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Aims 

• To familiarise students with 

– Combinational logic circuits 

– Sequential logic circuits 

– How digital logic gates are built using 

transistors 

– Simple processor architectures  

– Design and build of digital logic systems 

Course Structure 

• 12 Lectures 

• Hardware Labs 

– 4 Workshops 

– Each Workshop lasts 2.5h 

– In Intel Lab. (SW11), William Gates 

Building (WGB) 

– Done individually 

– Lab. Sessions begin in week 3 of M Term 

and run throughout the L Term 
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Objectives 

• At the end of the course you should 

– Be able to design and construct simple 

digital electronic systems 

– Be able to understand and apply Boolean 

logic and algebra – a core competence in 

Computer Science 

– Be able to understand and build state 

machines 

Books 

• Lots of books on digital electronics, e.g., 

– D. M. Harris and S. L. Harris, ‘Digital Design 
and Computer Architecture,’ Morgan Kaufmann, 
2007 (1st Ed.), 2012 (2nd Ed.). 

– R. H. Katz, ‘Contemporary Logic Design,’ 
Benjamin/Cummings, 1994. 

– J. P. Hayes, ‘Introduction to Digital Logic 
Design,’ Addison-Wesley, 1993. 

• Electronics in general (inc. digital) 

– P. Horowitz and W. Hill, ‘The Art of Electronics,’ 
CUP, 1989. 
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Simulation Software 

• There are a number of packages available that 
enable simulation of digital electronic circuits 
using a graphical interface e.g., 

–  National Instruments (NI) Multisim 

– Yenka Electronics (Technology Package) 

• The former is much more powerful  (and 
expensive), but the latter is relatively 
straightforward to use and is free to use 
(except between 8.30 and 15.00) 

• Also note that if you download Yenka, you can 
use the lab. activation key to unlock it 

Other Points 

• This course is a prerequisite for 

– Introduction to Computer Architecture, ECAD 
and Architecture Practical Classes (Part IB) 

– Advanced Computer Architecture (Part II) 

– Advanced Topics in Computer Architecture 
(MPhil/Part III) 

• Keep up with lab work and get it ticked. 

• Have a go at supervision questions plus 
any others your supervisor sets. 

• Remember to try questions from past 
papers 
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The Bigger Picture 

• As you may be aware, probably the 
most significant application of digital 
logic is to implement microprocessors 
and microprocessor based computer 
systems. 

• However, digital logic is also employed 
to build a wide variety of other electronic 
systems that are not microprocessor 
based. 

 

Managing Complexity 

• Modern digital systems e.g., microprocessors, 
are typically built from millions of transistors. 

• It would be impossible for a human to design 
such a system by for example, writing 
equations describing the movement of electrons 
in each transistor and then attempting to solve 
the equations simultaneously. 

• We have to manage complexity in order that we 
are not swamped in a mass of detail. 

• To do this we employ abstraction. 
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Abstraction 

• Abstraction, i.e., hiding details when they are 
not important. 

• Indeed a system can be viewed from many 
different levels of abstraction. 

• For example, for an electronic computing 
system, we can consider levels of abstraction 
from pure physics (electrons) at the bottom 
level through to application software (programs) 
at the top level. 

• In this course we will primarily be considering  
Devices, Digital Circuits and Logic Elements 
levels of abstraction. 

Physics 

Microarchitecture 

Application 

Software 

Devices 

Digital Circuits 

Logic Elements 

Architecture 

Operating Systems 

Electrons – quantum mechanics, Maxwell’s 

equations 

Transistors – well defined I/V characteristics 

between input/output terminals 

Gates, e.g., AND, NOT – Devices assembled to 

create ‘digital’ components 

Adders, Memories, etc. – Complex structures put 

together from digital circuits 

Data paths, Controllers – Combines logic elements 

to execute instructions defined by the architecture 

Instructions, Registers – e.g., Intel-IA32 defined 

by  a set of instructions and registers 

Device drivers – Handles low-level details such as 

accessing a hard drive or managing memory 

Programs – Application software uses facilities 

provided by OS to solve a problem for the user 
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Abstraction 

• So the point is that you can browse the web 
without any regard quantum theory or the 
organisation of memory in the computer. 

• That said, when working at a particular level of 
abstraction, it is good to know something about 
the levels of abstraction immediately above and 
below where you are working, e.g., 

– A device designer needs to understand the circuits 
in which it will be used, 

– Code cannot be optimised without understanding 
the architecture for which it is being written. 

 

Microprocessor 

• Defined by its architecture and microarchitecture 

• The architecture is defined by its instruction set 
and registers 

• The microarchitecture is the specific arrangement 
of registers, arithmetic logic units (ALUs), 
controllers,  multiplexers, memories and other logic 
blocks needed to implement a particular 
architecture. 

• Note that a particular architecture may be 
implemented by many different microarchitectures, 
each having different trade-offs of performance, 
complexity and cost. 
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Digital Electronics: 

Combinational Logic 

 

Logic Gates and Boolean 

Algebra 

Introduction to Logic Gates 

• We will introduce Boolean algebra and 

logic gates 

• Logic gates are the building blocks of 

digital circuits 
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Logic Variables 

• Different names for the same thing 

– Logic variables 

– Binary variables 

– Boolean variables 

• Can only take on 2 values, e.g., 

– TRUE or False 

– ON or OFF 

– 1 or 0 

 

Logic Variables 

• In electronic circuits the two values can 

be represented by e.g., 

– High voltage for a 1 

– Low voltage for a 0 

• Note that since only 2 voltage levels are 

used, the circuits have greater immunity 

to electrical noise 
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Uses of Simple Logic 

• Example – Heating Boiler 

– If chimney is not blocked and the house is cold 
and the pilot light is lit, then open the main fuel 
valve to start boiler. 

 b = chimney blocked 

 c = house is cold 

 p = pilot light lit 

 v = open fuel valve 

– So in terms of a logical (Boolean) expression 
 v = (NOT b) AND c AND p 

Logic Gates 

• Basic logic circuits with one or more 

inputs and one output are known as 

gates 

• Gates are used as the building blocks in 

the design of more complex digital logic 

circuits 



06/09/2022 

11 

Representing Logic Functions 

• There are several ways of representing 

logic functions: 

– Symbols to represent the gates 

– Truth tables 

– Boolean algebra 

• We will now describe commonly used 

gates 

NOT Gate 

Symbol 

a y 

Truth-table 

a y 

0 1 

1 0 

Boolean  

ay 

• A NOT gate is also called an ‘inverter’ 

• y is only TRUE if a is FALSE 

• Circle (or ‘bubble’) on the output of a gate 

implies that it as an inverting (or 

complemented) output 
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AND Gate 

Symbol Truth-table Boolean  

bay .
a 

y 
b 

a y 

0 

1 

1 
0 

b 

0 
0 
1 

0 
0 0 

1 1 

• y is only TRUE only if a is TRUE and b is 

TRUE 

• In Boolean algebra AND is represented by 

a dot  . 

OR Gate 

Symbol 

a 
y 

Truth-table Boolean  

bay 

b 

a y 

0 

1 

1 
0 

b 

0 
0 
1 

1 
0 1 

1 1 

• y is TRUE if a is TRUE or b is TRUE (or 

both) 

• In Boolean algebra OR is represented by 

a plus sign   
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EXCLUSIVE OR (XOR) Gate 

Symbol Truth-table Boolean  

bay a y 

0 

0 

1 
0 

b 

0 
0 
1 

1 
0 1 

1 1 

• y is TRUE if a is TRUE or b is TRUE (but 

not both) 

• In Boolean algebra XOR is represented by 

an     sign    

a 
y 

b 

NOT AND (NAND) Gate 

Symbol 

a 
y 

Truth-table Boolean  

bay .

b 

a y 

0 

0 

1 
1 

b 

0 
0 
1 

1 
0 1 

1 1 

• y is TRUE if a is FALSE or b is FALSE (or 

both) 

• y is FALSE only if a is TRUE and b is 

TRUE 
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NOT OR (NOR) Gate 

Symbol 

a 
y 

Truth-table Boolean  

bay 

b 

a y 

0 

0 

1 
1 

b 

0 
0 
1 

0 
0 0 

1 1 

• y is TRUE only if a is FALSE and b is 

FALSE 

• y is FALSE if a is TRUE or b is TRUE (or 

both) 

Boiler Example 

• If chimney is not blocked and the house is 

cold and the pilot light is lit, then open the 

main fuel valve to start boiler. 
 b = chimney blocked c = house is cold 

 p = pilot light lit  v = open fuel valve 

 

pcbv ..

b

c
p
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Boolean Algebra 
• In this section we will introduce the laws 

of Boolean Algebra 

• We will then see how it can be used to 
design combinational logic circuits 

• Combinational logic circuits do not have 
an internal stored state, i.e., they have 
no memory. Consequently the output is 
solely a function of the current inputs.  

• Later, we will study circuits having a 
stored internal state, i.e., sequential 
logic circuits. 

Boolean Algebra 

OR AND 
aa  0
aaa 

11 a
1 aa

00. a
aaa .
aa 1.
0. aa

• AND takes precedence over OR, e.g., 
).().(.. dcbadcba 
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Boolean Algebra 

• Commutation 

 

• Association 

 

• Distribution 

 

• Absorption 

abba 
abba .. 

)()( cbacba 
)..()..( cbacba 

  ).().().( cabacba
NEW       ).).(() ..(  cabacba 

NEW      ).( acaa 
NEW      ).( acaa 

Boolean Algebra 
• Consensus theorem 

𝑎. 𝑏 + 𝑎 . 𝑐 + 𝑏. 𝑐 = 𝑎. 𝑏 + 𝑎 . 𝑐 

𝑎 + 𝑏 . 𝑎 + 𝑐 . (𝑏 + 𝑐) = 𝑎 + 𝑏 . 𝑎 + 𝑐  

Note that this theorem can be used to add or 

eliminate terms when simplifying a Boolean 

expression  
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Boolean Algebra - Examples 

Show 
babaa .).( 

bababaaabaa ..0..).( 

Show 
babaa  ).(

bababaaabaa  ).(1)).(().(

Boolean Algebra 

• A useful technique is to expand each 

term until it includes one instance of each 

variable (or its compliment). It may be 

possible to simplify the expression by 

cancelling terms in this expanded form 

e.g., to prove the absorption rule: 

abaa  .

aabbabababababa  1.).(.....
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Boolean Algebra - Example 

Simplify 
zyxzxzyyx ..... 

zyxzyxzyxzyxzyxzyxzyx .............. 

zyxzyxzyxzyx ........ 
).(.).(. xxzyzzyx 

1..1.. zyyx 
zyyx .. 

Boolean Algebra - Example 

Prove consensus theorem  

𝑎. 𝑏 + 𝑎 . 𝑐 + 𝑏. 𝑐 = 𝑎. 𝑏 + 𝑎 . 𝑐 

𝑎. 𝑏 + 𝑎 . 𝑐 + 𝑏. 𝑐 = 

𝑎. 𝑏 + 𝑎 . 𝑐 + 𝑎. 𝑏. 𝑐 + 𝑎 . 𝑏. 𝑐 = 

𝑎. 𝑏 + 𝑎 . 𝑐 
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Boolean Algebra - Example 

Using consensus theorem  

𝑎 . 𝑏 + 𝑎. 𝑐 + 𝑏. 𝑐 + 𝑏 . 𝑐 + 𝑎. 𝑏 = 

Eliminating consensus terms gives 

𝑎 . 𝑏 + 𝑎. 𝑐 + 𝑏. 𝑐  

DeMorgan’s Theorem 

   ...  cbacba 

     ...  cbacba

   ...  cbacba 

     ...  cbacba

• In a simple expression like            (or       ) 

simply change all operators from OR to 

AND (or vice versa), complement each 

term (put a bar over it) and then 

complement the whole expression, i.e., 

cba  cba ..
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DeMorgan’s Theorem 

• For 2 variables we can show                 

and                using a truth table. 

baba .

baba .

0 
1 
0 

0 
1 0 

0 

0 
1 

0 
1 1 

ba a b ba. a b ba. ba 

0 

1 
1 

1 
0 

1 
1 

0 
0 

0 
1 

1 
0 

0 
1 

0 
0 

1 
1 

1 

• Extending to more variables by induction 

cbacbacbacba ..)..(.)( 

DeMorgan’s Examples 

• Simplify ).().(. cbbcbaba 

(DeMorgan)     ..... cbbcbaba 

0)b(b.     ...  cbaba

n)(absorbtio     .ba
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DeMorgan’s Examples 

• Simplify dcbadbcba .)..)..(.( 

Morgan) (De       .).).(.( dcbadbcba 

e)(distribut       .).......( dcbadbabbacba 

)0..(       .).....(  bbadcbadbacba

e)(distribut       ........... dcbdcadcdbadcba 

)0....(       .......  dcdbadcbdcadcba

e)(distribut      ..).( dcbaba 

(DeMorgan)      ..)..( dcbaba 

1)..(      .  babadc

DeMorgan’s in Gates 

• To implement the function                  we 

can use AND and OR gates 

dcbaf .. 

a 

b 

c 

d 

f 

• However, sometimes we only wish to 

use NAND or NOR gates, since they 

are usually simpler and faster 
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DeMorgan’s in Gates 

• To do this we can use ‘bubble’ logic 

a 

b 

c 

d 

f 

x 

y 

Two consecutive ‘bubble’ (or 

complement) operations cancel, 

i.e., no effect on logic function 

See AND gates are 

now NAND gates 

What about this gate? 

DeMorgan says   yxyx .

Which is a NOT 

AND (NAND) gate 

So is  equivalent to 

DeMorgan’s in Gates 

• So the previous function can be built 

using 3 NAND gates 

f 

a 

b 

c 

d 

a 

b 

c 

d 

f 

dcbaf .. 

).).(.( dcbaf 
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DeMorgan’s in Gates 

• Similarly, applying ‘bubbles’ to the input 

of an AND gate yields 

x 

y 
f 

What about this gate? 

DeMorgan says   yxyx .

Which is a NOT OR 

(NOR) gate 

So is  equivalent to 

• Useful if trying to build using NOR gates 
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Digital Electronics: 

Combinational Logic 

 

Logic Minimisation 

Introduction 

• Any Boolean function can be implemented 
directly using combinational logic (gates) 

• However, simplifying the Boolean function will 
enable the number of gates required to be 
reduced. Techniques available include: 
– Algebraic manipulation (as seen in examples) 

– Karnaugh (K) mapping (a visual approach) 

– Tabular approaches (usually implemented by 
computer, e.g., Quine-McCluskey) 

• K mapping is the preferred technique for up to 
about 5 variables 
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Truth Tables 
• f  is defined by the following truth table 

x y z f minterms

0 0 0 1 zyx ..
0 0 1 1 zyx ..
0 1 0 1 zyx ..
0 1 1 1 zyx ..
1 0 0 0 
1 0 1 0 
1 1 0 0 
1 1 1 1 zyx ..

• A minterm must contain 

all variables (in either 

complement or 

uncomplemented form) 

• Note variables in a 

minterm are ANDed 

together (conjunction) 

• One minterm for each 

term of f  that is TRUE 

• So         is a minterm but      is not zyx .. zy.

Disjunctive Normal Form 

• A Boolean function expressed as the 

disjunction (ORing) of its minterms is said 

to be in the Disjunctive Normal Form (DNF) 

 

• A Boolean function expressed as the 

ORing of ANDed variables (not necessarily 

minterms) is often said to be in Sum of 

Products (SOP) form, e.g., 

 

zyxzyxzyxzyxzyxf .......... 

le truth tabsame  thehave functions Note     .zyxf 
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Maxterms 

• A maxterm of n Boolean variables is the 
disjunction (ORing) of all the variables either 
in complemented or uncomplemented form. 

– Referring back to the truth table for f, we can 
write, 

 

 Applying De Morgan (and complementing) gives 
 

 So it can be seen that the maxterms of    are 
effectively the minterms of     with each variable 
complemented 

 

zyxzyxzyxf ...... 

)).().(( zyxzyxzyxf 
f

f

Conjunctive Normal Form 

• A Boolean function expressed as the 

conjunction (ANDing) of its maxterms is said 

to be in the Conjunctive Normal Form (CNF) 

 

• A Boolean function expressed as the ANDing 

of ORed variables (not necessarily maxterms) 

is often said to be in Product of Sums (POS) 

form, e.g., 

 

 

)).().(( zyxzyxzyxf 

)).(( zxyxf 
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Logic Simplification 

• As we have seen previously, Boolean 

algebra can be used to simplify logical 

expressions. This results in easier 

implementation 

Note: The DNF and CNF forms are not 

simplified. 

