
06/09/2022

1

Digital Electronics

Dr. I. J. Wassell

Digital Electronics

Introduction

06/09/2022

2

Aims

• To familiarise students with

– Combinational logic circuits

– Sequential logic circuits

– How digital logic gates are built using

transistors

– Simple processor architectures

– Design and build of digital logic systems

Course Structure

• 12 Lectures

• Hardware Labs

– 4 Workshops

– Each Workshop lasts 2.5h

– In Intel Lab. (SW11), William Gates

Building (WGB)

– Done individually

– Lab. Sessions begin in week 3 of M Term

and run throughout the L Term

06/09/2022

3

Objectives

• At the end of the course you should

– Be able to design and construct simple

digital electronic systems

– Be able to understand and apply Boolean

logic and algebra – a core competence in

Computer Science

– Be able to understand and build state

machines

Books

• Lots of books on digital electronics, e.g.,

– D. M. Harris and S. L. Harris, ‘Digital Design
and Computer Architecture,’ Morgan Kaufmann,
2007 (1st Ed.), 2012 (2nd Ed.).

– R. H. Katz, ‘Contemporary Logic Design,’
Benjamin/Cummings, 1994.

– J. P. Hayes, ‘Introduction to Digital Logic
Design,’ Addison-Wesley, 1993.

• Electronics in general (inc. digital)

– P. Horowitz and W. Hill, ‘The Art of Electronics,’
CUP, 1989.

06/09/2022

4

Simulation Software

• There are a number of packages available that
enable simulation of digital electronic circuits
using a graphical interface e.g.,

– National Instruments (NI) Multisim

– Yenka Electronics (Technology Package)

• The former is much more powerful (and
expensive), but the latter is relatively
straightforward to use and is free to use
(except between 8.30 and 15.00)

• Also note that if you download Yenka, you can
use the lab. activation key to unlock it

Other Points

• This course is a prerequisite for

– Introduction to Computer Architecture, ECAD
and Architecture Practical Classes (Part IB)

– Advanced Computer Architecture (Part II)

– Advanced Topics in Computer Architecture
(MPhil/Part III)

• Keep up with lab work and get it ticked.

• Have a go at supervision questions plus
any others your supervisor sets.

• Remember to try questions from past
papers

06/09/2022

5

The Bigger Picture

• As you may be aware, probably the
most significant application of digital
logic is to implement microprocessors
and microprocessor based computer
systems.

• However, digital logic is also employed
to build a wide variety of other electronic
systems that are not microprocessor
based.

Managing Complexity

• Modern digital systems e.g., microprocessors,
are typically built from millions of transistors.

• It would be impossible for a human to design
such a system by for example, writing
equations describing the movement of electrons
in each transistor and then attempting to solve
the equations simultaneously.

• We have to manage complexity in order that we
are not swamped in a mass of detail.

• To do this we employ abstraction.

06/09/2022

6

Abstraction

• Abstraction, i.e., hiding details when they are
not important.

• Indeed a system can be viewed from many
different levels of abstraction.

• For example, for an electronic computing
system, we can consider levels of abstraction
from pure physics (electrons) at the bottom
level through to application software (programs)
at the top level.

• In this course we will primarily be considering
Devices, Digital Circuits and Logic Elements
levels of abstraction.

Physics

Microarchitecture

Application

Software

Devices

Digital Circuits

Logic Elements

Architecture

Operating Systems

Electrons – quantum mechanics, Maxwell’s

equations

Transistors – well defined I/V characteristics

between input/output terminals

Gates, e.g., AND, NOT – Devices assembled to

create ‘digital’ components

Adders, Memories, etc. – Complex structures put

together from digital circuits

Data paths, Controllers – Combines logic elements

to execute instructions defined by the architecture

Instructions, Registers – e.g., Intel-IA32 defined

by a set of instructions and registers

Device drivers – Handles low-level details such as

accessing a hard drive or managing memory

Programs – Application software uses facilities

provided by OS to solve a problem for the user

06/09/2022

7

Abstraction

• So the point is that you can browse the web
without any regard quantum theory or the
organisation of memory in the computer.

• That said, when working at a particular level of
abstraction, it is good to know something about
the levels of abstraction immediately above and
below where you are working, e.g.,

– A device designer needs to understand the circuits
in which it will be used,

– Code cannot be optimised without understanding
the architecture for which it is being written.

Microprocessor

• Defined by its architecture and microarchitecture

• The architecture is defined by its instruction set
and registers

• The microarchitecture is the specific arrangement
of registers, arithmetic logic units (ALUs),
controllers, multiplexers, memories and other logic
blocks needed to implement a particular
architecture.

• Note that a particular architecture may be
implemented by many different microarchitectures,
each having different trade-offs of performance,
complexity and cost.

