Slides for Part IA CST 2022/23

Discrete Mathematics

<www.cl.cam.ac.uk/teaching/2223/DiscMath>

Prof Marcelo Fiore

Marcelo.Fiore@cl.cam.ac.uk

What are we up to?

- ► Learn to read and write, and also work with, mathematical arguments.
- ▶ Doing some basic discrete mathematics.
- ► Getting a taste of computer science applications.

Lecture plan

- I. Proofs.
- II. Numbers.
- III. Sets.
- IV. Regular languages and finite automata.

Proofs

Objectives

- ► To develop techniques for analysing and understanding mathematical statements.
- ➤ To be able to present logical arguments that establish mathematical statements in the form of clear proofs.
- ► To prove Fermat's Little Theorem, a basic result in the theory of numbers that has many applications in computer science.

Proofs in practice

We are interested in examining the following statement:

The product of two odd integers is odd.

This seems innocuous enough, but it is in fact full of baggage. For instance, it presupposes that you know:

- what a statement is;
- what the integers (...,-1,0,1,...) are, and that amongst them there is a class of odd ones (...,-3,-1,1,3,...);
- what the product of two integers is, and that this is in turn an integer.

More precisely put, we may write:

If m and n are odd integers then so is $m \cdot n$.

which further presupposes that you know:

- what variables are;
- what

if ...then ...

statements are, and how one goes about proving them;

► that the symbol "·" is commonly used to denote the product operation.

Even more precisely, we should write

For all integers m and n, if m and n are odd then so is $m \cdot n$.

which now additionally presupposes that you know:

▶ what

for all ...

statements are, and how one goes about proving them.

Thus, in trying to understand and then prove the above statement, we are assuming quite a lot of *mathematical jargon* that one needs to learn and practice with to make it a useful, and in fact very powerful, tool.

Some mathematical jargon

Statement

A sentence that is either true or false — but not both.

Example 1

$$e^{i\pi} + 1 = 0$$

Non-example

'This statement is false'

Predicate

A statement whose truth depends on the value of one or more variables.

Example 2

$$e^{ix} = \cos x + i \sin x'$$

2. 'the function f is differentiable'

Theorem

A very important true statement.

Proposition

A less important but nonetheless interesting true statement.

Lemma

A true statement used in proving other true statements.

Corollary

A true statement that is a simple deduction from a theorem or proposition.

Example 3

1. Fermat's Last Theorem

2. The Pumping Lemma

Proof

Logical explanation of why a statement is true; a method for establishing truth.

Logic

The study of methods and principles used to distinguish good (correct) from bad (incorrect) reasoning.

Example 5

1. Classical predicate logic

2. Hoare logic

3. Temporal logic

Axiom

A basic assumption about a mathematical situation.

Axioms can be considered facts that do not need to be proved (just to get us going in a subject) or they can be used in definitions.

Example 6

1. Euclidean Geometry

2. Riemannian Geometry

3. Hyperbolic Geometry

Definition

An explanation of the mathematical meaning of a word (or phrase).

The word (or phrase) is generally defined in terms of properties.

Warning: It is vitally important that you can recall definitions precisely. A common problem is not to be able to advance in some problem because the definition of a word is unknown.

Definition, theorem, intuition, proof in practice

Definition 7 An integer is said to be odd whenever it is of the form $2 \cdot i + 1$ for some (necessarily unique) integer i.

Proposition 8 For all integers m and n, if m and n are odd then so is $m \cdot n$.

Intuition:

m = 2i + 1 N = 2j + 1

/					
	1	ð.	Ĵ	M	
	· \(\triangle \)	i×)	i×j	ŀ	
~	·	i x j	i×J	i	
		<u> </u>	j	1	
		•			

PROOF OF Proposition 8:

Let m and n be odd integers

Then
$$m = 2i+1$$
 for an integer i

and $n = 2j+1$ for an integer j .

We held show $m \cdot n = 2k+1$ for some integer k .