• However, it is often easier to use a 

technique known as Karnaugh mapping 

Karnaugh Maps 

• Karnaugh Maps (or K-maps) are a 
powerful visual tool for carrying out 
simplification and manipulation of logical 
expressions having up to 5 variables 

• The K-map is a rectangular array of 
cells 

– Each possible state of the input variables 
corresponds uniquely to one of the cells 

– The corresponding output state is written in 
each cell 
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K-maps example 

x y z f

0 0 0 1 
0 0 1 1 
0 1 0 1 
0 1 1 1 
1 0 0 0 
1 0 1 0 
1 1 0 0 
1 1 1 1 

• From truth table to K-map 

y z

1 1 0 0 0 1 1 0 

0 

1 

x

1 1 1 1 

1 x

z

y

Note that the logical state of the 

variables follows a Gray code, i.e., 

only one of them changes at a time 

The exact assignment of variables in 

terms of their position on the map is 

not important 

K-maps example 
• Having plotted the minterms, how do we 

use the map to give a simplified 

expression? • Group terms 

• Having size equal to a power of 

2, e.g., 2, 4, 8, etc. 

• Large groups best since they 

contain fewer variables 

• Groups can wrap around edges 

and corners 

y z

1 1 0 0 0 1 1 0 

0 

1 

x

1 1 1 1 

1 x

z

yx zy.

So, the simplified func. is, 

 .zyxf  as before 
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K-maps – 4 variables 
• K maps from Boolean expressions 

– Plot     ... dcbbaf 

1 1 0 0 0 1 1 0 

0 0 

0 1 

1 1 

1 0 

ba 
dc 

1 1 1 1 

1 
a

b

c

d

• See in a 4 variable map: 
– 1 variable term occupies 8 cells 

– 2 variable terms occupy 4 cells 

– 3 variable terms occupy 2 cells, etc. 

K-maps – 4 variables 

• For example, plot 

 bf   .dbf 

1 1 0 0 0 1 1 0 

0 0 

0 1 

1 1 

1 0 

ba 
dc 

1 

1 

1 

1 
a

b

c

d

1 1 0 0 0 1 1 0 

0 0 

0 1 

1 1 

1 0 

ba 
dc 

1 

1 1 1 1 

a

b

c

d

1 1 1 
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K-maps – 4 variables 

• Simplify,  ........ dcdcbadcbdbaf 

1 1 0 0 0 1 1 0 

0 0 

0 1 

1 1 

1 0 

ba 
dc 

1 

a

b

c

d

1 1 

1 

1 

1 

1 

ba.
dc.

So, the simplified func. is, 

 .. dcbaf 

POS Simplification 
• Note that the previous examples have 

yielded simplified expressions in the 
SOP form 

– Suitable for implementations using AND 
followed by OR gates, or only NAND gates 
(using DeMorgans to transform the result – 
see previous Bubble logic slides) 

• However, sometimes we may wish to 
get a simplified expression in POS form 

– Suitable for implementations using OR 
followed by AND gates, or only NOR gates 
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POS Simplification 

• To do this we group the zeros in the map 

– i.e., we simplify the complement of the function 

• Then we apply DeMorgans and 

complement 

• Use ‘bubble’ logic if NOR only 

implementation is required 

POS Example 

• Simplify                       into POS form.  ... dcbbaf 

1 1 0 0 0 1 1 0 

0 0 

0 1 

1 1 

1 0 

ba 
dc 

1 1 1 1 

1 
a

b

c

d

Group 

zeros 

1 1 0 0 0 1 1 0 

0 0 

0 1 

1 1 

1 0 

ba 
dc 

1 1 1 1 

1 
a

b

c

d

0 0 0 0 

0 0 0 

0 0 0 0 

b da. ca.

 .. dacabf 
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POS Example 

• Applying DeMorgans to  
 .. dacabf 

 )).(.( dacabf 

 )).(.( dacabf 

f 

a

c

a

d

b

f 

a

c

a

d

b

gives, 

f 

a

c

a

d

b

Expression in POS form 

• Apply DeMorgans and take 

complement, i.e.,    is now in SOP form 

• Fill in zeros in table, i.e., plot 

• Fill remaining cells with ones, i.e., plot  

• Simplify in usual way by grouping ones 

to simplify  

 f

 f

f

f
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Don’t Care Conditions 

• Sometimes we do not care about the 
output value of a combinational logic 
circuit, i.e., if certain input combinations 
can never occur, then these are known 
as don’t care conditions. 

• In any simplification they may be treated 
as 0 or 1, depending upon which gives 
the simplest result. 

– For example, in a K-map they are entered 
as Xs 

Don’t Care Conditions - Example 

• Simplify the function   ...... dcadcadbaf 

With don’t care conditions,  ... ,... ,... dcbadcbadcba

1 1 0 0 0 1 1 0 

0 0 

0 1 

1 1 

1 0 

ba 
dc 

1 

a

b

c

d

X 1 

1 

1 

1 

X 

X 

ba.
dc.

dcbaf .. 

See only need to include 

Xs if they assist in making 

a bigger group, otherwise 

can ignore. 

or, dcdaf .. 
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Some Definitions 
• Cover – A term is said to cover a minterm if that 

minterm is part of that term 

• Prime Implicant – a term that cannot be further 

combined 

• Essential Prime Implicant – a prime implicant 

that covers a minterm that no other prime 

implicant covers 

• Covering Set – a minimum set of prime 

implicants which includes all essential terms plus 

any other prime implicants required to cover all 

minterms 

Some Definitions - Example 

Prime implicants 

Essential prime 

implicants 

Covering set 

b

1 1 0 0 0 1 1 0 

0 0 

0 1 

1 1 

1 0 

ba 
dc 

1 

a

c

d

1 

1 

1 

1 

1 

1 1 

1 

1 
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Tabular Simplification 

• Except in special cases or for sparse truth 

tables, the K-map method is not practical 

beyond 6 variables 

• A systematic approach known as the Quine-

McCluskey (Q-M) Method finds the minimised 

representation of any Boolean expression 

• It is a tabular method that ensures all the 

prime implicants are found and can be 

automated for use on a computer 

Q-M Method 

• The Q-M Method has 2 steps: 

– First a table, known as the QM implication table, is 

used to find all the prime implicants; 

– Next the minimum cover set is found using the 

prime implicant chart. 

• We will use a 4 variable example to show the 

method in operation: 

– Minterms are: 4,5,6,8,9,10,13 

– Don’t cares are: 0,7,15. 
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Q-M Method 

• The first step is to list all the minterms and 

don’t cares in terms of their minterm indices 

represented as a binary number 

– Note the entries are grouped according to the 

number of 1s in the binary representation 

– The 1st column contains the minterms 

– After applying the method, the 2nd column will 

contain 3 variable terms. Similarly for subsequent 

columns. 

Q-M Method 

• The method begins by listing groups of 

minterms and don’t cares in groups 

containing ascending numbers of 1s with a 

blank line between the groups 

–  Thus the first group has zero ones, the second 

group has a single 1 and the third has two 1s and 

so on 

• We next apply the so called uniting theorem 

iteratively as follows 
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Q-M Method – Uniting Theorem 
– Compare elements in the 1st group (no 1s) with all 

elements in the 2nd group. If they differ by a single 

bit, it means the terms are adjacent (think K-map) 

– Adjacent terms are placed in the 2nd column with 

the single bit that differs replaced by a dash (-).  

Terms in the 1st column that contribute to a term in 

the second are ticked, i.e., they are not prime 

implicants. 

– Now repeat for the groups in the 2nd column 

– As before groups must differ only by a single bit 

but they must also have a – in the same position 

– Groups in 2nd column that do not contribute to the 

3rd column are marked with an asterix (*), i.e., they 

are prime implicants 

Q-M – Implication Table 

Column 1 

0 1 0 0 
1 0 0 0 

0 1 0 1 
0 1 1 0 
1 0 0 1 
1 0 1 0 

0 1 1 1 
1 1 0 1 

1 1 1 1 

Column 2 

0 0 0 0  

 
 

 
 
 
 

 
 

 

0 - 0 0 * 
- 0 0 0 * 

0 1 0 -  
0 1 - 0  
1 0 0 - * 
1 0 - 0 * 

0 1 - 1  
- 1 0 1  
0 1 1 -  
1 - 0 1 * 

- 1 1 1  
1 1 - 1  

0 1 - - * 

- 1 - 1 * 

Column 3 

– Minterms are: 4,5,6,8,9,10,13 

– Don’t cares are: 0,7,15. 
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K-map view of Q-M example 

Col. 2 adjacent 

minterms 

b

1 1 0 0 0 1 1 0 

0 0 

0 1 

1 1 

1 0 

ba 
dc 

1 
a

c

d

1 

1 

1 

X 

1 1 1 

1 

X 

X 
Col. 2 * adjacent 

minterms, i.e., 

prime implicants 

Col. 3 prime 

implicants 

Q-M – Finding Min Cover 

– The second step is to find the lowest number of 

prime implicants that cover the function – this is 

achieved using the prime implicant chart 

– This chart is organised as follows: 

• Label columns with the minterm indices (don’t include 

don’t cares) 

• Label rows with minterms covered by a given prime 

implicant. To do this dashes (-) in a prime implicant are 

replaced by all combinations of 0s and 1s 

• Place an X in the (row, column) location if the minterm 

represented by the column index is covered by the prime 

implicant associated with the row 

• The next slide shows the initial prime implicant chart 
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Q-M – Prime Implicant Chart 
4 5 6 8 9 10 13 

0,4 (0 - 0 0) 

0,8 (- 0 0 0) 

8,9 (1 0 0 -) 

8,10 (1 0 - 0) 

9,13 (1 - 0 1) 

4,5,6,7 (0 1 - -) 

5,7,13,15 (- 1 - 1) 

X 

X 

X X 

X X 

X X 

X X X 

X X 

• Now we look for the essential prime implicants – 

These are indicated when there is only a single X in 

any column, i.e., This means there is a minterm 

covered by one and only prime implicant 

* Terms in 

Implication 

Table 

Minterms (exc. 

don’t cares) 

Q-M – Prime Implicant Chart 
• The essential terms must be included in the final cover 

– Draw lines in the column and row that have a X associated with 

an essential prime implicant and draw a box around the prime 

– These minterms are already covered by the essential primes 

4 5 6 8 9 10 13 

0,4 (0 - 0 0) 

0,8 (- 0 0 0) 

8,9 (1 0 0 -) 

8,10 (1 0 - 0) 

9,13 (1 - 0 1) 

4,5,6,7 (0 1 - -) 

5,7,13,15 (- 1 - 1) 

X 

X 

X X 

X X 

X X 

X X X 

X X 
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Q-M – Prime Implicant Chart 
• The essential prime implicants usually cover additional 

minterms. 

–  We must also cross out any columns that have an X in a row 

associated with an essential prime since these minterms are 

already covered by the essential primes 

4 5 6 8 9 10 13 

0,4 (0 - 0 0) 

0,8 (- 0 0 0) 

8,9 (1 0 0 -) 

8,10 (1 0 - 0) 

9,13 (1 - 0 1) 

4,5,6,7 (0 1 - -) 

5,7,13,15 (- 1 - 1) 

X 

X 

X X 

X X 

X X 

X X X 

X X 

Q-M – Prime Implicant Chart 
• We see 2 minterms are still uncovered (cols. 9 and 13) 

– The final step is to find as few primes as possible to cover the 

remaining minterms 

– We see the single prime implicant 1-01 covers both of them 

– The boxed terms show the final covering set 

4 5 6 8 9 10 13 

0,4 (0 - 0 0) 

0,8 (- 0 0 0) 

8,9 (1 0 0 -) 

8,10 (1 0 - 0) 

9,13 (1 - 0 1) 

4,5,6,7 (0 1 - -) 

5,7,13,15 (- 1 - 1) 

X 

X 

X X 

X X 

X X 

X X X 

X X 
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Final K-Map view of Q-M Example 

b

1 1 0 0 0 1 1 0 

0 0 

0 1 

1 1 

1 0 

ba 
dc 

1 
a

c

d

1 

1 

1 

X 

1 1 1 

1 

X 

X 

Selected prime 

implicant to 

complete covering 

set 

Essential prime 

implicant 
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Digital Electronics: 

Combinational Logic 

 

Binary Adders 

Introduction 

• We will now look at how binary addition 

may be implemented using combinational 

logic circuits. We will consider: 

– Half adder 

– Full adder 

– Ripple carry adder 
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Half Adder 
• Adds together two, single bit binary 

numbers a and b (note: no carry input) 

• Has the following truth table: 
a cout 

0 
1 

b 

0 
0 
1 0 

1 
0 
0 
0 

1 1 

sum 

0 
1 
1 
0 

a 

b cout 

sum 

• By inspection: 
bababasum   ..

bacout .

Full Adder 

• Adds together two, single bit binary 

numbers a and b (note: with a carry input) 

 a 

b cout 

sum 

cin 

•  Has the following truth table: 
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Full Adder 

a cout b sum 

1 
0 
0 
0 

0 
1 
1 
0 

cin 

0 
1 
0 

0 
1 0 
1 1 0 

0 
0 
0 

0 
1 
0 

0 
1 0 
1 1 1 

1 
1 
1 

1 
1 
1 
0 

1 
0 
0 
1 

)...()...(

........

babacbabacsum

bacbacbacbacsum

inin

inininin





From DeMorgan 

)..(

)....(

)).((..

abba

bbabbaaa

babababa







So, 

bacxcxcxcsum

babacbabacsum

inininin

inin





..

)..(.)...(

Full Adder 
a cout b sum 

1 
0 
0 
0 

0 
1 
1 
0 

cin 

0 
1 
0 

0 
1 0 
1 1 0 

0 
0 
0 

0 
1 
0 

0 
1 0 
1 1 1 

1 
1 
1 

1 
1 
1 
0 

1 
0 
0 
1 

bacbbcbac

bacbcbac

bacbacbac

bacbacccbac

bacbacbacbacc

ininout

ininout

ininout

ininininout

ininininout

..)).(.(

..)..(

.....

....).(.

........











).(.

...

.)).(.(.)..(

abcabc

cacbabc

caaacabcaacabc

inout

ininout

ininininout






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Full Adder 
• Alternatively, 

a cout b sum 

1 
0 
0 
0 

0 
1 
1 
0 

cin 

0 
1 
0 

0 
1 0 
1 1 0 

0 
0 
0 

0 
1 
0 

0 
1 0 
1 1 1 

1 
1 
1 

1 
1 
1 
0 

1 
0 
0 
1 

babacc

ccbababacc

bacbacbacbacc

inout

inininout

ininininout

.).(

).(.)...(

........







• Which is similar to previous expression 

except with the OR replaced by XOR 

Ripple Carry Adder 
• We have seen how we can implement a 

logic to add two, one bit binary numbers 

(inc. carry-in). 

• However, in general we need to add 

together two, n bit binary numbers. 

• One possible solution is known as the 

Ripple Carry Adder 

– This is simply n, full adders cascaded 

together 
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Ripple Carry Adder 

a0 b0 c0 

a b 

cout 

sum 

cin 

s0 

a b 

cout 

sum 

cin 

s1 

a b 

cout 

sum 

cin 

s2 

a b 

cout 

sum 

cin 

s3 

a1 b1 a2 b2 a3 b3 

c4 

• Example, 4 bit adder 

• Note: If we complement a and set co to 

one we have implemented abs 

To Speed up Ripple Carry Adder 

• Abandon compositional approach to the adder 
design, i.e., do not build the design up from 
full-adders, but instead design the adder as a 
block of 2-level combinational logic with 2n 
inputs (+1 for carry in) and n outputs (+1 for 
carry out). 