06/09/2022

8

Digital Electronics:

Combinational Logic

Logic Gates and Boolean

Algebra

Introduction to Logic Gates

• We will introduce Boolean algebra and

logic gates

• Logic gates are the building blocks of

digital circuits

06/09/2022

9

Logic Variables

• Different names for the same thing

– Logic variables

– Binary variables

– Boolean variables

• Can only take on 2 values, e.g.,

– TRUE or False

– ON or OFF

– 1 or 0

Logic Variables

• In electronic circuits the two values can

be represented by e.g.,

– High voltage for a 1

– Low voltage for a 0

• Note that since only 2 voltage levels are

used, the circuits have greater immunity

to electrical noise

06/09/2022

10

Uses of Simple Logic

• Example – Heating Boiler

– If chimney is not blocked and the house is cold
and the pilot light is lit, then open the main fuel
valve to start boiler.

 b = chimney blocked

 c = house is cold

 p = pilot light lit

 v = open fuel valve

– So in terms of a logical (Boolean) expression
 v = (NOT b) AND c AND p

Logic Gates

• Basic logic circuits with one or more

inputs and one output are known as

gates

• Gates are used as the building blocks in

the design of more complex digital logic

circuits

06/09/2022

11

Representing Logic Functions

• There are several ways of representing

logic functions:

– Symbols to represent the gates

– Truth tables

– Boolean algebra

• We will now describe commonly used

gates

NOT Gate

Symbol

a y

Truth-table

a y

0 1

1 0

Boolean

ay 

• A NOT gate is also called an ‘inverter’

• y is only TRUE if a is FALSE

• Circle (or ‘bubble’) on the output of a gate

implies that it as an inverting (or

complemented) output

06/09/2022

12

AND Gate

Symbol Truth-table Boolean

bay .
a

y
b

a y

0

1

1
0

b

0
0
1

0
0 0

1 1

• y is only TRUE only if a is TRUE and b is

TRUE

• In Boolean algebra AND is represented by

a dot .

OR Gate

Symbol

a
y

Truth-table Boolean

bay 

b

a y

0

1

1
0

b

0
0
1

1
0 1

1 1

• y is TRUE if a is TRUE or b is TRUE (or

both)

• In Boolean algebra OR is represented by

a plus sign 

06/09/2022

13

EXCLUSIVE OR (XOR) Gate

Symbol Truth-table Boolean

bay a y

0

0

1
0

b

0
0
1

1
0 1

1 1

• y is TRUE if a is TRUE or b is TRUE (but

not both)

• In Boolean algebra XOR is represented by

an sign 

a
y

b

NOT AND (NAND) Gate

Symbol

a
y

Truth-table Boolean

bay .

b

a y

0

0

1
1

b

0
0
1

1
0 1

1 1

• y is TRUE if a is FALSE or b is FALSE (or

both)

• y is FALSE only if a is TRUE and b is

TRUE

06/09/2022

14

NOT OR (NOR) Gate

Symbol

a
y

Truth-table Boolean

bay 

b

a y

0

0

1
1

b

0
0
1

0
0 0

1 1

• y is TRUE only if a is FALSE and b is

FALSE

• y is FALSE if a is TRUE or b is TRUE (or

both)

Boiler Example

• If chimney is not blocked and the house is

cold and the pilot light is lit, then open the

main fuel valve to start boiler.
 b = chimney blocked c = house is cold

 p = pilot light lit v = open fuel valve

pcbv ..

b

c
p

06/09/2022

15

Boolean Algebra
• In this section we will introduce the laws

of Boolean Algebra

• We will then see how it can be used to
design combinational logic circuits

• Combinational logic circuits do not have
an internal stored state, i.e., they have
no memory. Consequently the output is
solely a function of the current inputs.

• Later, we will study circuits having a
stored internal state, i.e., sequential
logic circuits.

Boolean Algebra

OR AND
aa  0
aaa 

11 a
1 aa

00. a
aaa .
aa 1.
0. aa

• AND takes precedence over OR, e.g.,
).().(.. dcbadcba 

06/09/2022

16

Boolean Algebra

• Commutation

• Association

• Distribution

• Absorption

abba 
abba .. 

)()(cbacba 
)..()..(cbacba 

 ).().().(cabacba
NEW).).(() ..( cabacba 

NEW).(acaa 
NEW).(acaa 

Boolean Algebra
• Consensus theorem

𝑎. 𝑏 + 𝑎 . 𝑐 + 𝑏. 𝑐 = 𝑎. 𝑏 + 𝑎 . 𝑐

𝑎 + 𝑏 . 𝑎 + 𝑐 . (𝑏 + 𝑐) = 𝑎 + 𝑏 . 𝑎 + 𝑐

Note that this theorem can be used to add or

eliminate terms when simplifying a Boolean

expression

06/09/2022

17

Boolean Algebra - Examples

Show
babaa .).(

bababaaabaa ..0..).(

Show
babaa ).(

bababaaabaa ).(1)).(().(

Boolean Algebra

• A useful technique is to expand each

term until it includes one instance of each

variable (or its compliment). It may be

possible to simplify the expression by

cancelling terms in this expanded form

e.g., to prove the absorption rule:

abaa  .

aabbabababababa  1.).(.....