Consider $m \cdot n = (2i+1) \cdot (2j+1)$
 $= 2(2ij+i+j)+1$

Some may take $k = 2ij+i+j$.

Simple and composite statements

A statement is <u>simple</u> (or <u>atomic</u>) when it cannot be broken into other statements, and it is <u>composite</u> when it is built by using several (simple or composite statements) connected by <u>logical</u> expressions (e.g., if...then...; ...implies ...; ...if and only if ...; ...and...; either ...or ...; it is not the case that ...; for all ...; there exists ...; etc.)

Examples:

'2 is a prime number'

'for all integers m and n, if $m \cdot n$ is even then either n or m are even'

Proof Structure

Assumptions	Goals
statements that may be used	statements to be
for deduction	established

Implication

Theorems can usually be written in the form

if a collection of assumptions holds,then so does some conclusion

or, in other words,

a collection of assumptions implies some conclusion

or, in symbols,

a collection of *hypotheses* \implies some *conclusion*

NB Identifying precisely what the assumptions and conclusions are is the first goal in dealing with a theorem.

Implications

- ► How to *prove* them as goals.
- ► How to *use* them as assumptions.

How to prove implication goals

The main proof strategy for implication:

To prove a goal of the form

$$P \implies Q$$

assume that P is true and prove Q.

NB Assuming is not asserting! Assuming a statement amounts to the same thing as adding it to your list of hypotheses.

Proof pattern:

In order to prove that

$$P \implies Q$$

- 1. Write: Assume P.
- 2. Show that Q logically follows.

Scratch work:

Before using the strategy

Assumptions

Goal

 $P \implies Q$

•

After using the strategy

Assumptions

Goal

Q

i

P

Proposition 8 If m and n are odd integers, then so is $m \cdot n$.

PROOF:

Assume m and nære odd ntigers. RTP: m.n is an odd integer. So m= 2itt for su integer i and n= 2j +1 for an integer j. Then m. n=2(2ij+i+j)+1 and hence it is odd.

Definition 9 A real number is:

- ► rational if it is of the form m/n for a pair of integers m and n; otherwise it is irrational.
- ▶ positive if it is greater than 0, and negative if it is smaller than 0.
- ► nonnegative if it is greater than or equal 0, and nonpositive if it is smaller than or equal 0.
- ▶ <u>natural</u> if it is a nonnegative integer.

Proposition 10 Let x be a positive real number. If \sqrt{x} is rational then so is x.

PROOF: Let x be a positre real number. RTP: (Vz rational) => (x rational) Assume Vz is rational; Unat is, Vz=m/n for integers m and n.
RTP: z is restronal. That is, x = P/q for integers Indeed, toke $p=m^2$ and $q=n^2$.

How to use implication assumptions

Logical Deduction by Modus Ponens

A main rule of *logical deduction* is that of *Modus Ponens*:

From the statements P and P \Longrightarrow Q, the statement Q follows.

or, in other words,

If P and P \Longrightarrow Q hold then so does Q.

or, in symbols,

$$\begin{array}{ccc} P & P \Longrightarrow Q \\ \hline Q & \end{array}$$

$$--52 --$$

The use of implications:

To use an assumption of the form $P \implies Q$, aim at establishing P.

Once this is done, by Modus Ponens, one can conclude Q and so further assume it.

Theorem 11 Let P_1 , P_2 , and P_3 be statements. If $P_1 \implies P_2$ and $P_2 \implies P_3$ then $P_1 \implies P_3$.

RTD $(P_1 \Rightarrow) P_2$ and $P_2 \Rightarrow) P_3$ \Rightarrow $(P_1 \Rightarrow) P_3)$ Assume: $(P_1 \Rightarrow) P_2$ and $(P_2 \Rightarrow) P_3$ Proof: RTP: P1 => P3
Assume: P1 By MP on @ and @, we have P2.
By MP on @ and @, we have 93 as required.