• Features 

– Low delay (2 gate delays) 

– Need some gates with large numbers of inputs 
(which are not available) 

– Very complex to design and implement (imagine 
the truth table! 
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To Speed up Ripple Carry Adder 

• Clearly the 2-level approach is not 
feasible 

• One possible approach is to make use 
of the full-adder blocks, but to generate 
the carry signals independently, using 
fast carry generation logic 

• Now we do not have to wait for the carry 
signals to ripple from full-adder to full-
adder before output becomes valid 

Fast Carry Generation 
a0 b0 c0 

a b 

cout 

sum 

cin 

s0 

a b 

cout 

sum 

cin 

s1 

a b 

cout 

sum 

cin 

s2 

a b 

cout 

sum 

cin 

s3 

a1 b1 a2 b2 a3 b3 

c4 

Conventional 

RCA 

Fast Carry 

Adder 

a0 b0 c0 

a b 

cout 

sum 

cin 

s0 

a b 

cout 

sum 

cin 

s1 

a b 

cout 

sum 

cin 

s2 

a b 

cout 

sum 

cin 

s3 

a1 b1 a2 b2 a3 b3 

c4 

Fast Carry Generation 

c0 c1 c2 c3 
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Fast Carry Generation 

• We will now determine the Boolean 

equations required to generate the fast 

carry signals 

• To do this we will consider the carry out 

signal, cout, generated by a full-adder 

stage (say i), which conventionally gives 

rise to the carry in (cin) to the next stage, 

i.e., ci+1. 

Fast Carry Generation 

a b si ci 

0 0 0 0 

1 1 0 1 0 

1 0 0 0 1 

1 0 0 0 1 

0 

1 0 

1 1 1 

1 

1 

1 

1 

0 

1 0 1 1 0 

0 0 1 0 1 

ci+1 

Carry out same as carry in. 

Call this carry propagate 

Carry out generated 

independently of carry in. 

Call this carry generate 

Carry out always zero. 

Call this carry kill 

iii bag .

iii bap 

iii bak .

Also (from before),  iiii cbas 
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Fast Carry Generation 

• Also from before we have, 
).(.1 iiiiii bacbac 

or alternatively,  

).(.1 iiiiii bacbac 

Using previous expressions gives, 

iiii pcgc .1 

So, 

iiiiiii

iiiiii

iiii

cppgpgc

pcgpgc

pcgc

...

)..(

.

1112

112

1112













Fast Carry Generation 

Similarly, 

iiiiiiiiii

iiiiiiii

iiii

cpppgpgpgc

pcgpgpgc

pcgc

...)..(

))..(.(

.

1211223

11223

2223













and 

iiiiiiiiiiiii

iiiiiiiiiiii

iiii

cppppgpgpgpgc

cpppgpgpgpgc

pcgc

....))..(.(

)...)..(.(

.

1231122334

121122334

3334












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Fast Carry Generation 

• So for example to generate c4, i.e., i = 0, 

04

0012301122334 ....))..(.(

PcGc

cppppgpgpgpgc





where, 

0123

0112233

...

))..(.(

ppppP

gpgpgpgG





• See it is quick to evaluate this function  

Fast Carry Generation 

• We could generate all the carrys within an 

adder block using the previous equations 

• However, in order to reduce complexity, a 

suitable approach is to implement say 4-bit 

adder blocks with only c4 generated using 

fast generation.  

– This is used as the carry-in to the next 4-bit 

adder block 

– Within each 4-bit adder block, conventional RCA 

is used 
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Fast Carry Generation 

a0 b0 c0 

a b 

cout 

sum 

cin 

s0 

a b 

cout 

sum 

cin 

s1 

a b 

cout 

sum 

cin 

s2 

a b 

cout 

sum 

cin 

s3 

a1 b1 a2 b2 a3 b3 

c4 

Fast Carry Generation 

c0 

Fast Carry Generation 

• Conventional ripple carry within 4-bit blocks 

• Fast carry generation between 4-bit blocks 

• Trade-off between complexity and speed 
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Digital Electronics: 

Combinational Logic 

 

Multilevel Logic and Hazards 

Multilevel Logic 

• We have seen previously how we can 
minimise Boolean expressions to yield 
so called ‘2-level’ logic implementations, 
i.e., SOP (ANDed terms ORed together) 
or POS (ORed terms ANDed together) 

• Note also we have also seen an 
example of ‘multilevel’ logic, i.e., full 
adders cascaded to form a ripple carry 
adder – see we have more than 2 gates 
in cascade in the carry chain 
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Multilevel Logic 

• Why use multilevel logic? 

– Commercially available logic gates usually 

only available with a restricted number of 

inputs, typically, 2 or 3. 

– System composition from sub-systems 

reduces design complexity, e.g., a ripple 

adder made from full adders 

– Allows Boolean optimisation across multiple 

outputs, e.g., common sub-expression 

elimination 

Building Larger Gates 

• Building a 6-input OR gate 
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Common Expression Elimination 

• Consider the following minimised SOP 

expression: 

gfecfdcfebfdbfeafdaz  ............

• Requires: 

• Six, 3 input AND gates, one 7-input 

OR gate – total 7 gates, 2-levels 

• 19 literals (the total number of times 

all variables appear) 

• We can recursively factor out common literals 

Common Expression Elimination 

gfedcbaz

gfecbadcbaz

gfecdcebdbeadaz

gfecfdcfebfdbfeafdaz









).).((

).).().((

).......(

............

• Now express z as a number of equations in 2-

level form: 

cbax  edy  gfyxz  ..

• 4 gates, 9 literals, 3-levels 
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Gate Propagation Delay 

• So, multilevel logic can produce reductions 
in implementation complexity. What is the 
downside? 

• We need to remember that the logic gates 
are implemented using electronic 
components (essentially transistors) which 
have a finite switching speed. 

• Consequently, there will be a finite delay 
before the output of a gate responds to a 
change in its inputs – propagation delay 

Gate Propagation Delay 

• The cumulative delay owing to a number of 

gates in cascade can increase the time 

before the output of a combinational logic 

circuit becomes valid 

• For example, in the Ripple Carry Adder, the 

sum at its output will not be valid until any 

carry has ‘rippled’ through possibly every full 

adder in the chain – clearly the MSB will 

experience the greatest potential delay 
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Gate Propagation Delay 

• As well as slowing down the operation of 
combinational logic circuits, gate delay can 
also give rise to so called ‘Hazards’ at the 
output 

• These Hazards manifest themselves as 
unwanted brief logic level changes (or 
glitches) at the output in response to 
changing inputs 

• We will now describe how we can address 
these problems 

Hazards 

• Hazards are classified into two types, 

namely, static and dynamic 

• Static Hazard – The output undergoes a 

momentary transition when one input 

changes when it is supposed to remain 

unchanged 

• Dynamic Hazard – The output changes 

more than once when it is supposed to 

change just once 
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Timing Diagrams 

• To visually represent Hazards we will use the 

so called ‘timing diagram’ 

• This shows the logical value of a signal as a 

function of time, for example the following 

timing diagram shows a transition from 0 to 1 

and then back again 

Logic ‘0’ 

Time 

Logic ‘1’ 

Timing Diagrams 

• Note that the timing diagram makes a number 

simplifying assumptions (to aid clarity) 

compared with a diagram which accurately 

shows the actual voltage against time 

– The signal only has 2 levels. In reality the signal 

may well look more ‘wobbly’ owing to electrical 

noise pick-up etc. 

– The transitions between logic levels takes place 

instantaneously, in reality this will take a finite 

time. 
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Static Hazard 

Logic ‘0’ 

Time 

Logic ‘1’ 

Static 1 hazard 

Logic ‘0’ 

Time 

Logic ‘1’ Static 0 hazard 

Dynamic Hazard 

Logic ‘0’ 

Time 

Logic ‘1’ 

Dynamic hazard 

Logic ‘0’ 

Time 

Logic ‘1’ 

Dynamic hazard 
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Static 1 Hazard 
x 

y 

z 

t 

u 

v 

w 

y 

t 

u 

v 

w 

This circuit implements, 

yzyxw .. 

Consider the output when         

and    changes from 1 to 0 

1 xz
y

Hazard Removal 

• To remove a 1 hazard, draw the K-map 
of the output concerned. Add another 
term which overlaps the essential terms 

• To remove a 0 hazard, draw the K-map 
of the complement of the output 
concerned. Add another term which 
overlaps the essential terms 
(representing the complement) 

• To remove dynamic hazards – not 
covered in this course! 
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Removing the static 1 hazard 
yzyxw .. 

y z

1 1 0 0 0 1 1 0 

0 

1 

x

1 

1 

1 1 x

z

y

Extra term added to remove 

hazard, consequently, 

zxyzyxw ... 

x 

y 

z 

w 
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Digital Electronics: 

Combinational Logic 

 

Beyond Simple Logic Gates 

Multiplexor 

• Multiplexor (Mux)/selector – chooses 

1 of many inputs to steer to its single 

output under the direction of control 

inputs, e.g., if the input to a circuit can 

come from several places a Mux is one 

way to funnel the multiple sources 

selectively to the single ouput. 
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Multiplexor 
• The hazard example is actually a 2-to-1 (2:1) 

Mux, i.e., it can select either input x or z to 

appear at output w under control of y 

x 
y 

z 

w x yz

0 0 0 0 
0 1 0 1 
1 0 0 0 
1 1 0 1 
0 0 1 0 
0 1 1 0 
1 0 1 1 
1 1 1 1 

w

Mux 
x 

y 

z 
w 

x 

z 
w 

y 

Multiplexor 
• Clearly an n-to-1 (n:1) Mux is also possible. 

For example, an 8-to-1 (8:1) Mux will need 

3 control inputs. 

• A Mux can also be used to implement 

combinational logic functions. For example, 

an 8 input Mux can be used to implement 

functions having 3 variables expressed as 

a sum of minterms, i.e., DNF. 

zyxzyxzyxzyxzyxf .......... 
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Multiplexor 
zyxzyxzyxzyxf ........ 

f 

1 
0 
1 

1 
1 

0 
0 
0 

I0 
I1 

I2 

I3 

I4 

I5 
I6 

I7 

F 

S2 S1 S0 

x y z 

• The control inputs are used to select the 

minterms required at the output.  The Mux is 

sometimes called a hardware look-up table. 

Multiplexor 

yxzyxyxf

zzyxzyxyxf

zyxzyxzyxzyxf

.)...(

).(.)...(

........







• In this example if we use one of the inputs as 

a variable, then we can get away with a 4-to-1 

(4:1) Mux 

f 0 
1 

I0 
I1 

I2 

I3 

F 

S1 S0 

x y 

z
z
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Multiplexor 
• We see it can also be designed via a truth 

table based approach, e.g., 

f 0 
1 

I0 
I1 

I2 

I3 

F 

S1 S0 

x y 

z
z

x y z

0 0 0 1 
0 0 1 0 
0 1 0 1 
0 1 1 0 
1 0 0 0 
1 0 1 0 
1 1 0 1 
1 1 1 1 

f

z0I

z1I

0I2 

1I3 

Demultiplexor 
• A demultiplexor is the opposite of a Mux, 

i.e., a single input is directed to exactly 

one of its outputs 

• The truth table for a 1-to-2 (1:2) Demux 

(i.e., 1 control input and 2 outputs is: 

f0 
g 

O0 
I0 

S0 

x 

O1 f1 

g 

x 
f0 

f1 

g x

0 0 0 0 
1 0 1 0 
0 1 0 0 
1 1 0 1 

0f 1f
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Demultiplexor 
• Clearly a larger Demux are also possible. 

For example, a 3-to-8 (3:8) Demux has 3 

control inputs and 8 outputs. 

 • A related function is a Decoder. In this 

case the input g is permanently connected 

to a logic 1. This yields a 1-of-2 decoder 

(also known as a 1:2 decoder) 
g x

0 0 0 0 
1 0 1 0 
0 1 0 0 
1 1 0 1 

0f 1f

g =1 

x

0 1 0 
1 0 1 

0f 1f

• See only one output is logic 1 at a time 

Decoder 
• Clearly an 1-of-n Decoder is possible. For 

example, a 1-of-8 Decoder (i.e., a 3:8 

demux) has 3 control inputs and 8 outputs. 

 • A typical application would be to ‘Enable 

(EN)’ 1 out-of-n logic sub-systems. 

 
O0 
O1 

O2 

O3 

O4 

O5 

O6 

O7 

S2 

S1 

S0 
x 

y 

z 

EN System 0 

EN System 1 

EN System 7 

• So, letting 

x=1, y=z=0 

will enable 

System 1 
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Decoder 
• We can see that a 1-of-n Decoder will 

generate all the possible minterms having 

n variables. 

• Consequently, a logical expression having 

DNF form can be implemented by ORing 

together the required minterms at the 

decoder output. 

• Multiple output logic blocks can be created 

by using multiple OR gates at the decoder 

output, i.e., one for each output. 

Decoder 

O0 
O1 
O2 

O3 

O4 

O5 
O6 

O7 

S2 

S1 

S0 
x 

y 

z 

xyzxyzxyzf ......0 

xyzxyzf ....1 

• Decoder implementation of a 3 variable, 2 

output combinational logic block. 

 

Additional OR gates 

to give more 

outputs if required 



06/09/2022 

67 

Even More Ways to Implement 

Combinational Logic 

• We have seen how combinational logic 

can be implemented using logic gates 

(e.g., AND, OR), Mux and Demux. 

• However, it is also possible to generate 

combinational logic functions using 

memory devices, e.g., Read Only 

Memories (ROMs) 

ROM Overview 

• A ROM is a data storage device: 

– Usually written into once (either at manufacture or 
using a programmer) 

– Read at will 

– Essentially is a look-up table, where a group of 
input lines (say n) is used to specify the address 
of locations holding m-bit data words 

– For example, if n = 4, then the ROM has 24 = 16 
possible locations. If m = 4, then each location 
can store a 4-bit word 

– So, the total number of bits stored is            , i.e., 
64 in the example (very small!) ROM 

nm 2
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ROM Example 

data 

x y z f

0 0 0 1 
0 0 1 1 
0 1 0 1 
0 1 1 1 
1 0 0 0 
1 0 1 0 
1 1 0 0 
1 1 1 1 

address 

(decimal) 

0 
1 
2 
3 
4 
5 
6 
7 

D0 D1 D2 D3 

X X X 1 
X X X 1 
X X X 1 
X X X 1 
X X X 0 
X X X 0 
X X X 0 
X X X 1 

64-bit 

ROM 

A0 

A1 

A2 

A3 

D0 

D1 

D2 

D3 

address data 
z
y
x
'0'

Design amounts to putting 

minterms in the appropriate 

address location 

No logic simplification 

required 

Useful if multiple Boolean 

functions are to be 

implemented, e.g., in this 

case we can easily do up to 

4, i.e., 1 for each output line 

Reasonably efficient if lots of 

minterms need to be 

generated 

ROM Implementation 
• Can be quite inefficient, i.e., become large in 

size with only a few non-zero entries, if the 
number of minterms in the function to be 
implemented is quite small 

• Devices which can overcome these problems 
are known as programmable logic array (PLA) 

• In PLAs, only the required minterms are 
generated using a separate AND plane. The 
outputs from this plane are ORed together in 
a separate OR plane to produce the final 
output 
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Basic PLA Structure 

Programmed by 

selectively removing 

connections in the AND 

and OR planes – 

controlled by fuses or 

memory bits 

f0 

a

c

b

f1 

f2 

AND plane 

OR plane 

Other PLA Style Structures 
• In PLAs, only the required minterms are 

generated using a separate AND plane. 
Output from this plane are available to all OR 
gates to give the final output 

• A modified structure known as Programmable 
Array Logic (PAL) does not have a 
programmable OR array and so outputs from 
the AND array can not be shared among the 
OR gates to give the final outputs. 

• This simplifies the structure, but at the cost of 
lower efficiency 
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Basic PAL Structure 

f0 

a

c

b

fn 

AND 

plane 

OR 

plane 

Other Memory Devices 

• Non-volatile storage is offered by ROMs (and 

some other memory technologies, e.g., 

FLASH), i.e., the data remains intact, even 

when the power supply is removed 

• Volatile storage is offered by Static Random 

Access Memory (SRAM) technology 

– Data can be written into and read out of the 

SRAM, but is lost once power is removed 
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Memory Application 

• Memory devices are often used in computer 
systems 

• The central processing unit (CPU) often 
makes use of busses (a bunch of wires in 
parallel) to access external memory devices 

• The address bus is used to specify the 
memory location that is being read or written 
and the data bus conveys the data too and 
from that location 

• So, more than one memory device will often 
be connected to the same data bus 

Bus Contention 

• In this case, if the output from the data pin of 

one memory was a 0 and the output from the 

corresponding data pin of another memory 

was a 1, the data on that line of the data bus 

would be invalid  

• So, how do we arrange for the data from 

multiple memories to be connected to the 

same bus wires? 
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Bus Contention 

• The answer is: 

– Tristate buffers (or drivers) 

– Control signals 

• A tristate buffer is used on the data output of 
the memory devices 

–  In contrast to a normal buffer which is either 1 
or 0 at its output, a tristate buffer can be 
electrically disconnected from the bus wire, i.e., 
it will have no effect on any other data currently 
on the bus – known as the ‘high impedance’ 
condition 

Tristate Buffer 

Output Enable 

(OE) = 1 

OE = 0 

Bus line 

OE = 1 

Bus line 

OE = 0 

Symbol Functional 

analogy 
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Control Signals 

• We have already seen that the memory 
devices have an additional control input (OE) 
that determines whether the output buffers are 
enabled. 