06/09/2022

18

Boolean Algebra - Example

Simplify
zyxzxzyyx 

zyxzyxzyxzyxzyxzyxzyx 

zyxzyxzyxzyx 
).(.).(. xxzyzzyx 

1..1.. zyyx 
zyyx .. 

Boolean Algebra - Example

Prove consensus theorem

𝑎. 𝑏 + 𝑎 . 𝑐 + 𝑏. 𝑐 = 𝑎. 𝑏 + 𝑎 . 𝑐

𝑎. 𝑏 + 𝑎 . 𝑐 + 𝑏. 𝑐 =

𝑎. 𝑏 + 𝑎 . 𝑐 + 𝑎. 𝑏. 𝑐 + 𝑎 . 𝑏. 𝑐 =

𝑎. 𝑏 + 𝑎 . 𝑐

06/09/2022

19

Boolean Algebra - Example

Using consensus theorem

𝑎 . 𝑏 + 𝑎. 𝑐 + 𝑏. 𝑐 + 𝑏 . 𝑐 + 𝑎. 𝑏 =

Eliminating consensus terms gives

𝑎 . 𝑏 + 𝑎. 𝑐 + 𝑏. 𝑐

DeMorgan’s Theorem

 ... cbacba 

 ...  cbacba

 ... cbacba 

 ...  cbacba

• In a simple expression like (or)

simply change all operators from OR to

AND (or vice versa), complement each

term (put a bar over it) and then

complement the whole expression, i.e.,

cba  cba ..

06/09/2022

20

DeMorgan’s Theorem

• For 2 variables we can show

and using a truth table.

baba .

baba .

0
1
0

0
1 0

0

0
1

0
1 1

ba a b ba. a b ba. ba 

0

1
1

1
0

1
1

0
0

0
1

1
0

0
1

0
0

1
1

1

• Extending to more variables by induction

cbacbacbacba ..)..(.)(

DeMorgan’s Examples

• Simplify).().(. cbbcbaba 

(DeMorgan) cbbcbaba 

0)b(b. ...  cbaba

n)(absorbtio .ba

06/09/2022

21

DeMorgan’s Examples

• Simplify dcbadbcba .)..)..(.(

Morgan) (De .).).(.(dcbadbcba 

e)(distribut .).......(dcbadbabbacba 

)0..(.).....( bbadcbadbacba

e)(distribut dcbdcadcdbadcba 

)0....(.......  dcdbadcbdcadcba

e)(distribut ..).(dcbaba 

(DeMorgan) ..)..(dcbaba 

1)..(.  babadc

DeMorgan’s in Gates

• To implement the function we

can use AND and OR gates

dcbaf .. 

a

b

c

d

f

• However, sometimes we only wish to

use NAND or NOR gates, since they

are usually simpler and faster

06/09/2022

22

DeMorgan’s in Gates

• To do this we can use ‘bubble’ logic

a

b

c

d

f

x

y

Two consecutive ‘bubble’ (or

complement) operations cancel,

i.e., no effect on logic function

See AND gates are

now NAND gates

What about this gate?

DeMorgan says yxyx .

Which is a NOT

AND (NAND) gate

So is equivalent to

DeMorgan’s in Gates

• So the previous function can be built

using 3 NAND gates

f

a

b

c

d

a

b

c

d

f

dcbaf .. 

).).(.(dcbaf 

06/09/2022

23

DeMorgan’s in Gates

• Similarly, applying ‘bubbles’ to the input

of an AND gate yields

x

y
f

What about this gate?

DeMorgan says yxyx .

Which is a NOT OR

(NOR) gate

So is equivalent to

• Useful if trying to build using NOR gates

06/09/2022

24

Digital Electronics:

Combinational Logic

Logic Minimisation

Introduction

• Any Boolean function can be implemented
directly using combinational logic (gates)

• However, simplifying the Boolean function will
enable the number of gates required to be
reduced. Techniques available include:
– Algebraic manipulation (as seen in examples)

– Karnaugh (K) mapping (a visual approach)

– Tabular approaches (usually implemented by
computer, e.g., Quine-McCluskey)

• K mapping is the preferred technique for up to
about 5 variables

06/09/2022

25

Truth Tables
• f is defined by the following truth table

x y z f minterms

0 0 0 1 zyx ..
0 0 1 1 zyx ..
0 1 0 1 zyx ..
0 1 1 1 zyx ..
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1 zyx ..

• A minterm must contain

all variables (in either

complement or

uncomplemented form)

• Note variables in a

minterm are ANDed

together (conjunction)

• One minterm for each

term of f that is TRUE

• So is a minterm but is not zyx .. zy.

Disjunctive Normal Form

• A Boolean function expressed as the

disjunction (ORing) of its minterms is said

to be in the Disjunctive Normal Form (DNF)

• A Boolean function expressed as the

ORing of ANDed variables (not necessarily

minterms) is often said to be in Sum of

Products (SOP) form, e.g.,

zyxzyxzyxzyxzyxf 

le truth tabsame thehave functions Note .zyxf 

06/09/2022

26

Maxterms

• A maxterm of n Boolean variables is the
disjunction (ORing) of all the variables either
in complemented or uncomplemented form.

