to prove that
\[\forall x. P(x) \equiv \forall y. P(y) \]

1. **Write**: Let \(x \) be an arbitrary individual.

 Warning: Make sure that the variable \(x \) is new (also referred to as fresh) in the proof! If for some reason the variable \(x \) is already being used in the proof to stand for something else, then you must use an unused variable, say \(y \), to stand for the arbitrary individual, and prove \(P(y) \).

2. **Show that** \(P(x) \) **holds.**
Scratch work:

Before using the strategy

<table>
<thead>
<tr>
<th>Assumptions</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\forall x. P(x)$</td>
<td></td>
</tr>
</tbody>
</table>

::

After using the strategy

<table>
<thead>
<tr>
<th>Assumptions</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(x)$ (for a new (or fresh) x)</td>
<td></td>
</tr>
</tbody>
</table>

::
Example:

Assumptions

- $n > 0$

- n is an integer

Goal

for all integers n, $n \geq 1$

$\equiv \forall n. \exists k. k \geq 1$

RTP: $n \geq 1$ \(\times \)

RTP: $k \geq 1$

How to use universal statements

Assumptions

\[\forall x. x^2 \geq 0 \]

\[\pi^2 \geq 0 \]

\[e^2 \geq 0 \]

\[0^2 \geq 0 \]
The use of universal statements:

To use an assumption of the form $\forall x. P(x)$, you can plug in any value, say a, for x to conclude that $P(a)$ is true and so further assume it.

This rule is called universal instantiation.
Proposition 19 Fix a positive integer m. For integers a and b, we have that $a \equiv b \pmod{m}$ if, and only if, for all positive integers n, we have that $n \cdot a \equiv n \cdot b \pmod{n \cdot m}$.

PROOF: Let m be a positive integer.

\forall int. a,b. $(a \equiv b \pmod{m}) \iff (\forall$ pos. int n. $n \cdot a \equiv n \cdot b \pmod{n \cdot m})$

Let a, b be arbitrary integers. That is, $a-b = i \cdot m$ for \forall int i.

RTP: (\Rightarrow) Assume $a \equiv b \pmod{m}$.

RTP: \forall pos. int n. $n \cdot a \equiv n \cdot b \pmod{n \cdot m}$

RTP: \forall pos. int n. $n \cdot a \equiv n \cdot b \pmod{n \cdot m}$; That is, $n \cdot a - n \cdot b = n \cdot m \cdot k$ for some int. k.

By (\ast), $n \cdot a - n \cdot b = i \cdot n \cdot m$ and we are done.

— 74 —
\[
(\Leftarrow) \left[\forall p, q, r, n. \; na \equiv nb \pmod{n \cdot m} \right] \Rightarrow \left[a \equiv b \pmod{m} \right]
\]

Assume: \(\forall p, q, r, n. \; na \equiv nb \pmod{n \cdot m} \)

\[\text{RTP: } a \equiv b \pmod{m}\]

\[\text{By instantiation, we have}\]

\[1 \cdot a \equiv 1 \cdot b \pmod{1 \cdot m}\]

and we are done.
Equality in proofs

Examples:

- If \(a = b \) and \(b = c \) then \(a = c \).
- If \(a = b \) and \(x = y \) then \(a + x = b + x = b + y \).
Equality axioms

Just for the record, here are the axioms for equality.

- Every individual is equal to itself.
 \[\forall x. x = x \]

- For any pair of equal individuals, if a property holds for one of them then it also holds for the other one.
 \[\forall x. \forall y. x = y \implies (P(x) \implies P(y)) \]
NB From these axioms one may deduce the usual intuitive properties of equality, such as

\[\forall x. \forall y. x = y \implies y = x \]

and

\[\forall x. \forall y. \forall z. x = y \implies (y = z \implies x = z) . \]

However, in practice, you will not be required to formally do so; rather you may just use the properties of equality that you are already familiar with.
Conjunctions

- How to *prove* them as goals.
- How to *use* them as assumptions.
Conjunction

Conjunctive statements are of the form

P and Q

or, in other words,

both P and also Q hold

or, in symbols,

P \land Q \quad \text{or} \quad P \& Q
The proof strategy for conjunction:

To prove a goal of the form

\[P \land Q \]

first prove \(P \) and subsequently prove \(Q \) (or vice versa).
Proof pattern:
In order to prove \(P \land Q \)

1. **Write:** Firstly, we prove \(P \) and provide a proof of \(P \).
2. **Write:** Secondly, we prove \(Q \) and provide a proof of \(Q \).
Scratch work:

Before using the strategy

Assumptions Goal

\[P \land Q \]

\[\vdots \]

After using the strategy

Assumptions Goal | Assumptions Goal

\[P \]

\[\vdots \]

\[\vdots \]
The use of conjunctions:

To use an assumption of the form \(P \land Q \), treat it as two separate assumptions: \(P \) and \(Q \).
Theorem 20 For every integer \(n \), we have that \(6 \mid n \) iff \(2 \mid n \) and \(3 \mid n \).

Proof: Let \(n \) be an arbitrary integer.

\(\Rightarrow \) Assume \(6 \mid n \); that is, \(n = 6k \) for an int. \(k \).

\(\text{RTP: } 2 \mid n \land 3 \mid n \)

\(\text{RTP: } 2 \mid n \)

By assumption, \(n = 2 \cdot (3k) \); so

\(n = 2i \) for the int. \(i = 3k \).

\(\text{RTP: } 3 \mid n \)

By assumption, \(n = 3(2k) \); so \(n = 3j \) for j the int. \(2k \).
\((\iff)\quad (2\ln n \land 3\ln n) \implies 6\ln n\)

Assume: \((2\ln n \land 3\ln n)\). That is,
\[n = 2p\] for an int \(p\)
and also
\[n = 3q\] for an int \(q\).

\(\text{RTP } 6\ln n\): That is, \(n = 6r\) for an int \(r\).