• Other control inputs are also provided: 

– Write enable (WE). Determines whether data is 
written or read (clearly not needed on a ROM) 

– Chip select (CS) – determines if the chip is 
activated 

• Note that these signals can be active low, 
depending upon the particular device 
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Digital Electronics: 

Sequential Logic 

 

Introduction, Latches and Flip-

Flops 

Introduction 
• The logic circuits discussed previously 

are known as combinational, in that the 

output depends only on the condition of 

the latest inputs 

• However, we will now introduce a type 

of logic where the output depends not 

only on the latest inputs, but also on the 

condition of earlier inputs. These circuits 

are known as sequential, and implicitly 

they contain memory elements 
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Memory Elements 

• A memory stores data – usually one bit per 

element 

• A snapshot of the memory is called the state 

• A one bit memory is often called a bistable, 

i.e., it has 2 stable internal states 

• Flip-flops and latches are particular 

implementations of bistables 

RS Latch 

• An RS latch is a memory element with 2 

inputs: Reset (R) and Set (S) and 2 

outputs:    and    . Q Q

Q

Q

R

S

Q 

0 

0 

1 

0 

0 
1 

0 
0 1 

1 1 

QRS comment 

Q Q
1 
0 
0 

hold 
reset 
set 

illegal 

Where      is the next state 

and       is the current state 

Q

Q
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RS Latch - Operation 

Q

Q

R

S

1 

2 

a y 

0 
1 

1 

b 

0 
0 0 

0 
1 0 0 
1 1 

b complemented 

NOR truth table 

always 0 

• R = 1 and S = 0 

– Gate 1 output in ‘always 0’ condition,  

– Gate 2 in ‘complement’ condition, so 

• This is the (R)eset condition    

0Q

1Q

RS Latch - Operation 

Q

Q

R

S

1 

2 

a y 

0 
1 

1 

b 

0 
0 0 

0 
1 0 0 
1 1 

b complemented 

NOR truth table 

always 0 

• S = 0 and R to 0  

– Gate 2 remains in ‘complement’ condition,  

– Gate 1 into ‘complement’ condition, 

• This is the hold condition    

0Q

1Q
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RS Latch - Operation 

Q

Q

R

S

1 

2 

a y 

0 
1 

1 

b 

0 
0 0 

0 
1 0 0 
1 1 

b complemented 

NOR truth table 

always 0 

• S = 1 and R = 0  

– Gate 1 into ‘complement’ condition, 

– Gate 2 in ‘always 0’ condition,  

• This is the (S)et condition    

1Q

0Q

RS Latch - Operation 

Q

Q

R

S

1 

2 

a y 

0 
1 

1 

b 

0 
0 0 

0 
1 0 0 
1 1 

b complemented 

NOR truth table 

always 0 

• S = 1 and R = 1  

– Gate 1 in ‘always 0’ condition, 

– Gate 2 in ‘always 0’ condition,  

• This is the illegal condition    

0Q

0Q
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RS Latch – State Transition Table 
• A state transition table is an alternative 

way of viewing its operation 

1 

0 

0 
1 

QRS comment 

hold 
reset 
set 
illegal 

1 

0 

0 

0 

0 
1 
1 

0 

0 
1 
1 1 

Q

0 

0 
0 
0 

1 

1 
1 
1 

0 

0 
1 
0 

1 

0 
1 
0 

hold 
reset 
set 
illegal 

• A state transition table can also be 

expressed in the form of a state diagram 

RS Latch – State Diagram 

• A state diagram in this case has 2 

states, i.e., Q=0 and Q=1 

• The state diagram shows the input 

conditions required to transition 

between states. In this case we see that 

there are 4 possible transitions 

• We will consider them in turn 
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RS Latch – State Diagram 

1 

0 

0 
1 

QRS comment 

hold 
reset 
set 
illegal 

1 

0 

0 

0 

0 
1 
1 

0 

0 
1 
1 1 

Q

0 

0 
0 
0 

1 

1 
1 
1 

0 

0 
1 
0 

1 

0 
1 
0 

hold 
reset 
set 
illegal 

0Q 0Q

From the table we can see: 

RSRSSS

RSSRSRRS

RSRSRS







)).((

..).(

...

1Q 1Q

From the table we can see: 

R

SSRRSRS  ).(..

RS Latch – State Diagram 

1 

0 

0 
1 

QRS comment 

hold 
reset 
set 
illegal 

1 

0 

0 

0 

0 
1 
1 

0 

0 
1 
1 1 

Q

0 

0 
0 
0 

1 

1 
1 
1 

0 

0 
1 
0 

1 

0 
1 
0 

hold 
reset 
set 
illegal 

1Q 0Q

From the table we can see: 

RSSR

RSRS





).(

..

0Q 1Q

From the table we can see: 

RS.
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RS Latch – State Diagram 

• Which gives the following state diagram: 

0Q 1QRS  R

RS.

R
• A similar diagram can be constructed for the      

 output 

• We will see later that state diagrams are a 

useful tool for designing sequential systems 

Q

Clocks and Synchronous Circuits 

• For the RS latch we have just described, we 

can see that the output state changes occur 

directly in response to changes in the inputs. 

This is called asynchronous operation 

• However, virtually all sequential circuits 

currently employ the notion of synchronous 

operation, that is, the output of a sequential 

circuit is constrained to change only at a time 

specified by a global enabling signal. This 

signal is generally known as the system clock 
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Clocks and Synchronous Circuits 

• The Clock: What is it and what is it for? 

– Typically it is a square wave signal at a 

particular frequency 

– It imposes order on the state changes 

– Allows lots of states to appear to update 

simultaneously 

• How can we modify an asynchronous 

circuit to act synchronously, i.e., in 

synchronism with a clock signal? 

 

Transparent D Latch 

• We now modify the RS Latch such that its 

output state is only permitted to change when 

a valid enable signal (which could be the 

system clock) is present 

• This is achieved by introducing a couple of 

AND gates in cascade with the R and S inputs 

that are controlled by an additional input 

known as the enable (EN) input. 
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Transparent D Latch 

Q

Q

R

S

D

EN

D Q 

EN 

Symbol 

a y 

0 

1 

1 
0 

b 

0 
0 
1 

0 
0 0 

1 1 

AND truth table • See from the AND truth table: 
– if one of the inputs, say a is 0, the output 

is always 0 

– Output follows b input if a is 1 

• The complement function ensures 
that R and S can never be 1 at the 
same time, i.e., illegal avoided 

Transparent D Latch 

Q

Q

R

S

D

EN

RS hold 

Q 

0 1 

0 

1 1 

QD comment 

Q Q
1 
0 

RS reset 

RS set 

EN

0 

X 

1 

• See Q follows D input provided EN=1. 
If EN=0, Q maintains previous state 
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Master-Slave Flip-Flops 

• The transparent D latch is so called ‘level’ 
triggered. We can see it exhibits transparent 
behaviour if EN=1. It is often more simple to 
design sequential circuits if the outputs 
change only on the either rising (positive 
going) or falling (negative going) ‘edges’ of 
the clock (i.e., enable) signal 

• We can achieve this kind of operation by 
combining 2 transparent D latches in a so 
called Master-Slave configuration 

Master-Slave D Flip-Flop 
Symbol 

D Q D Q D Q D 

CLK 

Q 

Master Slave 

Qint 

• To see how this works, we will use a timing diagram 

• Note that both latch inputs are effectively connected 

to the clock signal (admittedly one is a complement 

of the other) 
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Master-Slave D Flip-Flop 

D Q D Q D 

CLK 

Q 

Master Slave 

Qint 

CLK

CLK

D

intQ

Q

Note propagation delays 

have been neglected in 

the timing diagram 

See Q changes on rising 

edge of CLK 

D Flip-Flops 

• The Master-Slave configuration has 
now been superseded by new F-F 
circuits which are easier to implement 
and have better performance 

• When designing synchronous circuits it 
is best to use truly edge triggered F-F 
devices 

• We will not consider the design of such 
F-Fs on this course 
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Other Types of Flip-Flops 

• Historically, other types of Flip-Flops 

have been important, e.g., J-K Flip-

Flops and T-Flip-Flops 

• However, J-K FFs are a lot more 

complex to build than D-types and so 

have fallen out of favour in modern 

designs, e.g., for field programmable 

gate arrays (FPGAs) and VLSI chips 

Other Types of Flip-Flops 

• Consequently we will only consider 

synchronous circuit design using D-type 

FFs 

• However for completeness we will 

briefly look at the truth table for J-K and 

T type FFs 
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J-K Flip-Flop 

• The J-K FF is similar in function to a 

clocked RS FF, but with the illegal state 

replaced with a new ‘toggle’ state 

Q 

0 

1 

0 

0 
1 

0 
0 1 

1 1 

QKJ comment 

Q Q
1 
0 

hold 
reset 
set 

toggle 

Where      is the next state 

and       is the current state 

Q

Q

Q Q

Symbol 

J 

K Q

Q

T Flip-Flop 

• This is essentially a J-K FF with its J 

and K inputs connected together and 

renamed as the T input 

Q 

0 

1 

QT comment 

Q Q hold 

toggle 

Where      is the next state 

and       is the current state 

Q

Q

Q Q

Symbol 

T 

Q

Q
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Asynchronous Inputs 

• It is common for the FF types we have mentioned 

to also have additional so called ‘asynchronous’ 

inputs 

• They are called asynchronous since they take 

effect independently of any clock or enable inputs 

• Reset/Clear – force Q to 0 

• Preset/Set – force Q to 1 

• Often used to force a synchronous circuit into a 

known state, say at start-up. 

Timing 

• Various timings must be satisfied if a FF 

is to operate properly: 

– Setup time: Is the minimum duration that 

the data must be stable at the input before 

the clock edge 

– Hold time: Is the minimum duration that the 

data must remain stable on the FF input 

after the clock edge 
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Timing 

CLK

D

Q
sut ht

pt

sut Set-up time 

ht Hold time 

pt Propagation delay 
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Digital Electronics: 

Sequential Logic 

 

Flip-Flop Applications and 

Timing Considerations 

Counters 

• A clocked sequential circuit that goes through a 

predetermined sequence of states 

• A commonly used counter is an n-bit binary counter. 

This has n FFs and 2
n
 states which are passed 

through in the order 0, 1, 2, ….2
n
-1, 0, 1, . 

• Uses include: 

– Counting 

– Producing delays of a particular duration 

– Sequencers for control logic in a processor 

– Divide by m counter (a divider), as used in a 

digital watch 
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Memories 

• For example, 

– Shift register 

• Parallel loading shift register : can be used for 

parallel to serial conversion in serial data 

communication 

• Serial in, parallel out shift register: can be used 

for serial to parallel conversion in a serial data 

communication system. 

 

Counters 

• In most books you will see 2 basic types 

of counters, namely ripple counters and 

synchronous counters 

• In this course we are concerned with 

synchronous design principles. Ripple 

counters do not follow these principles 

and should generally be avoided if at all 

possible. We will now look at the 

problems with ripple counters 
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Ripple Counters 
• A ripple counter can be made be cascading 

together negative edge triggered T-type FFs 
operating in ‘toggle’ mode, i.e., T =1 

• See that the FFs are not clocked using the 

same clock, i.e., this is not a synchronous 

design. This gives some problems…. 

T 

Q

Q
‘1’ 

CLK 

T 

Q

Q
‘1’ 

T 

Q

Q
‘1’ 

0Q 1Q 2Q

Ripple Counters 
• We will now draw a timing diagram 

0Q

CLK

1Q

2Q

0 1 2 3 4 5 6 7 0 

• Problems: 
See outputs do not change at the same time, i.e., synchronously. 

So hard to know when count output is actually valid. 

Propagation delay builds up from stage to stage, limiting 

maximum clock speed before miscounting occurs. 
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Ripple Counters 
• If you observe the frequency of the counter 

output signals you will note that each has half 

the frequency, i.e., double the repetition 

period of the previous one. This is why 

counters are often known as dividers 

• Often we wish to have a count which is not a 

power of 2, e.g., for a BCD counter (0 to 9).To 

do this: 

– use FFs having a Reset/Clear input 

– Use an AND gate to detect the count of 10 and 

use its output to Reset the FFs 

Synchronous Counters 

• Owing to the problems identified with ripple 
counters, they should not usually be used to 
implement counter functions 

• It is recommended that synchronous counter 
designs be used 

• In a synchronous design 
–  all the FF clock inputs  are directly connected to the clock 

signal and so all FF outputs change at the same time, i.e., 
synchronously 

– more complex combinational logic is now needed to 
generate the appropriate FF input signals (which will be 
different depending upon the type of FF chosen) 
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Synchronous Counters 

• We will now investigate the design of 

synchronous counters 

• We will consider the use of D-type FFs 

only, although the technique can be 

extended to cover other FF types. 

• As an example, we will consider a 0 to 7 

up-counter 

Synchronous Counters 

• To assist in the design of the counter we will make 

use of a modified state transition table. This table 

has additional columns that define the required FF 

inputs (or excitation as it is known) 

– Note we have used a state transition table previously 

when determining the state diagram for an RS latch 

• We will also make use of the so called ‘excitation 

table’ for a D-type FF 

• First however, we will investigate the so called 

characteristic table and characteristic equation for a 

D-type FF 
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Characteristic Table 
• In general, a characteristic table for a FF 

gives the next state of the output, i.e.,    in 

terms of its current state    and current inputs Q

Q

1 
0 

0 
1 

QDQ

0 
0 

1 
1 

0 
1 

0 
1 

Which gives the characteristic equation, 

DQ '

i.e., the next output state is equal to the 

current input value 

Since      is independent of      

the characteristic table can 

be rewritten as 1 
0 

QD

0 
1 

Q Q

Excitation Table 
• The characteristic table can be modified to 

give the excitation table. This table tells us 

the required FF input value required to 

achieve a particular next state from a given 

current state 

1 
0 

0 
1 

Q DQ

0 
0 

1 
1 

0 
1 

0 
1 

As with the characteristic table it can 

be seen that      , does not depend 

upon,      , however this is not 

generally true for other FF types, in 

which case, the excitation table is 

more useful. Clearly for a D-FF,   

Q
Q

'QD 
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Characteristic and Excitation 

Tables 
• Characteristic and excitation tables can 

be determined for other FF types. 

• These should be used in the design 

process if D-type FFs are not used 

• For example, for a J-K FF the following 

tables are appropriate: 

Characteristic and Excitation 

Tables 

• We will now determine the modified 
state transition table for the example 0 
to 7 up-counter 

1 
0 

0 

1 

QKJ

0 
0 

1 

1 

1 

0 

Q

Q
1 
0 

0 
1 

Q JQ

0 
0 

1 
1 

0 
1 

0 
1 

K

x 
x 

x 
x 

Truth table Excitation table 
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Modified State Transition 

Table 

• In addition to columns representing the 

current and desired next states (as in a 

conventional state transition table), the 

modified table has additional columns 

representing the required FF inputs to 

achieve the next desired FF states 

Modified State Transition Table 
• For a 0 to 7 counter, 3 D-type FFs are needed 

Current 

state 

0Q1Q2Q

0 0 0 

1 

0 

1 

0 

1 1 

1 0 0 
0 1 0 

0 

1 
1 0 1 
0 1 1 

1 

'
0Q'1Q'

2Q 0D1D2D

1 
0 
1 

1 

0 

0 

0 
1 
1 

0 

0 
1 
1 1 

0 
0 
0 

1 

1 
1 
1 

0 0 0 

1 
0 
1 

1 

0 

0 

0 
1 
1 

0 

0 
1 
1 1 

0 
0 
0 

1 

1 
1 
1 

0 0 0 

Next 

state 

FF 

inputs 

Note: Since             (or              ) for a D-FF, the 

required FF inputs are identical to the Next state   

DQ '

The procedure is to: 

 Write down the desired 

count sequence in the 

current state columns 

Write down the required 

next states in the next  

state columns 

Fill in the FF inputs 

required to give the 

defined next state 

'QD 
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Synchronous Counter Example 

• If using J-K FFs for example, we need J and K 
input columns for each FF 

• Also note that if we are using D-type FFs, it is not 
necessary to explicitly write out the FF input 
columns, since we know they are identical to 
those for the next state 

• To complete the design we now have to 
determine appropriate combinational logic circuits 
which will generate the required FF inputs from 
the current states 

• We can do this from inspection, using Boolean 
algebra or using K-maps. 