– Referring back to the truth table for f, we can
write,

 Applying De Morgan (and complementing) gives

 So it can be seen that the maxterms of are
effectively the minterms of with each variable
complemented

zyxzyxzyxf 

)).().((zyxzyxzyxf 
f

f

Conjunctive Normal Form

• A Boolean function expressed as the

conjunction (ANDing) of its maxterms is said

to be in the Conjunctive Normal Form (CNF)

• A Boolean function expressed as the ANDing

of ORed variables (not necessarily maxterms)

is often said to be in Product of Sums (POS)

form, e.g.,

)).().((zyxzyxzyxf 

)).((zxyxf 

06/09/2022

27

Logic Simplification

• As we have seen previously, Boolean

algebra can be used to simplify logical

expressions. This results in easier

implementation

Note: The DNF and CNF forms are not

simplified.

• However, it is often easier to use a

technique known as Karnaugh mapping

Karnaugh Maps

• Karnaugh Maps (or K-maps) are a
powerful visual tool for carrying out
simplification and manipulation of logical
expressions having up to 5 variables

• The K-map is a rectangular array of
cells

– Each possible state of the input variables
corresponds uniquely to one of the cells

– The corresponding output state is written in
each cell

06/09/2022

28

K-maps example

x y z f

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

• From truth table to K-map

y z

1 1 0 0 0 1 1 0

0

1

x

1 1 1 1

1 x

z

y

Note that the logical state of the

variables follows a Gray code, i.e.,

only one of them changes at a time

The exact assignment of variables in

terms of their position on the map is

not important

K-maps example
• Having plotted the minterms, how do we

use the map to give a simplified

expression? • Group terms

• Having size equal to a power of

2, e.g., 2, 4, 8, etc.

• Large groups best since they

contain fewer variables

• Groups can wrap around edges

and corners

y z

1 1 0 0 0 1 1 0

0

1

x

1 1 1 1

1 x

z

yx zy.

So, the simplified func. is,

 .zyxf  as before

06/09/2022

29

K-maps – 4 variables
• K maps from Boolean expressions

– Plot ... dcbbaf 

1 1 0 0 0 1 1 0

0 0

0 1

1 1

1 0

ba
dc

1 1 1 1

1
a

b

c

d

• See in a 4 variable map:
– 1 variable term occupies 8 cells

– 2 variable terms occupy 4 cells

– 3 variable terms occupy 2 cells, etc.

K-maps – 4 variables

• For example, plot

 bf  .dbf 

1 1 0 0 0 1 1 0

0 0

0 1

1 1

1 0

ba
dc

1

1

1

1
a

b

c

d

1 1 0 0 0 1 1 0

0 0

0 1

1 1

1 0

ba
dc

1

1 1 1 1

a

b

c

d

1 1 1

06/09/2022

30

K-maps – 4 variables

• Simplify, dcdcbadcbdbaf 

1 1 0 0 0 1 1 0

0 0

0 1

1 1

1 0

ba
dc

1

a

b

c

d

1 1

1

1

1

1

ba.
dc.

So, the simplified func. is,

 .. dcbaf 

POS Simplification
• Note that the previous examples have

yielded simplified expressions in the
SOP form

– Suitable for implementations using AND
followed by OR gates, or only NAND gates
(using DeMorgans to transform the result –
see previous Bubble logic slides)

• However, sometimes we may wish to
get a simplified expression in POS form

– Suitable for implementations using OR
followed by AND gates, or only NOR gates

06/09/2022

31

POS Simplification

• To do this we group the zeros in the map

– i.e., we simplify the complement of the function

• Then we apply DeMorgans and

complement

• Use ‘bubble’ logic if NOR only

implementation is required

POS Example

• Simplify into POS form. ... dcbbaf 

1 1 0 0 0 1 1 0

0 0

0 1

1 1

1 0

ba
dc

1 1 1 1

1
a

b

c

d

Group

zeros

1 1 0 0 0 1 1 0

0 0

0 1

1 1

1 0

ba
dc

1 1 1 1

1
a

b

c

d

0 0 0 0

0 0 0

0 0 0 0

b da. ca.

 .. dacabf 

06/09/2022

32

POS Example

• Applying DeMorgans to
 .. dacabf 

)).(.(dacabf 

)).(.(dacabf 

f

a

c

a

d

b

f

a

c

a

d

b

gives,

f

a

c

a

d

b

Expression in POS form

• Apply DeMorgans and take

complement, i.e., is now in SOP form

• Fill in zeros in table, i.e., plot

• Fill remaining cells with ones, i.e., plot

• Simplify in usual way by grouping ones

to simplify

 f

 f

f

f

06/09/2022

33

Don’t Care Conditions

• Sometimes we do not care about the
output value of a combinational logic
circuit, i.e., if certain input combinations
can never occur, then these are known
as don’t care conditions.

• In any simplification they may be treated
as 0 or 1, depending upon which gives
the simplest result.