Synchronous Counter Example 

Current 

state 

0Q1Q2Q

0 0 0 

1 

0 

1 

0 

1 1 

1 0 0 
0 1 0 

0 

1 
1 0 1 
0 1 1 

1 

'
0Q'1Q'

2Q 0D1D2D

1 
0 
1 

1 

0 

0 

0 
1 
1 

0 

0 
1 
1 1 

0 
0 
0 

1 

1 
1 
1 

0 0 0 

1 
0 
1 

1 

0 

0 

0 
1 
1 

0 

0 
1 
1 1 

0 
0 
0 

1 

1 
1 
1 

0 0 0 

Next 

state 

FF 

inputs 
By inspection, 

00 QD 

Note: FF0 is toggling 

Also, 101 QQD 

Use a K-map for      , 2D

1Q 0Q

1 1 0 0 0 1 1 0 

0 

1 1 1 

1 

1 2Q

20.QQ

2Q

1Q

0Q

21.QQ 210 .. QQQ
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Synchronous Counter Example 
1Q 0Q

1 1 0 0 0 1 1 0 

0 

1 1 1 

1 

1 2Q

20.QQ

2Q

1Q

0Q

21.QQ 210 .. QQQ

So, 

2101022

21021202

..)..(

....

QQQQQQD

QQQQQQQD





D 

Q

Q

CLK 

0Q

0D
D 

Q

Q

1Q

1D
D 

Q

Q

2Q

2D

Combinati-

onal logic 

0Q

0Q

1Q

1Q

2Q

2Q

Synchronous Counter 

• A similar procedure can be used to design 

counters having an arbitrary count sequence 

– Write down the state transition table 

– Determine the FF excitation (easy for D-types) 

– Determine the combinational logic necessary to 

generate the required FF excitation from the 

current states – Note: remember to take into 

account any unused counts since these can be 

used as don’t care states when determining the 

combinational logic circuits 
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Shift Register 

• A shift register can be implemented 

using a chain of D-type FFs 

D 

Q

Q

D 

Q

Q

1Q 2Q0Q

D 

Q

Q

Din 

CLK 

• Has a serial input, Din and parallel 

output Q0, Q1 and Q2. 

Shift Register 

inD

CLK

0Q

1Q

2Q

• See data moves one position to the 

right on application of each clock edge 
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Shift Register 

• Preset and Clear inputs on the FFs can 
be utilised to provide a parallel data 
input feature 

• Data can then be clocked out through 
Q2 in a serial fashion, i.e., we now have 
a parallel in, serial out arrangement 

• This along with the previous serial in, 
parallel out shift register arrangement 
can be used as the basis for a serial 
data link 

Serial Data Link 

CLK 

0Q 1Q 2Q

Parallel in 

serial out 

0Q 1Q 2Q

Serial in 

parallel out 

Serial Data 

• One data bit at a time is sent across the serial 
data link 

• See less wires are required than for a parallel 
data link 
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System Timing 

• The clock period, Tc, is the time between the 
rising edges of a repetitive clock signal 

• The clock frequency, fc, is the reciprocal of 
the clock period, i.e., 𝑓𝑐 = 1 𝑇𝑐  

• Note the unit of frequency is Hz, though 
typical modern processors can operate up to 
several GHz 

• All things being equal, increasing the clock 
frequency increases the ‘work’ that a digital 
system can accomplish per unit time 

System Timing 

• The clock period, Tc, is the time between the 
rising edges of a repetitive clock signal 

• The clock frequency, fc, is the reciprocal of 
the clock period, i.e., 𝑓𝑐 = 1 𝑇𝑐  

• Note the unit of frequency is Hz, though 
typical modern processors can operate up to 
several GHz 

• All things being equal, increasing the clock 
frequency increases the ‘work’ that a digital 
system can accomplish per unit time 
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Set-up Time Constraint 

CLK

D

Q
sut ht

sut Set-up time ht Hold time CLK-to-Q Propagation 

delay 

• Previously, we saw the timing constraints that apply 
for correct operation of an edge triggered D-FF 

• We will now see how these constraints affect system 
clock speed. 

tpc 

tpc 

Set-up Time Constraint 

D 

Q

Q
D0 

CLK 

D 

Q

Q

CLK 

Combinational 

Logic (CL) 

D1 

Q0 Q1 

• The above diagram shows a generic path in a 
synchronous sequential circuit 

• On the rising edge of CLK , FF0 gives output Q0 
(after delay tpc). 

• This signal enters a block of combinational logic (CL) 
producing D1 (after a delay of tpd from Q0 changing), 
which is the input to FF1 

• To satisfy the setup time for FF1, D1 must settle no 
later than the setup time before the next CLK edge 

 



06/09/2022 

103 

Set-up Time Constraint 

CLK

tpc 

Tc 

Q0 

D1 

tsu tpd 

• The diagram shows the maximum propagation 
delay tpd that will enable the worst case setup 
time to be satisfied (assuming worst case tpc), 
i.e., the minimum clock period is given by, 

𝑇𝐶 ≥ 𝑡𝑝𝑐 + 𝑡𝑝𝑑 + 𝑡𝑠𝑢 

 

Set-up Time Constraint 
• Note that the clock period of a system (i.e., the 

clock speed) is often set by the marketing dept! 

• Since the worst case (i.e., maximum) values of 
tpc and tsu are specified by the chip 
manufacturer, we can rearrange the previous 
equation to solve for the maximum propagation 
delay through the combinational logic, which is 
usually the only variable under the control of 
the system designer, 

𝑡𝑝𝑑 ≤ 𝑇𝐶 − (𝑡𝑝𝑐 + 𝑡𝑠𝑢) 

• If this cannot be achieved by redesigning the 
combinational logic, the clock period has to be 
increased to ensure correct operation 
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Clock Skew 
• In the previous slides, we have assumed that  

the system clock reaches all the FFs at the 
same time 

• Owing to the physical layout of the clock wiring 
giving rise to different wire lengths and hence 
different propagation delays, in reality, the clock 
edges will not arrive at the FFs at the same 
time. This variation is known as clock skew. 

• We will not consider it further here, but it has 
the effect of increasing both FF setup and hold 
times and reduces the allowable propagation 
delay through the combinational logic 

 

Metastability 
• It is not always possible to control when a FF input 

changes in relation to the clock edge  

• For example, this can occur when the input signal 
comes from an external user input, e.g., a button 

• Consider the following example when the D input 
change violates the dynamic requirements 

• This causes the 
output Q to be 
undefined 

• Momentarily it can 
take on a voltage 
between 0 and VDD , 
i.e., in the invalid 
range 

CLK

D

Q

sut ht

? ? ? 
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Metastability 
• This is called a metastable state 

• Eventually, the FF output will resolve to a stable valid 
0 or 1 voltage level 

• In theory, the resolution time is unbounded, however, 
we can model the probability of the resolution time 
exceeding a particular time t 

• We will not go in to the detail of this model, but the 
key point is that the probability of the resolution time 
exceeding a particular value t, decreases as t  
increases, i.e., the longer we wait, the lower is the 
probability of the output being in an invalid 
metastable state 

• Metastability gives rise to severe system problems 
and we must minimise the probability of it occurring 

Metastability 
• To minimise the probability of metastablity we use a 

synchroniser. In its simplest form it uses 2 FFs 

D 

Q

Q
D0 

CLK 

D 

Q

Q

CLK 

D1 

Q 

Tc 

CLK

tres 

D1 

Q 

tsu tpc 
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Metastability 

• The output from FF1, D1, will resolve to a valid level 
with high probability if Tc is long enough 

• FF2 now has valid input that satisfies both its setup 
and hold times and yields a valid output Q  

Tc 

CLK

tres 

D1 

Q 

tsu tpc 

Metastability 
• To reduce the probability of an invalid output from the 

synchroniser, we need to wait a longer time for the 
metastable condition at D1 to resolve, i.e., we need to 
increase time tres  

• So to satisfy the setup time tsu for FF2, we need to 
increase the clock period Tc, i.e., slow the clock rate 

• Another possibility is to cascade further FFs, since 
the probability of a metastable state at the 
synchroniser output is essentially the product of that 
for each FF 
– For this to work well for a reasonable number FFs, the 

probability of metastability at the output of each FF has to 
be much lower than 1, i.e., we need to ensure that the clock 
period is sufficiently long such that metastability can resolve 
with a high probability 
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Digital Electronics: 

Sequential Logic 

 

Synchronous State Machines 1 

Introduction 

• We have seen how we can use FFs (D-types 

in particular) to design synchronous counters 

• We will now investigate how these principles 

can be extended to the design of synchronous 

state machines (of which counters are a 

subset) 

• We will begin with some definitions and then 

introduce two popular types of machines 
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Definitions 

• Finite State Machine (FSM) – a deterministic 

machine (circuit) that produces outputs which 

depend on its internal state and external inputs 

• States – the set of internal memorised values, 

shown as circles on the state diagram 

• Inputs – External stimuli, labelled as arcs on the 

state diagram 

• Outputs – Results from the FSM 

 

 

Types of State Machines 

• Two types of state machines are in 

general use, namely Moore machines 

and Mealy machines 

• We will see that the state diagrams (and 

associated state tables) corresponding 

with the 2 types of machine are slightly 

different 
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Machine Schematics 

Outputs 
Next state 

combinational 

logic m 

CLK 

Optional 

combinational 

logic 
D 

Q

Q

m 
Inputs 

n 

Current state Moore 

Machine 

Mealy 

Machine 

Next state 

combinational 

logic 
D 

Q

Q

m 

CLK 

combinational 

logic m 
Inputs 

n 

Current state 

Outputs 

Moore vs. Mealy Machines 

• Outputs from Mealy Machines depend upon 

the timing of the inputs 

• Outputs from Moore machines come directly 

from clocked FFs so: 

– They have guaranteed timing characteristics 

– They are glitch free 

• Any Mealy machine can be converted to a 

Moore machine and vice versa, though their 

timing properties will be different 
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Moore Machine State Diagram 
• Example FSM has 3 states (A, B and C), inputs e and r, and 

output s 

[s1 s0] 

FF labels 

A B 

C 

[10] [00] 

[01] 

r

r

re.

re.

re. re.

e

e

In this case the 

output s is given 

by s1, i.e., s=s1  

• See inputs only appear on transitions between states, i.e., 

next state is given by current state and current inputs 

• Outputs determined from current state via combinational 

logic (if required)  

Mealy Machine State Diagram 
• Example FSM has 3 states (A, B and C), inputs x and y, and 

output s 

[s1 s0] 

Transition labels: 

Inputs/Output 

FF labels: 

A B 

C 

[10] [00] 

[01] 

sy /

sy /

syx /.

syx /.

syx /.

sx /

• Inputs and outputs appear on transitions between states, 

i.e., next state is given by current state and current inputs 

• Output determined from current state and inputs via 

combinational logic  
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Moore Machine - Example 

• We will design a Moore Machine to implement 

a traffic light controller 

• In order to visualise the problem it is often 

helpful to draw the state transition diagram 

• This is used to generate the state transition 

table 

• The state transition table is used to generate 

– The next state combinational logic 

– The output combinational logic (if required) 

Example – Traffic Light Controller 

R 

R 

G 

A A 

See we have 4 states 

So in theory we could 

use a minimum of 2 FFs 

However, by using 3 FFs 

we will see that we do not 

need to use any output 

combinational logic 

So, we will only use 4 of 

the 8 possible states 

In general, state assignment is a 

difficult problem and the optimum 

choice is not always obvious 



06/09/2022 

112 

Example – Traffic Light Controller 
By using 3 FFs (we will use 

D-types), we can assign one 

to each of the required 

outputs (R, A, G), eliminating 

the need for output logic 
State 

010 

R 

R 

G 

A A 

State 

100 

State 

001 

State 

110 

We now need to write down 

the state transition table 

We will label the FF outputs 

R, A and G 

Remember we do not need to 

explicitly include columns for FF 

excitation since if we use D-types 

these are identical to the next state 

Example – Traffic Light Controller 
Current 

state 

GAR

0 0 1 

0 1 

0 1 1 
1 0 0 

0 

'G'A'R

0 
1 
0 

0 

1 
0 
1 

0 

1 
0 
0 

1 

Next 

state R 

R 

G 

A A 

State 

100 

State 

001 

State 

110 

State 

010 

Unused states, 000, 011, 101 and 

111. Since these states will never 

occur, we don’t care what output 

the next state combinational logic  

gives for these inputs. These don’t 

care conditions can be used to 

simplify the required next state 

combinational logic 
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Example – Traffic Light Controller 

Current 

state 

GAR

0 0 1 

0 1 

0 1 1 
1 0 0 

0 

'G'A'R

0 
1 
0 

0 

1 
0 
1 

0 

1 
0 
0 

1 

Next 

state 

Unused states, 000, 

011, 101 and 111. 

We now need to determine the next 

state combinational logic 

For the R FF, we need to determine DR 

To do this we will use a K-map 

A G
1 1 0 0 0 1 1 0 

0 

1 

1 

1 X 

AR.

R

R

G

A

X 

X 

X 

AR.

ARARARDR  ..

Example – Traffic Light Controller 

Current 

state 

GAR

0 0 1 

0 1 

0 1 1 
1 0 0 

0 

'G'A'R

0 
1 
0 

0 

1 
0 
1 

0 

1 
0 
0 

1 

Next 

state 

Unused states, 000, 

011, 101 and 111. 

By inspection we can also see: 

ADA 

and, 

ARDG .
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Example – Traffic Light Controller 

D 

Q

Q

CLK 

A

AD
D 

Q

Q

R

RD
D 

Q

Q

G

GD

FSM Problems 

• Consider what could happen on power-up 

• The state of the FFs could by chance be in 

one of the unused states 

– This could potentially cause the machine to 

become stuck in some unanticipated sequence of 

states which never goes back to a used state 
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FSM Problems 

• What can be done? 

– Check to see if the FSM can eventually 

enter a known state from any of the 

unused states 

– If not, add additional logic to do this, i.e., 

include unused states in the state transition 

table along with a valid next state 

– Alternatively use asynchronous Clear and 

Preset FF inputs to set a known (used) 

state at power up 

 

Example – Traffic Light Controller 

• Does the example FSM self-start? 

• Check what the next state logic outputs 

if we begin in any of the unused states 

• Turns out: 

Start 

state 

Next state 

logic output 

000 010 
011 100 
101 110 
111 001 

Which are all 

valid states 

So it does 

self start 
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Example 2 

• We extend Example 1 so that the traffic 
signals spend extra time for the R and G 
lights 

• Essentially, we need 2 additional states, i.e., 
6 in total. 

• In theory, the 3 FF machine gives us the 
potential for sufficient states 

• However, to make the machine combinational 
logic easier, it is more convenient to add 
another FF (labelled S), making 4 in total 

Example 2 

FF labels 

R A G S 

R 

G 

R 

A A 

State 

1000 

State 

0010 

State 

1100 

State 

0101 

R 

G 

State 

1001 

State 

0011 

See that new FF 

toggles which 

makes the next 

state logic easier 

As before, the first 

step is to write 

down the state 

transition table 
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Example 2 

FF 

labels 

R A G S 

R 

G 

R 

A A 

State 

1000 

State 

0010 

State 

1100 

State 

0101 

R 

G 

State 

1001 

State 

0011 

Current 

state 

AR G 'G'A'R

Next 

state 

S

0 1 0 0 0 1 0 

'S

1 

0 1 1 1 0 0 0 

0 1 0 0 0 1 1 0 

1 
1 0 0 1 0 0 1 0 

0 1 0 0 1 1 1 0 

1 0 0 0 1 0 0 1 

Clearly a lot of unused states. 

When plotting k-maps to determine 

the next state logic it is probably 

easier to plot 0s and 1s in the map 

and then mark the unused states 

Example 2 

We will now use k-maps to determine 

the next state combinational logic 

Current 

state 

AR G 'G'A'R

Next 

state 

S

0 1 0 0 0 1 0 

'S

1 

0 1 1 1 0 0 0 

0 1 0 0 0 1 1 0 

1 
1 0 0 1 0 0 1 0 

0 1 0 0 1 1 1 0 

1 0 0 0 1 0 0 1 

For the R FF, we need to determine DR 

1 1 0 0 0 1 1 0 

0 0 

0 1 

1 1 

1 0 

AR 
SG 

1 
R

A

G

S

1 

0 

1 

AR.

AR.

0 0 

X X 

X X X 

X X X 

X X 

ARARARDR  ..
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Example 2 

We can plot k-maps for DA and DG 

to give: 

Current 

state 

AR G 'G'A'R

Next 

state 

S

0 1 0 0 0 1 0 

'S

1 

0 1 1 1 0 0 0 

0 1 0 0 0 1 1 0 

1 
1 0 0 1 0 0 1 0 

0 1 0 0 1 1 1 0 

1 0 0 0 1 0 0 1 

By inspection we can also see: 

SGSRDA ..  or 

SRSRSRDA  ..

SGARDG ..  or 

SASGDG .. 

SDS 
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Digital Electronics: 

Sequential Logic 

 

Synchronous State Machines 2 

State Assignment 

• As we have mentioned previously, state 
assignment is not necessarily obvious or 
straightforward 

– Depends what we are trying to optimise, e.g., 
• Complexity (which also depends on the 

implementation technology, e.g., FPGA,  74 series 
logic chips).  

– FF implementation may take less chip area than you may 
think given their gate level representation 

– Wiring complexity can be as big an issue as gate complexity 

• Speed 

– Algorithms do exist for selecting the ‘optimising’ 
state assignment, but are not suitable for manual 
execution 
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State Assignment 

• If we have m states, we need at least            

FFs (or more informally, bits) to encode the 

states, e.g., for 8 states we need a min of 3 

FFs 

• We will now present an example giving 

various potential state assignments, some 

using more FFs than the minimum 

m2log

Example Problem 

• We wish to investigate some state 
assignment options to implement a divide by 
5 counter which gives a 1 output for 2 clock 
edges and is 0 for 3 clock edges 

CLK

Output
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Sequential State Assignment 

• Here we simply assign the states in an 
increasing natural binary count 

• As usual we need to write down the 
state transition table. In this case we 
need 5 states, i.e., a minimum of 3 FFs 
(or state bits). We will designate the 3 
FF outputs as c, b, and a 

• We can then determine the necessary 
next state logic and any output logic. 

Sequential State Assignment 

Unused states, 101, 

110 and 111. 

Current 

state 

abc

0 0 0 
1 0 0 
0 1 0 

abc

1 
0 
1 

0 
1 
1 

0 
0 
0 

1 1 0 0 0 1 

Next 

state 

0 0 1 0 0 0 

By inspection we can see: 

The required output is from FF b 

Plot k-maps to determine the 

next state logic: 

For FF a: 

b a
1 1 0 0 0 1 1 0 

0 

1 

1 1 

X c X X 

c

a

b

ca.

caDa .
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Sequential State Assignment 

Unused states, 101, 

110 and 111. 

Current 

state 

abc

0 0 0 
1 0 0 
0 1 0 

abc

1 
0 
1 

0 
1 
1 

0 
0 
0 

1 1 0 0 0 1 

Next 

state 

0 0 1 0 0 0 

For FF b: 

b a
1 1 0 0 0 1 1 0 

0 

1 

1 

X c X X 

c

a

b

ba.

bababaDb  ..

1 

ba.

For FF c: 

b a
1 1 0 0 0 1 1 0 

0 

1 

1 

X c X X 

c

a

b

ba.

baDc .

Sliding State Assignment 

Unused states, 010, 

101, and 111. 

Current 

state 

abc

0 0 0 
1 0 0 
1 1 0 

abc

1 
1 
0 

0 
1 
1 

0 
0 
1 

0 1 1 0 0 1 

Next 

state 

0 0 1 0 0 0 

For FF a: 

b a

1 1 0 0 0 1 1 0 

0 

1 

1 1 

X c X 

X 

c

a

b

cb .

cbDa .

Plot k-maps to determine the 

next state logic: 

By inspection we can see that 

we can use any of the FF 

outputs as the wanted output 
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Sliding State Assignment 

Unused states, 010, 

101, and 111. 

Current 

state 

abc

0 0 0 
1 0 0 
1 1 0 

abc

1 
1 
0 

0 
1 
1 

0 
0 
1 

0 1 1 0 0 1 

Next 

state 

0 0 1 0 0 0 

By inspection we can see that: 

For FF b: 

For FF c: 

aDb 

bDc 

Shift Register Assignment 

• As the name implies, the FFs are connected 

together to form a shift register. In addition, 

the output from the final shift register in the 

chain is connected to the input of the first 

FF: 

– Consequently the data continuously cycles 

through the register 
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Shift Register Assignment 

Unused states. Lots! 

Current 

state 

a

1 
0 
0 

0 

Next 

state 

1 

bc

1 0 
1 1 
0 1 

0 0 
0 0 

abc

0 
0 
0 

1 
0 
0 

1 
1 
0 

1 0 0 
1 1 0 

0 
0 
1 

1 
0 

de

0 
0 
0 

1 
1 

0 
1 
1 

0 
0 

d e

0 
0 
1 

1 
0 

Because of the shift register 

configuration and also from the 

state table we can see that: 

eDa 
aDb 
bDc 
cDd 
dDe 

By inspection we can see that 

we can use any of the FF 

outputs as the wanted output 

See needs 2 more FFs, but no logic and simple wiring 

One Hot State Encoding 

• This is a shift register design style where only 

one FF at a time holds a 1 

• Consequently we have 1 FF per state, 

compared with          for sequential assignment 

• However, can result in simple fast state 

machines 

• Outputs are generated by ORing together 

appropriate FF outputs 

m2log
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One Hot - Example 
• We will return to the traffic signal example, 

which recall has 4 states 

R 

R 

G 

A A 

For 1 hot, we need 1 FF for 

each state, i.e., 4 in this case 

The FFs are connected to form 

a shift register as in the 

previous shift register example, 

however in 1 hot, only 1 FF 

holds a 1 at any time 

We can write down the state 

transition table as follows 

One Hot - Example 

R 

R 

G 

A A 

Unused states. Lots! 

Current 

state 

Next 

state 

a

0 
0 
0 

1 

g

0 
0 
1 

0 

ra

0 
1 
0 

0 

1 
0 
0 

0 

r a

0 
0 
1 

0 

g

0 
1 
0 

0 

ar 

1 
0 
0 

0 

0 
0 
0 

1 

r

Because of the shift register configuration 

and also from the state table we can see 

that: gDa  raDg  rDra  aDr 

To generate the R, A and G outputs we do the following ORing: 

rarR  araA  gG 
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One Hot - Example 
gDa  raDg  rDra  aDr 

rarR  araA  gG 

D 

Q

Q
r ra

D 

Q

Q
g

D 

Q

Q
Dr 

CLK 

D 

Q

Q a
Dra Dg Da 

R A G

Tripos Example 
• The state diagram for a synchroniser is shown. 

It has 3 states and 2 inputs, namely e and r. 

The states are mapped using sequential 

assignment as shown.  

[s1 s0] 

FF labels 

Sync Hunt 

Sight 

[10] [00] 

[01] 

r

r

re.

re.

re. re.

e

e

An output, s should be 

true if in Sync state 
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Tripos Example 

Sync Hunt 

Sight 

[10] [00] 

[01] 

r

r

re.

re.

re. re.

e

e

Unused state 11 

Current 

state 

re

0 X 
1 X 

'
1s

'
0s

0 
1 

0 
0 

Next 

state 

0s

0 0 
0 0 

Input 

1s

X 0 1 0 
0 1 0 0 1 0 

1 0 

1 1 0 1 1 0 

0 1 0 0 0 1 
X 0 0 1 0 1 

1 1 0 1 0 1 

X X X X 1 1 
From inspection,  1ss 

Tripos Example 
Plot k-maps to determine the 

next state logic 

Current 

state 

re

0 X 
1 X 

'
1s

'
0s

0 
1 

0 
0 

Next 

state 

0s

0 0 
0 0 

Input 

1s

X 0 1 0 
0 1 0 0 1 0 

1 0 

1 1 0 1 1 0 

0 1 0 0 0 1 
X 0 0 1 0 1 

1 1 0 1 0 1 

X X X X 1 1 

For FF 1: 

1 1 0 0 0 1 1 0 

0 0 

0 1 

1 1 

1 0 

01 ss
re 

1 
1s

0s

e

r

1 

1 

res ..0

es .1

X X X X 

1 

rs .1

resrsesD .... 0111 
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Tripos Example 
Plot k-maps to determine the 

next state logic 

Current 

state 

re

0 X 
1 X 

'
1s

'
0s

0 
1 

0 
0 

Next 

state 

0s

0 0 
0 0 

Input 

1s

X 0 1 0 
0 1 0 0 1 0 

1 0 

1 1 0 1 1 0 

0 1 0 0 0 1 
X 0 0 1 0 1 

1 1 0 1 0 1 

X X X X 1 1 

For FF 0: 

1 1 0 0 0 1 1 0 

0 0 

0 1 

1 1 

1 0 

01 ss
re 

1 

1s

0s

e

r

1 

1 
rss .. 01

es .0

X X X X 

1 

rssesD ... 0100 

Tripos Example 
• We will now re-implement the synchroniser 

using a 1 hot approach 

• In this case we will need 3 FFs 

Sync Hunt 

Sight 

[100] [001] 

[010] 

r

r

re.

re.

re. re.

e

e

[s2 s1 s0] 

FF labels 

An output, s should be 

true if in Sync state 

From inspection,  2ss 
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Tripos Example 

Sync Hunt 

Sight 

[100] [001] 

[010] 

r

r

re.

re.

re. re.

e

e

Current 

state 

re

0 X 
1 X 

'
2s

0 
0 

Next 

state 

0s

1 
1 

Input 

X 0 0 
0 1 0 0 

0 

1 1 1 0 

0 1 0 0 
X 0 1 0 

1 1 1 0 

'
1s

0 
1 

1 
0 
0 

0 
0 

0 

0 
0 

1s

1 
1 

1 

0 
0 

0 

'
0s

1 
0 

0 
1 
0 

1 
0 

0 

0 
0 

2s

0 
0 

0 

1 
1 

1 

Remember when interpreting this table, because of the 1-

hot shift structure, only 1 FF is 1 at a time, consequently it 

is straightforward to write down the next state equations 

Tripos Example 

Current 

state 

re

0 X 
1 X 

'
2s

0 
0 

Next 

state 

0s

1 
1 

Input 

X 0 0 
0 1 0 0 

0 

1 1 1 0 

0 1 0 0 
X 0 1 0 

1 1 1 0 

'
1s

0 
1 

1 
0 
0 

0 
0 

0 

0 
0 

1s

1 
1 

1 

0 
0 

0 

'
0s

1 
0 

0 
1 
0 

1 
0 

0 

0 
0 

2s

0 
0 

0 

1 
1 

1 

so, 

For FF 2: 

resesresD ..... 2212 

For FF 1: esrsD .. 101 

For FF 0: 

resresrsD ..... 2100 

𝐷2 = 𝑠0 . 𝑒. 𝑟 + 𝑠2. 𝑒  

1012  sss
Simplification is possible since:  

𝑠0 = 𝑠1 + 𝑠2, hence, 

𝐷0 = 𝑠0𝑟 + 𝑠0 . 𝑒. 𝑟  
𝐷0 = 𝑟 . 𝑠0 + 𝑠0 . (𝑠0 + 𝑒) 
𝐷0 = 𝑟 . 𝑠0 + 𝑒 = 𝑟 . 𝑠0 + 𝑟 . 𝑒 
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Tripos Example 

Sync Hunt 

Sight 

[100] [001] 

[010] 

r

r

re.

re.

re. re.

e

e

Note that it is not strictly 

necessary to write down the 

state table, since the next state 

equations can be obtained from 

the state diagram 

It can be seen that for each 

state variable, the required 

equation is given by terms 

representing the incoming arcs 

on the graph 

For example, for FF 2:  resesresD ..... 2212 

Tripos Example 

• So in this example, the 1 hot is easier to 

design, but it results in slightly more 

hardware compared with the sequential 

state assignment design 
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Digital Electronics: 

Sequential Logic 

 

Further Considerations 

Elimination of Redundant 

States 

• Sometimes, when designing state 

machines it is possible that 

unnecessary states may be introduced 

• In general, reducing the number of 

states may reduce the number of FFs 

required and may also reduce the 

complexity of the next state logic owing 

to the presence of more unused states 

(don’t cares) 
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Elimination of Redundant 

States - Example 
• Consider the following State Table that 

corresponds with a Mealy Machine 

implementation 

• This is so, since the inputs and outputs from 

the machine are on the transitions (arcs) 

between states 

• The following state table is drawn in a 

compact form by incorporating the 2 possible 

input values as parallel columns within both 

the next state and output columns of the table 

Example 

Current 

State 

Next 

State Output (Z) 

C 
E 
G 
I 
K 

P 
M 

A 
A 
A 
A 
A 
A 
A 
A 

B 
D 
F 
H 
J 

N 
L 

A 
A 
A 
A 
A 
A 
A 
A 

0 
0 
0 

0 
0 

0 
0 

0 
0 
1 
0 
1 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

A 
B 

D 
C 

E 

G 
F 

H 
I 
J 
K 
L 
M 
N 
P 

X=0 X=1 X=0 X=1 
• From the table, we see 

that there is no way of 

telling states H and I apart, 

so we can replace I with H 

when it appears in the 

Next State portion of the 

table 
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Example 

Current 

State 

Next 

State Output (Z) 

C 
E 
G 
H 
K 

P 
M 

A 

A 
A 
A 
A 
A 
A 

B 
D 
F 
H 
J 

N 
L 

A 

A 
A 
A 
A 
A 
A 

0 
0 
0 

0 
0 

0 
0 

0 

1 
0 
1 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 

0 

0 
0 
0 
0 
0 
0 

A 
B 

D 
C 

E 

G 
F 

H 

J 
K 
L 
M 
N 
P 

X=0 X=1 X=0 X=1 
• We also see that there is 

now no way to get to state 

I so we can remove row I 

from the table 

• Similarly, rows K, M, N and 

P have the same next 

state and output as H and 

can be replaced by H 

Example 

Current 

State 

Next 

State Output (Z) 

C 
E 
G 
H 
H 

H 
H 

A 

A 

A 

B 
D 
F 
H 
J 

H 
L 

A 

A 

A 

0 
0 
0 

0 
0 

0 
0 

0 

1 

1 

0 
0 
0 
0 
0 

0 
0 

0 

0 

0 

A 
B 

D 
C 

E 

G 
F 

H 

J 

L 

X=0 X=1 X=0 X=1 
• Similarly, there is now no 

way to get to states K, M, 

N and P and so we can 

remove these rows from 

the table 

• Also, the next state and 

outputs are identical for 

rows J and L, thus L can 

be replaced by J and row L 

eliminated from the table 
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Example 

Current 

State 

Next 

State Output (Z) 

C 
E 
G 
H 
H 

H 
H 

A 

A 

B 
D 
F 
H 
J 

H 
J 

A 

A 

0 
0 
0 

0 
0 

0 
0 

0 

1 

0 
0 
0 
0 
0 

0 
0 

0 

0 

A 
B 

D 
C 

E 

G 
F 

H 

J 

X=0 X=1 X=0 X=1 
• Now rows D and G are 

identical, as are rows E 

and F. 

• Consequently, G can be 

replaced by D, and row G 

eliminated. Also, F can be 

replaced by E and row F 

eliminated from the table 

Example 

Current 

State 

Next 

State Output (Z) 

C 
E 
D 
H 
H 

A 

A 

B 
D 
E 
H 
J 

A 

A 

0 
0 
0 

0 
0 

0 

1 

0 
0 
0 
0 
0 

0 

0 

A 
B 

D 
C 

E 

H 

J 

X=0 X=1 X=0 X=1 
• The procedure employed 

to find equivalent states in 

this example is known as 

row matching.  

• However, we note row 

matching is not sufficient to 

find all the equivalent 

states except for certain 

special cases 
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Elimination of Redundant 

States – State Equivalence 
• The previous row matching approach only 

works in certain cases. 