– For example, in a K-map they are entered
as Xs

Don’t Care Conditions - Example

• Simplify the function dcadcadbaf 

With don’t care conditions, ... ,... ,... dcbadcbadcba

1 1 0 0 0 1 1 0

0 0

0 1

1 1

1 0

ba
dc

1

a

b

c

d

X 1

1

1

1

X

X

ba.
dc.

dcbaf .. 

See only need to include

Xs if they assist in making

a bigger group, otherwise

can ignore.

or, dcdaf .. 

06/09/2022

34

Some Definitions
• Cover – A term is said to cover a minterm if that

minterm is part of that term

• Prime Implicant – a term that cannot be further

combined

• Essential Prime Implicant – a prime implicant

that covers a minterm that no other prime

implicant covers

• Covering Set – a minimum set of prime

implicants which includes all essential terms plus

any other prime implicants required to cover all

minterms

Some Definitions - Example

Prime implicants

Essential prime

implicants

Covering set

b

1 1 0 0 0 1 1 0

0 0

0 1

1 1

1 0

ba
dc

1

a

c

d

1

1

1

1

1

1 1

1

1

06/09/2022

35

Tabular Simplification

• Except in special cases or for sparse truth

tables, the K-map method is not practical

beyond 6 variables

• A systematic approach known as the Quine-

McCluskey (Q-M) Method finds the minimised

representation of any Boolean expression

• It is a tabular method that ensures all the

prime implicants are found and can be

automated for use on a computer

Q-M Method

• The Q-M Method has 2 steps:

– First a table, known as the QM implication table, is

used to find all the prime implicants;

– Next the minimum cover set is found using the

prime implicant chart.

• We will use a 4 variable example to show the

method in operation:

– Minterms are: 4,5,6,8,9,10,13

– Don’t cares are: 0,7,15.

06/09/2022

36

Q-M Method

• The first step is to list all the minterms and

don’t cares in terms of their minterm indices

represented as a binary number

– Note the entries are grouped according to the

number of 1s in the binary representation

– The 1st column contains the minterms

– After applying the method, the 2nd column will

contain 3 variable terms. Similarly for subsequent

columns.

Q-M Method

• The method begins by listing groups of

minterms and don’t cares in groups

containing ascending numbers of 1s with a

blank line between the groups

– Thus the first group has zero ones, the second

group has a single 1 and the third has two 1s and

so on

• We next apply the so called uniting theorem

iteratively as follows

06/09/2022

37

Q-M Method – Uniting Theorem
– Compare elements in the 1st group (no 1s) with all

elements in the 2nd group. If they differ by a single

bit, it means the terms are adjacent (think K-map)

– Adjacent terms are placed in the 2nd column with

the single bit that differs replaced by a dash (-).

Terms in the 1st column that contribute to a term in

the second are ticked, i.e., they are not prime

implicants.

– Now repeat for the groups in the 2nd column

– As before groups must differ only by a single bit

but they must also have a – in the same position

– Groups in 2nd column that do not contribute to the

3rd column are marked with an asterix (*), i.e., they

are prime implicants

Q-M – Implication Table

Column 1

0 1 0 0
1 0 0 0

0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0

0 1 1 1
1 1 0 1

1 1 1 1

Column 2

0 0 0 0 














0 - 0 0 *
- 0 0 0 *

0 1 0 - 
0 1 - 0 
1 0 0 - *
1 0 - 0 *

0 1 - 1 
- 1 0 1 
0 1 1 - 
1 - 0 1 *

- 1 1 1 
1 1 - 1 

0 1 - - *

- 1 - 1 *

Column 3

– Minterms are: 4,5,6,8,9,10,13

– Don’t cares are: 0,7,15.

06/09/2022

38

K-map view of Q-M example

Col. 2 adjacent

minterms

b

1 1 0 0 0 1 1 0

0 0

0 1

1 1

1 0

ba
dc

1
a

c

d

1

1

1

X

1 1 1

1

X

X
Col. 2 * adjacent

minterms, i.e.,

prime implicants

Col. 3 prime

implicants

Q-M – Finding Min Cover

– The second step is to find the lowest number of

prime implicants that cover the function – this is

achieved using the prime implicant chart

– This chart is organised as follows:

• Label columns with the minterm indices (don’t include

don’t cares)

• Label rows with minterms covered by a given prime

implicant. To do this dashes (-) in a prime implicant are

replaced by all combinations of 0s and 1s

• Place an X in the (row, column) location if the minterm

represented by the column index is covered by the prime

implicant associated with the row

• The next slide shows the initial prime implicant chart

06/09/2022

39

Q-M – Prime Implicant Chart
4 5 6 8 9 10 13

0,4 (0 - 0 0)

0,8 (- 0 0 0)

8,9 (1 0 0 -)

8,10 (1 0 - 0)

9,13 (1 - 0 1)

4,5,6,7 (0 1 - -)

5,7,13,15 (- 1 - 1)

X

X

X X

X X

X X

X X X

X X

• Now we look for the essential prime implicants –

These are indicated when there is only a single X in

any column, i.e., This means there is a minterm

covered by one and only prime implicant

* Terms in

Implication

Table

Minterms (exc.

don’t cares)

Q-M – Prime Implicant Chart
• The essential terms must be included in the final cover

– Draw lines in the column and row that have a X associated with

an essential prime implicant and draw a box around the prime

– These minterms are already covered by the essential primes

4 5 6 8 9 10 13

0,4 (0 - 0 0)

0,8 (- 0 0 0)

8,9 (1 0 0 -)

8,10 (1 0 - 0)

9,13 (1 - 0 1)

4,5,6,7 (0 1 - -)

5,7,13,15 (- 1 - 1)

X

X

X X

X X

X X

X X X

X X

06/09/2022

40

Q-M – Prime Implicant Chart
• The essential prime implicants usually cover additional

minterms.