• We will now consider a more general 

approach that identifies state equivalence to 

help eliminate states 

• For a sequential network, if for every possible 

input sequence X, if the output sequence is 

identical whether we start in state p or q, there 

is no way of telling p and q apart by looking at 

the output sequence 

State Equivalence 

• Thus we say state p is equivalent to state q, 

i.e., 𝑝 ≡ 𝑞 

• The above definition can be difficult to apply in 

practice since an infinite number of input 

sequences may be required 

• We will now consider a more practical 

approach that uses the following theorem 

• 2 states p and q of a sequential network are 

equivalent if for every single input x, the 

outputs are the same and the next states are 

equivalent 
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State Equivalence 
• That is,  

𝜆(𝑝, 𝑥) = 𝜆(𝑞, 𝑥)  and  𝛿 𝑝, 𝑥 ≡ 𝛿(𝑞, 𝑥)   

where,  𝜆(𝑝, 𝑥) is the output given the present 

state p and input x and, 

𝛿(𝑝, 𝑥) is the next state given the 

present state p and input x 

• We will use this theorem to find all equivalent 

states in a state table 

• Note the row matching procedure is actually a 

special case of this theorem where the next 

states are the same rather than just equivalent  

State Equivalence - Proof 
• Assume,  

𝜆(𝑝, 𝑥) = 𝜆(𝑞, 𝑥)  and  𝛿 𝑝, 𝑥 ≡ 𝛿(𝑞, 𝑥)   

for every input x. Then from previous defn, 

for every input seq X  we have output seq, 

𝜆[𝛿 𝑝, 𝑥 , 𝑋] = 𝜆[𝛿 𝑞, 𝑥 , 𝑋] 

For input seq, Y = x followed by X , we have, 

𝜆 𝑝, 𝑌  = 𝜆 𝑝, 𝑥  followed by 𝜆[𝛿 𝑝, 𝑥 , 𝑋] 

Hence 

𝜆 𝑞, 𝑌  = 𝜆 𝑞, 𝑥  followed by 𝜆[𝛿 𝑞, 𝑥 , 𝑋] 

𝜆(𝑝, 𝑌) = 𝜆(𝑞, 𝑌) for every input seq Y, 

and from the defn 𝑝 ≡ 𝑞   



06/09/2022 

137 

Determination of State Equivalence 

using an Implication Table 

• We will describe the procedure using the 
following example 

• The first step is to construct the Implication 
Table 

– It has a cell for every possible pair of states 

– Note cells above the diagonal are omitted (since 
they already exist below the diagonal) 

– Diagonal cells are also omitted since they 
correspond to same state pairs 

Implication Table 

• To fill in 1st column 

– Compare row A with each of the other rows 

– We see that the output for row A is different to the 
output for row C, so we place an X in this cell to 
indicate that A ≠ C 

– Similarly we place an X in cells A-E, A-F and A-H 
to indicate that A ≠ E, A ≠ F and A ≠ H because of 
the output differences 

– State A and B have the same outputs, hence from 
the theorem, A ≡ B if D ≡ F and C ≡ H. 

– To indicate this we write the ‘implied pairs’ D-F 
and C-H in the A-B cell 
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Implication Table 
– Similarly, since State A and D have the same 

outputs, we write the ‘implied pairs’ A-D and C-E 
in the A-D cell to indicate that, A ≡ D if A ≡ D and 
C ≡ E 

– The entries B-D and C-H in the A-G cell indicate 
that A ≡ G if B ≡ D and C ≡ H 

– Next row B of the state table is compared pairwise 
with the remaining rows in the table and so column 
B is filled-in 

– Similarly the remaining columns in the implication 
table are filled-in 

– Note that ‘self implied’ pairs are removed from the 
table, e.g., in the A-D cell we have A ≡ D if A ≡ D  

Example 

Present 

State 

Next 

State Output 

(Z) 

C 
H 
D 
E 
A 

H 
B 

G 

D 
F 
E 

C 

B 
F 

C 

0 
0 
1 
0 
1 

0 
1 

1 

A 
B 

D 
C 

E 

G 
F 

H 

X=0 X=1 

A 

B 

D 

C 

E 

G 

F 

H 

A B D E F G C 

B-D 

C-H 

A-D 

C-E 

A-F 

E-H 

C-E 

D-G 

A-B 

E-H 

C-F 

A-B 

C-F 

B-G 
A-G 

B-F 

C-E 

A-D 

E-F 

B-D 

D-F 

C-H 
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Implication Table 
– At this stage the cells in the implication table are 

filled-in either with implied pairs or an X 

– We now check each implied pair 

– If one of the pairs in say cell i-j is not equivalent, 
then i ≠ j 

– So, looking at cell A-B, we see it has 2 implied 
pairs D-F and C-H. Since D ≠ F (see the D-F cell 
has an X in it), A ≠ B and we place an X in the A-B 
cell as shown in the following updated table 

– Continuing with the 1st column we see cell A-D 
contains implied pair C-E. Since cell C-E does not 
contain an X, we cannot determine at this stage 
whether A ≡ D or not 

– Similarly with cell A-G 

Example 
– We can place an X in cells B-D and B-G 

since A ≠ F and B ≠ F  

– Similarly we can check the 
remaining columns and place an X 
in cells C-F, D-G, E-F and F-H 

B 

D 

C 

E 

G 

F 

H 

A B D E F G C 

B-D 

C-H 

A-D 

C-E 

A-F 

E-H 

C-E 

D-G 

A-B 

E-H 

C-F 

A-B 

C-F 

B-G 
A-G 

B-F 

C-E 

A-D 

E-F 

B-D 

D-F 

C-H 

– In going from the original to 
the updated table, note that 
we found several additional 
equivalent state pairs 

– So we must go 
through again to see 
if the added Xs 
make any other 
pairs non-equivalent 
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Example 
– Rechecking col. A we can place an X in 

cell A-G since cell B-D has an X  

– Similarly with cells C-H and E-H  

B 

D 

C 

E 

G 

F 

H 

A B D E F G C 

B-D 

C-H 

A-D 

C-E 

A-F 

E-H 

C-E 

D-G 

A-B 

E-H 

C-F 

A-B 

C-F 

B-G 
A-G 

B-F 

C-E 

A-D 

E-F 

B-D 

D-F 

C-H 

– Since we added some more Xs 
we must go through again to 
see if the added Xs make any 
other pairs non-equivalent 

– No more Xs are 
added, so all cells 
with non equivalent 
states have now 
been Xed out 

Example 
• The ‘coordinates’ of the remaining cells 

correspond to the equivalent state pairs, i.e., 
cell A-D and cell C-E so, 

–  A ≡ D and C ≡ E 

• So in the state table we can replace D with A 
and E with C and then eliminate rows D and E 

Present 

State 

Next 

State Output 

(Z) 

C 
H 
A 

A 
F 
C 

0 
0 
1 

A 
B 
C 

H 
B 

G 
B 
F 

C 
0 
1 

1 
G 
F 

H 

X=0 X=1 
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Implementation of FSMs 

• We saw previously that programmable logic 
can be used to implement combinational logic 
circuits, i.e., using PLA devices 

• PAL style devices have been modified to 
include D-type FFs to permit FSMs to be 
implemented using programmable logic 

• One particular style is known as Generic 
Logic Array (GLA) 

GLA Devices 

• They are similar in concept to PLAs, but 

have the option to make use of a D-type flip-

flops in the OR plane (one following each OR 

gate). In addition, the outputs from the D-

types are also made available to the AND 

plane (in addition to the usual inputs) 

– Consequently it becomes possible to build 

programmable sequential logic circuits 
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AND plane 

OR plane D 
Q

Q

D 
Q

Q

GLA 

Device 

GLA Devices 

• A modified form of a GLA known as a 

Generic Array Logic (GAL) is used in the 

Hardware Laboratory classes to implement 

various FSMs. 
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GAL Devices 

f0 

a

b

fn 

AND 

plane 

OR 

plane 

D 
Q

Q

D 
Q

Q

CLK

FPGA 

• Field Programmable Gate Arrays (FPGAs) are 

the latest type of programmable logic 

• Are an array of configurable logic blocks (CLBs) 

surrounded by Input Output Blocks (IOBs): 

– programmable routing channels permit CLBs to be 

connected to other CLBs and to IOBs 

– CLBs contain look up tables (LUTs), multiplexers 

(MUXs) and D-type FFs 

– The FPGA is configured by specifying the contents 

of the LUTs and select signals for the MUXs 
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FPGA – Xilinx Spartan 

FPGA – Xilinx Spartan 
• Simplified schematic showing CLBs and 

programmable routing channels, i.e., wires 

plus programmable switch matrices (SMs) 
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FPGA - Spartan CLB 

FPGA - Spartan CLB 
• Has 2, 4-input LUTs (F and G) and 1, 3 input 

LUT (H) 

• Has to ‘combinational’ outputs (Y and X) and 

2 ‘registered’ outputs (i.e., from  D-FFs) YQ 

and XQ 

• Depending on MUX configuration Y is given 

by output of either G or H LUTs and X from 

either F or H LUTs. 

• D-FF inputs come from DIN, or from F, G, or 

H LUTs 
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FPGA - Spartan CLB 
• Thus each CLB can perform up to 2 

combinational and/or 2 registered functions 

• All functions can involve at least 4 input 

variables (e.g., G1 to G4, and F1 to F4), but 

can be up to 9 (owing to the possibility of 

implementing 2-level combinational logic 

functions), i.e., G1 to G4, F1 to F4, H1. 

• Created using either a schematic (block) 

diagram or more likely a Hardware 

Description Language (HDL) of the design 

FPGA - Spartan CLB 
• The synthesis tool determines how the LUTs, 

MUXs and routing channels are configured 

• This configuration information is then 

downloaded to the FPGA 

• Xilinx devices store their configuration 

information in static RAM (SRAM) so can be 

easily reprogrammed 

• The SRAM contents can be downloaded 

either from a computer or from an EEPROM 

device when the system is powered-up 
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FPGA 
• Other FPGA manufacturers are available, 

e.g., Altera. 

• Particular manufacturers have many different 

product lines 

• Main differences will be the no. of CLBs, the 

structure of the CLBs, internal or external 

ROM, additional features such as specialised 

arithmetic blocks, user RAM etc. 
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Digital Electronics: 

Electronics, Devices and 

Circuits 

 
Dr. I. J. Wassell 

Digital Electronics: 

Electronics, Devices and 

Circuits 

 
Underlying Concepts 
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Introduction 

• In the coming lectures, ultimately we will 

consider how logic gates can be built using 

electronic circuits 

• In the first part, basic concepts concerning 

electrical concepts, electrical circuits, 

materials and circuit theory (both linear and 

non-linear) will be presented 

• In the second part, we will consider transistor 

operation and characteristics followed by gate 

circuit design and characteristics 

Basic Electricity 

• An electric current is produced when charged 

particles (e.g., electrons in metals, or 

electrons and ions in a gas or liquid) move in 

a definite direction 

• In metals, the outer electrons are held loosely 

by their atoms and are free to move around 

the fixed positive metal ions 

• This free electron motion is random, and so 

there is no net flow of charge in any direction, 

i.e., no current flow 
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Basic Electricity 

• If a metal wire is connected across the 

terminals of a battery, the battery acts as an 

‘electron pump’ and forces the free electrons 

to drift toward the +ve terminal and in effect 

flow through the battery 

• The drift speed of the free electrons is low, 

e.g., < 1 mm per second owing to frequent 

collisions with the metal ions. 

• However, they all start drifting together as 

soon as the battery is applied 

Basic Electricity 
• The flow of electrons in one direction is known 

as an electric current and reveals itself by 

making the metal warmer and by deflecting a 

nearby magnetic compass 

• Before electrons were discovered it was 

imagined that the flow of current was due to 

positively charged particles flowing out of +ve 

toward –ve battery terminal 

+ 

- 

Flow of electrons in 

metal wire connected 

across a battery 

Direction of 

current flow 
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Basic Electricity 

• Note that ‘conventional’ current flow is still 

defined  as flowing from the +ve toward the –

ve battery terminal (i.e., the opposite way to 

the flow of the electrons in the metal)! 

• A huge number of charged particles 

(electrons in the case of metals) drift past 

each point in a circuit per second. 

• The unit of charge is the Coulomb (C) and 

one electron has a charge of 1.6*10-19 C 

Basic Electricity 

• Thus one C of charge is equivalent to 

6.25*1018 electrons 

• When one C of charge passes a point in a 

circuit per second, this is defined as a current 

(I) of 1 Ampere (A), i.e., I = Q/t, where Q is 

the charge (C) and t is time in seconds (s), 

i.e., current is the rate of flow of charge. 
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Basic Electricity 
• In the circuit shown below, it is the battery that 

supplies the electrical force and energy that 

drives the electrons around the circuit. 

• The electromotive force (emf) VB of a battery 

is defined to be 1 Volt (V) if it gives 1 Joule (J) 

of electrical energy to each C of charge 

passing through it. 

+ 

- 

Flow of current 

Lamp VB 
VL 

Basic Electricity 

• The lamp in the previous circuit changes most 

of the electrical energy carried by the free 

electrons into heat and light 

• The potential difference (pd) VL across the 

lamp is defined to be 1 Volt (V) if it changes 1 

Joule (J) of electrical energy into other forms 

of energy (e.g., heat and light) when 1 C of 

charge passes through it, i.e., VL=E/Q, where 

E is the energy dissipated (J) and Q is the 

charge (C) 
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Basic Electricity 

• Note that pd and emf are usually called 

voltages since both are measured in V 

• The flow of electric charge in a circuit is 

analogous to the flow of water in a pipe. Thus 

a pressure difference is required to make 

water flow – To move electric charge we 

consider that a pd is needed, i.e., whenever 

there is a current flowing between 2 points in 

a circuit there must be a pd between them 

Basic Electricity 

• What is the power dissipated (PL) in the 

lamp in the previous circuit? 

• PL=E/t (J/s).  Previously we have, E = QVL, 

and so, PL= QVL /t (W) . 

• Now substitute Q = It from before to give, 

PL= It VL /t = IVL  (W) , an expression that 

hopefully is familiar 
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Basic Electricity 

• So far, we have only considered metallic 

conductors where the charge is carried by 

‘free’ electrons in the metal lattice. 

• We will now consider the electrical properties 

of some other materials, specifically, 

insulators and semiconductors 

Basic Materials 

• The electrical properties of materials are 

central to understanding the operation of 

electronic devices 

• Their functionality depends upon our ability to 

control properties such as their current-

voltage characteristics 

• Whether a material is a conductor or insulator 

depends upon how strongly bound the outer 

valence electrons are to their atomic cores 
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Insulators 

• Consider a crystalline insulator, e.g., diamond 

• Electrons are strongly bound and unable to 

move 

• When a voltage difference is applied, the 

crystal will distort a bit, but no charge (i.e., 

electrons) will flow until breakdown occurs 

V 

Conductors 

• Consider a metal conductor, e.g., copper 

• Electrons are weakly bound and free to move 

• When a voltage difference is applied, the 

crystal will distort a bit, but charge (i.e., 

electrons) will flow 
V 
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Semiconductors 

• Since there are many free electrons in a 

metal, it is difficult to control its electrical 

properties 

• Consequently, what we need is a material 

with a low free electron density, i.e., a 

semiconductor, e.g., Silicon 

• By carefully controlling the free electron 

density we can create a whole range of 

electronic devices 

Semiconductors 

Si crystalline lattice – 

poor conductor at low 

temperatures 

Si is tetravalent, i.e., it has 4 electrons in 

its valance band 

Si crystals held together by ‘covalent’ 

bonding 

8 valence electrons yield a stable state 

– each Si atom now appears to have 8 

electrons, though in fact each atom only 

has a half share in them. Note this is a 

much more stable state than is the 

exclusive possession of 4 valence 

electrons 

• Silicon (Si, Group IV) is a poor conductor of 

electricity, i.e., a semiconductor 

Si 

Si 

Si 

Si 

Si 

Si 

Si 

Si 

Si 

Shared 

valence 

electrons 
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Semiconductors 

As temperature rises, thermal vibration 

of the atoms causes bonds to break: 

electrons are free to wander around the 

crystal. 

When an electron breaks free (i.e., 

moves into the ‘conduction band’ it 

leaves behind a ‘hole’ or absence of 

negative charge in the lattice 

The hole can appear to move if it is 

filled by an electron from an adjacent 

atom 

The availability of free electrons makes 

Si a conductor (a poor one at room 

temperature) 

• As temperature rises conductivity rises 

Si 

Si 

Si 

Si 

Si 

Si 

Si 

Si 

Si 

Free 

electron 
Hole 

n-type Si 

The additional electron needs only a 

little energy to move into the conduction 

band. 