– We must also cross out any columns that have an X in a row

associated with an essential prime since these minterms are

already covered by the essential primes

4 5 6 8 9 10 13

0,4 (0 - 0 0)

0,8 (- 0 0 0)

8,9 (1 0 0 -)

8,10 (1 0 - 0)

9,13 (1 - 0 1)

4,5,6,7 (0 1 - -)

5,7,13,15 (- 1 - 1)

X

X

X X

X X

X X

X X X

X X

Q-M – Prime Implicant Chart
• We see 2 minterms are still uncovered (cols. 9 and 13)

– The final step is to find as few primes as possible to cover the

remaining minterms

– We see the single prime implicant 1-01 covers both of them

– The boxed terms show the final covering set

4 5 6 8 9 10 13

0,4 (0 - 0 0)

0,8 (- 0 0 0)

8,9 (1 0 0 -)

8,10 (1 0 - 0)

9,13 (1 - 0 1)

4,5,6,7 (0 1 - -)

5,7,13,15 (- 1 - 1)

X

X

X X

X X

X X

X X X

X X

06/09/2022

41

Final K-Map view of Q-M Example

b

1 1 0 0 0 1 1 0

0 0

0 1

1 1

1 0

ba
dc

1
a

c

d

1

1

1

X

1 1 1

1

X

X

Selected prime

implicant to

complete covering

set

Essential prime

implicant

06/09/2022

42

Digital Electronics:

Combinational Logic

Binary Adders

Introduction

• We will now look at how binary addition

may be implemented using combinational

logic circuits. We will consider:

– Half adder

– Full adder

– Ripple carry adder

06/09/2022

43

Half Adder
• Adds together two, single bit binary

numbers a and b (note: no carry input)

• Has the following truth table:
a cout

0
1

b

0
0
1 0

1
0
0
0

1 1

sum

0
1
1
0

a

b cout

sum

• By inspection:
bababasum  ..

bacout .

Full Adder

• Adds together two, single bit binary

numbers a and b (note: with a carry input)

 a

b cout

sum

cin

• Has the following truth table:

06/09/2022

44

Full Adder

a cout b sum

1
0
0
0

0
1
1
0

cin

0
1
0

0
1 0
1 1 0

0
0
0

0
1
0

0
1 0
1 1 1

1
1
1

1
1
1
0

1
0
0
1

)...()...(

........

babacbabacsum

bacbacbacbacsum

inin

inininin





From DeMorgan

)..(

)....(

)).((..

abba

bbabbaaa

babababa







So,

bacxcxcxcsum

babacbabacsum

inininin

inin





..

)..(.)...(

Full Adder
a cout b sum

1
0
0
0

0
1
1
0

cin

0
1
0

0
1 0
1 1 0

0
0
0

0
1
0

0
1 0
1 1 1

1
1
1

1
1
1
0

1
0
0
1

bacbbcbac

bacbcbac

bacbacbac

bacbacccbac

bacbacbacbacc

ininout

ininout

ininout

ininininout

ininininout

..)).(.(

..)..(

.....

....).(.

........











).(.

...

.)).(.(.)..(

abcabc

cacbabc

caaacabcaacabc

inout

ininout

ininininout







06/09/2022

45

Full Adder
• Alternatively,

a cout b sum

1
0
0
0

0
1
1
0

cin

0
1
0

0
1 0
1 1 0

0
0
0

0
1
0

0
1 0
1 1 1

1
1
1

1
1
1
0

1
0
0
1

babacc

ccbababacc

bacbacbacbacc

inout

inininout

ininininout

.).(

).(.)...(

........







• Which is similar to previous expression

except with the OR replaced by XOR

Ripple Carry Adder
• We have seen how we can implement a

logic to add two, one bit binary numbers

(inc. carry-in).

• However, in general we need to add

together two, n bit binary numbers.

• One possible solution is known as the

Ripple Carry Adder

– This is simply n, full adders cascaded

together

06/09/2022

46

Ripple Carry Adder

a0 b0 c0

a b

cout

sum

cin

s0

a b

cout

sum

cin

s1

a b

cout

sum

cin

s2

a b

cout

sum

cin

s3

a1 b1 a2 b2 a3 b3

c4

• Example, 4 bit adder

• Note: If we complement a and set co to

one we have implemented abs 

To Speed up Ripple Carry Adder

• Abandon compositional approach to the adder
design, i.e., do not build the design up from
full-adders, but instead design the adder as a
block of 2-level combinational logic with 2n
inputs (+1 for carry in) and n outputs (+1 for
carry out).