This electron is free to move around the 

lattice 

Owing to its negative charge carriers 

(free electrons), the resulting 

semiconductor is known as n-type 

Arsenic is known as a donor since it 

donates an electron 

• n-type silicon (Group IV) is doped with arsenic 

(Group V) that has an additional electron that is not 

involved in the bonds to the neighbouring Si atoms 

Free 

electron 

Si 

Si 

Si 

Si 

As+ 

Si 

Si 

Si 

Si 
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p-type Si 

The B atom has only 3 valence 

electrons, it accepts an extra electron 

from one of the adjacent Si atoms to 

complete its covalent bonds 

This leaves a hole (i.e., absence of a 

valence electron) in the lattice 

This hole is free to move in the lattice – 

actually it is the electrons that do the 

shifting, but the result is that the hole is 

shuffled from atom to atom 

Owing to its positive charge carriers (free 

holes), the resulting semiconductor is 

known as p-type 

B is known as an acceptor 

• p-type silicon (Group IV) is doped with boron (B, 

Group III) 

Free 

hole 

Si 

Si 

Si 

Si 

B- 

Si 

Si 

Si 

Si 

Semiconductors 

• The Metal Oxide Semiconductor Field Effect 

Transistor (MOSFET) devices that are used to 

implement virtually all digital logic circuits are 

fabricated from n and p type silicon 

• Later on, we will see how MOSFETs can be used to 

implement digital logic circuits 
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Circuit Theory 

• Electrical engineers have an alternative (but 

essentially equivalent) view concerning pd. 

• That is, conductors, to a greater or lesser 

extent, oppose the flow of current. This 

‘opposition’ is quantified in terms of resistance 

(R). Thus the greater is the resistance, the 

larger is the potential difference measured 

across the conductor (for a given current). 

Circuit Theory 

• The resistance (R) of a conductor is defined 

as R=V/I, where V is the pd across the 

conductor and I is the current through the 

conductor. 

• This is know as Ohms Law and is usually 

expressed as V=IR, where resistance is 

defined to be in Ohms (W). 

• So for an ohmic (i.e., linear) conductor, 

plotting I against V yields a straight line 

through the origin 
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Circuit Theory 

• Conductors made to have a specific value of 

resistance are known as resistors. 

• They have the following symbol in an 

electrical circuit: R W 

• Analogy: 

• The flow of electric charges can be 

compared with the flow of water in a pipe. 

• A pressure (voltage) difference is needed 

to make water (charges) flow in a pipe 

(conductor). 

Circuit Theory 

• Kirchhoff's Current Law – The sum of currents 

entering a junction (or node) is zero, e.g., 

I1 

I2 

I3 
I1+I2-I3 = 0  or I1+I2 = I3 

• That is, what goes into the junction is equal to 

what comes out of the junction – Think water 

pipe analogy again! 



06/09/2022 

161 

Circuit Theory 
• Kirchhoff's Voltage Law – In any closed loop 

of an electric circuit the sum of all the voltages 

in that loop is zero, e.g., 

V1-V2-V3-V4-V5+V6 = 0   
V5 

+ 
- 

+ 

+ 

Ra Rb 

Rc 
V1 

V2 V3 V4 

V6 

• We will now analyse a simple 2 resistor circuit 

known as a potential divider 

Potential Divider 

V 

R1 

R2 

I 

x 

V1 

V2 

0V 

• What is the voltage at point x relative to the 

0V point? 

21 VVV 

11 IRV  22 IRV 

)( 2121 RRIIRIRV 

)( 21 RR

V
I



















21

2
2

21
2

)( RR

R
VR

RR

V
VVx

Note: circle represents 

an ideal voltage source, 

i.e., a perfect battery 
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Solving Non-linear circuits 
• Not all electronic devices have linear I-V 

characteristics, importantly in our case this 
includes the FETs used to build logic circuits 

• Linear means that superposition applies: 

–  If an input x1(t) gives an output y1(t), and input x2(t) 

gives an output y2(t), then input [x1(t)+x2(t)] gives an 

output [y1(t)+y2(t)] 

• For a circuit that includes a non-linear 
component, we cannot use the algebraic 
approach. Instead, we will now use a graphical 
approach to solve the potential divider example 

Potential Divider 
• How can we do this graphically? 

V 

R1 

R2 

I 

x 

V1 

V2 

0V 

So if V = 10V, R1 = 1W and R2 = 2W 

V7.6
21

2
10

21

2 






















RR

R
VVx

Current 

through 

R2 (2W) 

Current 

through 

R1 (1W) 

x=6.7V V=10V 0V Voltage 

across R2 

Voltage 

across R1 
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Graphical Approach 

• Clearly approach works for a linear circuit. 

• How could we apply this if we have a non-
linear device, e.g., a transistor in place of 
R2? 

• What we do is substitute the V-I 
characteristic of the non-linear device in 
place of the linear characteristic (a straight 
line due to Ohm’s Law) used previously for 
R2 

Graphical Approach 

V 

R1 

Device 

I 

x 

V1 

V2 

0V 

Current 

through 

Device 

Current 

through 

R1 (1W) 

x=aV V=10V 0V Voltage across 

Device 
Voltage 

across R1 

So if V = 10V and R1 = 1W 

Device 

characteristic 

The voltage at x is aV as shown 

in the graph 
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Digital Electronics: 

Electronics, Devices and 

Circuits 

 
Transistors and Gates 

Introduction 

• Basic introduction to the p-n junction 

• Operation an characteristics of Metal Oxide 

Semiconductor Field Effect Transistors 

(MOSFETs) 

• n-MOS inverter, characteristics and problems 

• Complimentary MOS (CMOS) inverter and 

other logic gates 

• Other logic families 

• Noise margin 
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p-n Junction 
• The key to building useful devices is combining p 

and n type semiconductors to form a p-n junction 
• Electrons and holes diffuse across 

junction due to large concentration 

gradient 

• On n-side, diffusion out of 

electrons leaves +ve charged 

atoms 

• On p-side, diffusion out of holes 

leaves -ve charged atoms 

• Leaves a space-charge (depletion) 

region with no free charges 

• Space charge gives rise to electric 

field that opposes diffusion 

• Equilibrium is reached where no more charges move across junction 

Biased p-n Junction 

• Reverse bias: By making n-type +ve, electrons are removed from 

it increasing size of space charge region. Similarly holes are 

removed from p-type region. Thus space charge region and its 

associated field are increased. 

• The current flow, known as the reverse saturation current is 

of the order of nA, i.e., essentially zero. 

 

• So when a p-n junction is ‘reverse biased’ no current flows. 

+ 
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Biased p-n Junction 

• Thus the p-n junction allows significant current flow in only one 

direction 

• So a significant current flows only when ‘forward’ biased 

• A device with a single p-n junction is known as a diode 

• With forward bias, on the p-side holes are pushed toward junction 

where they neutralise some of the –ve space charge. 

• Similarly on the n-side, electrons are pushed toward the junction and 

neutralise some of the +ve space charge. 

• So depletion region and associated field are reduced. 

• This allows diffusion current to increase significantly 

+ 

n-Channel MOSFET 
• We will now briefly introduce the n-channel 

MOSFET  

• The charge carriers in this device are 

electrons 

Gate 

(G) 

Drain 

(D) 

Source 

(S) 

The current flow from D to S (IDS) is 

controlled by the voltage applied 

between G and S (VGS), i.e., G has 

to be +ve wrt S for current IDS to flow 

(transistor On) 

We will consider enhancement mode 

devices in which no current flows 

(IDS=0, i.e., the transistor is Off) 

when VGS=0V 
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n-Channel MOSFET 

Drain (and Source) diode 

reverse biased, so no path for 

current to flow from S to D, i.e., 

the transistor is off 

n+ 

n+ S 

0V 

G 

D 

+VD 

p-type 

Reverse 

biased 

p-n 

junctions 

Silicon 

dioxide 

insulator 

OFF 

n-Channel MOSFET 

Consider the situation when the Gate (G) 

voltage (VG) is raised to a positive 

voltage, say VD 

Electrons attracted to underside of the G, 

so this region is ‘inverted’ and becomes 

n-type. This region is known as the 

channel 

There is now a continuous path from n-

type S to n-type D, so electrons can flow 

from S to D, i.e., the transistor is on 

The G voltage (VG) needed for this to 

occur is known as the threshold voltage 

(Vt). Typically 0.3 to 0.7 V. 

n+ 

n+ S 

0V 

G 
D 

+VD 

p-type 

n-type 

layer: 

‘inversion’ 

Silicon 

dioxide 

insulator 

ON 

+VG 
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p-Channel MOSFET 
• Similarly we have p-channel MOSFETs where 

the charge carriers are holes 

Gate 

(G) 

Drain 

(D) 

Source 

(S) 

The current flow from S to D (IDS) 

is controlled by the voltage applied 

between G and S (VGS), i.e., G has 

to be -ve wrt S for current IDS to 

flow (transistor On) 

 
We will be consider enhancement 

mode devices in which no current 

flows (IDS=0, i.e., the transistor is 

Off) when VGS=0V 

p-Channel MOSFET 
• Two varieties, namely p and n channel 

• p-channel have the opposite construction, i.e., n-

type substrate and p-type S and D regions 

p+ 

p+ S 

0V 

G 

D 

+VS 

n-type 

Reverse 

biased 

p-n 

junctions 

Silicon 

dioxide 

insulator 

OFF 

p+ 

p+ S 

0V 

G 
D 

+VS 

n-type 

p-type 

layer: 

‘inversion’ 

Silicon 

dioxide 

insulator 

ON 

0V 
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n-MOSFET Characteristics 

Plots V-I characteristics 

of the device for various 

Gate voltages (VGS) 

At a constant value of VDS , we can 

also see that IDS is a function of the 

Gate voltage, VGS 

The transistor begins to conduct 

when the Gate voltage, VGS , reaches 

the Threshold voltage: VT 

n-MOS Inverter 

VDD=

10V 

R1=1kW 

I 

Vout 

V1 

VDS 

0V 
VGS 

Vin 

We can use the graphical 

approach to determine the 

relationship between Vin 

and Vout 

Note Vin=VGS 

and Vout=VDS  

Resistor 

characteristic 
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n-MOS Inverter 
• Note it does not have the ‘ideal’ characteristic 

that we would like from an ‘inverter’ function 

Actual 
Ideal 

However if we specify suitable voltage thresholds, we can 

achieve a ‘binary’ action. 

n-MOS Inverter 
Actual 

So if we say: 

voltage > 9V is logic 1 

voltage < 2V is logic 0 

The gate will work as follows: 

Vin > 9V then Vout < 2V   and if 

Vin < 2V then Vout > 9V  
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n-MOS Logic 

• It is possible (and was done in the early days) 

to build other logic functions, e.g., NOR and 

NAND using n-MOS transistors 

• However, n-MOS logic has fundamental 

problems: 

– Power consumption 

– Slow output transition times from low to high 

voltage levels when connected to capacitive loads 

n-MOS Logic 
• For example the metal track used on circuit boards 

to connect gate inputs and outputs has a finite 
capacitance to ground, i.e., to the 0V connection. 
– We modify the circuit model to include this stray 

capacitance C 

VDD=

10V 

R1=1kW 

I 

Vout 

V1 

0V 
VGS 

Vin 

C 

IC 

• This significantly increases the rise time of the 
output signal, Vout 
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n-MOS Logic 
• When the transistor turns-off (open circuit), capacitor 

C modelling the stray capacitance, charges through 
R1. So the rise-time of Vout is controlled by R1. When 
the transistor turns-on (short circuit), C discharges 
through the transistor with on resistance RON. So the 
fall-time of Vout is controlled by RON. 

• Since R1 > RON , rise time > fall time for Vout 

VDD=

10V 

R1=1kW 

I 

Vout 

V1 

0V 
VGS 

Vin 

C 

IC 

n-MOS Logic 
• Power consumption is also a problem 

Vout 
VDD=

10V 

R1=1kW 

I 

V1 

VDS 

0V 
VGS 

Vin 

Transistor OFF 

No problem since no current is 

flowing through R1, i.e., Vout = 10V 

Transistor ON 

This is a problem since current is flowing 

through R1 . For example, if Vout = 1V 

(corresponds with Vin = 10V and ID = I = 

9mA), the power dissipated in the 

resistor is the product of voltage across it 

and the current through it, i.e.,  

mW 819109 3
1  VIPdisp
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CMOS Logic 

• To overcome these problems, complementary 

MOS (CMOS) logic was developed 

• As the name implies it uses p-channel as well 

as n-channel MOS transistors 

• Essentially, p-MOS transistors are n-MOS 

transistors but with all the polarities reversed! 

CMOS Inverter 

VSS=

10V 
Vout Vin 

p-

MOS 

n-

MOS 

Vin 

N-

MOS 

P-

MOS Vout 

low off on high 
high on low off 

Using the graphical approach 

we can show that the 

switching characteristics are 

now much better than for the 

n-MOS inverter 
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CMOS Inverter 

• It can be shown that the transistors only 

dissipate power while they are switching. 

This is when both transistors 

are on. When one or the other 

is off, the power dissipation is 

zero 

CMOS is also better at driving 

capacitive loads since it has a 

p-MOS transistor (instead of a 

resistor) controlling the rising  

edge of the output signal 

CMOS Gates 

• CMOS can also be used to build NAND 

and NOR gates 

• They have similar electrical properties 

to the CMOS inverter 
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CMOS Gates 

• To ease analysis of the following circuits it is 

worth recapping the function of the transistors. 

• For both n and p-type MOS transistors 

– If there is no potential difference (pd) between 

Gate (G) and Source (S), the transistor is Off, i.e., 

an open circuit between Source (S) and Drain (D) 

– If there is a sufficiently large pd between Gate and 

Source, the transistor is On, i.e., a short circuit 

between Source (S) and Drain (D) – Note for n-

MOS G is more +ve than S and for p-MOS G is 

more -ve than S  

CMOS NAND Gate 



06/09/2022 

176 

CMOS NOR Gate 

VSS=10V 

Vout 

VA 

VB 

T2 T1 

T3 

T4 

0V 

Vout 

low off on high 
high on low 

off 

T1 T2 T3 T4 VB VA 

low 
low 

low high 
high high 

on 
off off 

off off 
off off 

on 
on on 

on on 
low 
low 

Logic Families 

• NMOS – compact, slow, cheap, obsolete 

• CMOS – Older families slow (4000 series 
about 60ns), but new ones (74AC) much 
faster (3ns). 74HC series popular 

• TTL – Uses bipolar transistors. Known as 74 
series. Note that most 74 series devices are 
now available in CMOS. Older versions slow 
(LS about 16ns), newer ones faster (AS 
about 2ns) 

• ECL – High speed, but high power 
consumption 
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Logic Families 

• Best to stick with the particular family 
which has the best performance, power 
consumption cost trade-off for the 
required purpose 

• It is possible to mix logic families and 
sub-families, but care is required 
regarding the acceptable logic voltage 
levels and gate current handling 
capabilities 

Meaning of Voltage Levels 

• As we have seen, the relationship between 

the input voltage to a gate and the output 

voltage depends upon the particular 

implementation technology 

• Essentially, the signals between outputs and 

inputs are ‘analogue’ and so are susceptible 

to corruption by additive noise, e.g., due to 

cross talk from signals in adjacent wires 

• What we need is a method for quantifying the 

tolerance of a particular logic to noise 
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Noise Margin 

• Tolerance to noise is quantified in terms of the 

noise margin 

worst case input voltage,VIL(max)  

worst case output voltage,VOL(max)  

worst case input voltage,VIH(min)  

worst case output voltage,VOH(min)  

Logic 0 noise margin = VIL(max) - VOL(max)  

Logic 1 noise margin = VOH(min) - VIH(min)  

0V 

supply voltage (VDD)  

noise margin 

noise margin 
Logic 1 

(High) 

Logic 0 

(Low) 

undefined 

Noise Margin 

• For the 74 series High Speed CMOS 
(HCMOS) used in the hardware labs (using 
the values from the data sheet): 

Logic 0 noise margin = VIL(max) - VOL(max)  

Logic 0 noise margin = 1.35 – 0.1 = 1.25 V 

Logic 1 noise margin = VOH(min) - VIH(min)  

Logic 1 noise margin = 4.4 – 3.15 = 1.25 V  

See the worst case noise margin = 1.25V, which is much 

greater than the 0.4 V typical of TTL series devices. 

Consequently HCMOS devices can tolerate more noise pick-

up before performance becomes compromised 