• Features

– Low delay (2 gate delays)

– Need some gates with large numbers of inputs
(which are not available)

– Very complex to design and implement (imagine
the truth table!

06/09/2022

47

To Speed up Ripple Carry Adder

• Clearly the 2-level approach is not
feasible

• One possible approach is to make use
of the full-adder blocks, but to generate
the carry signals independently, using
fast carry generation logic

• Now we do not have to wait for the carry
signals to ripple from full-adder to full-
adder before output becomes valid

Fast Carry Generation
a0 b0 c0

a b

cout

sum

cin

s0

a b

cout

sum

cin

s1

a b

cout

sum

cin

s2

a b

cout

sum

cin

s3

a1 b1 a2 b2 a3 b3

c4

Conventional

RCA

Fast Carry

Adder

a0 b0 c0

a b

cout

sum

cin

s0

a b

cout

sum

cin

s1

a b

cout

sum

cin

s2

a b

cout

sum

cin

s3

a1 b1 a2 b2 a3 b3

c4

Fast Carry Generation

c0 c1 c2 c3

06/09/2022

48

Fast Carry Generation

• We will now determine the Boolean

equations required to generate the fast

carry signals

• To do this we will consider the carry out

signal, cout, generated by a full-adder

stage (say i), which conventionally gives

rise to the carry in (cin) to the next stage,

i.e., ci+1.

Fast Carry Generation

a b si ci

0 0 0 0

1 1 0 1 0

1 0 0 0 1

1 0 0 0 1

0

1 0

1 1 1

1

1

1

1

0

1 0 1 1 0

0 0 1 0 1

ci+1

Carry out same as carry in.

Call this carry propagate

Carry out generated

independently of carry in.

Call this carry generate

Carry out always zero.

Call this carry kill

iii bag .

iii bap 

iii bak .

Also (from before), iiii cbas 

06/09/2022

49

Fast Carry Generation

• Also from before we have,
).(.1 iiiiii bacbac 

or alternatively,

).(.1 iiiiii bacbac 

Using previous expressions gives,

iiii pcgc .1 

So,

iiiiiii

iiiiii

iiii

cppgpgc

pcgpgc

pcgc

...

)..(

.

1112

112

1112













Fast Carry Generation

Similarly,

iiiiiiiiii

iiiiiiii

iiii

cpppgpgpgc

pcgpgpgc

pcgc

...)..(

))..(.(

.

1211223

11223

2223













and

iiiiiiiiiiiii

iiiiiiiiiiii

iiii

cppppgpgpgpgc

cpppgpgpgpgc

pcgc

....))..(.(

)...)..(.(

.

1231122334

121122334

3334













06/09/2022

50

Fast Carry Generation

• So for example to generate c4, i.e., i = 0,

04

0012301122334))..(.(

PcGc

cppppgpgpgpgc





where,

0123

0112233

...

))..(.(

ppppP

gpgpgpgG





• See it is quick to evaluate this function

Fast Carry Generation

• We could generate all the carrys within an

adder block using the previous equations

• However, in order to reduce complexity, a

suitable approach is to implement say 4-bit

adder blocks with only c4 generated using

fast generation.

– This is used as the carry-in to the next 4-bit

adder block

– Within each 4-bit adder block, conventional RCA

is used

06/09/2022

51

Fast Carry Generation

a0 b0 c0

a b

cout

sum

cin

s0

a b

cout

sum

cin

s1

a b

cout

sum

cin

s2

a b

cout

sum

cin

s3

a1 b1 a2 b2 a3 b3

c4

Fast Carry Generation

c0

Fast Carry Generation

• Conventional ripple carry within 4-bit blocks

• Fast carry generation between 4-bit blocks

• Trade-off between complexity and speed

06/09/2022

52

Digital Electronics:

Combinational Logic

Multilevel Logic and Hazards

Multilevel Logic

• We have seen previously how we can
minimise Boolean expressions to yield
so called ‘2-level’ logic implementations,
i.e., SOP (ANDed terms ORed together)
or POS (ORed terms ANDed together)

• Note also we have also seen an
example of ‘multilevel’ logic, i.e., full
adders cascaded to form a ripple carry
adder – see we have more than 2 gates
in cascade in the carry chain

06/09/2022

53

Multilevel Logic

• Why use multilevel logic?

– Commercially available logic gates usually

only available with a restricted number of

inputs, typically, 2 or 3.

– System composition from sub-systems

reduces design complexity, e.g., a ripple

adder made from full adders

– Allows Boolean optimisation across multiple

outputs, e.g., common sub-expression

elimination

Building Larger Gates

• Building a 6-input OR gate

06/09/2022

54

Common Expression Elimination

• Consider the following minimised SOP

expression:

gfecfdcfebfdbfeafdaz 

• Requires:

• Six, 3 input AND gates, one 7-input

OR gate – total 7 gates, 2-levels

• 19 literals (the total number of times

all variables appear)

• We can recursively factor out common literals

Common Expression Elimination

gfedcbaz

gfecbadcbaz

gfecdcebdbeadaz

gfecfdcfebfdbfeafdaz









).).((

).).().((

).......(

............

• Now express z as a number of equations in 2-

level form:

cbax  edy  gfyxz  ..

• 4 gates, 9 literals, 3-levels

06/09/2022

55

Gate Propagation Delay

• So, multilevel logic can produce reductions
in implementation complexity. What is the
downside?

• We need to remember that the logic gates
are implemented using electronic
components (essentially transistors) which
have a finite switching speed.

• Consequently, there will be a finite delay
before the output of a gate responds to a
change in its inputs – propagation delay

Gate Propagation Delay

• The cumulative delay owing to a number of

gates in cascade can increase the time

before the output of a combinational logic

circuit becomes valid

• For example, in the Ripple Carry Adder, the

sum at its output will not be valid until any

carry has ‘rippled’ through possibly every full

adder in the chain – clearly the MSB will

experience the greatest potential delay

06/09/2022

56

Gate Propagation Delay

• As well as slowing down the operation of
combinational logic circuits, gate delay can
also give rise to so called ‘Hazards’ at the
output

• These Hazards manifest themselves as
unwanted brief logic level changes (or
glitches) at the output in response to
changing inputs

• We will now describe how we can address
these problems

Hazards

• Hazards are classified into two types,

namely, static and dynamic

• Static Hazard – The output undergoes a

momentary transition when one input

changes when it is supposed to remain

unchanged

• Dynamic Hazard – The output changes

more than once when it is supposed to

change just once

06/09/2022

57

Timing Diagrams

• To visually represent Hazards we will use the

so called ‘timing diagram’

• This shows the logical value of a signal as a

function of time, for example the following

timing diagram shows a transition from 0 to 1

and then back again

Logic ‘0’

Time

Logic ‘1’

Timing Diagrams

• Note that the timing diagram makes a number

simplifying assumptions (to aid clarity)

compared with a diagram which accurately

shows the actual voltage against time

– The signal only has 2 levels. In reality the signal

may well look more ‘wobbly’ owing to electrical

noise pick-up etc.

– The transitions between logic levels takes place

instantaneously, in reality this will take a finite

time.

06/09/2022

58

Static Hazard

Logic ‘0’

Time

Logic ‘1’

Static 1 hazard

Logic ‘0’

Time

Logic ‘1’ Static 0 hazard

Dynamic Hazard

Logic ‘0’

Time

Logic ‘1’

Dynamic hazard

Logic ‘0’

Time

Logic ‘1’

Dynamic hazard

06/09/2022

59

Static 1 Hazard
x

y

z

t

u

v

w

y

t

u

v

w

This circuit implements,

yzyxw .. 

Consider the output when

and changes from 1 to 0

1 xz
y

Hazard Removal

• To remove a 1 hazard, draw the K-map
of the output concerned. Add another
term which overlaps the essential terms

• To remove a 0 hazard, draw the K-map
of the complement of the output
concerned. Add another term which
overlaps the essential terms
(representing the complement)

• To remove dynamic hazards – not
covered in this course!

06/09/2022

60

Removing the static 1 hazard
yzyxw .. 

y z

1 1 0 0 0 1 1 0

0

1

x

1

1

1 1 x

z

y

Extra term added to remove

hazard, consequently,

zxyzyxw ... 

x

y

z

w

06/09/2022

61

Digital Electronics:

Combinational Logic

Beyond Simple Logic Gates

Multiplexor

• Multiplexor (Mux)/selector – chooses

1 of many inputs to steer to its single

output under the direction of control

inputs, e.g., if the input to a circuit can

come from several places a Mux is one

way to funnel the multiple sources

selectively to the single ouput.

06/09/2022

62

Multiplexor
• The hazard example is actually a 2-to-1 (2:1)

Mux, i.e., it can select either input x or z to

appear at output w under control of y

x
y

z

w x yz

0 0 0 0
0 1 0 1
1 0 0 0
1 1 0 1
0 0 1 0
0 1 1 0
1 0 1 1
1 1 1 1

w

Mux
x

y

z
w

x

z
w

y

Multiplexor
• Clearly an n-to-1 (n:1) Mux is also possible.

For example, an 8-to-1 (8:1) Mux will need

3 control inputs.

• A Mux can also be used to implement

combinational logic functions. For example,

an 8 input Mux can be used to implement

functions having 3 variables expressed as

a sum of minterms, i.e., DNF.

zyxzyxzyxzyxzyxf 

06/09/2022

63

Multiplexor
zyxzyxzyxzyxf 

f

1
0
1

1
1

0
0
0

I0
I1

I2

I3

I4

I5
I6

I7

F

S2 S1 S0

x y z

• The control inputs are used to select the

minterms required at the output. The Mux is

sometimes called a hardware look-up table.

Multiplexor

yxzyxyxf

zzyxzyxyxf

zyxzyxzyxzyxf

.)...(

).(.)...(

........







• In this example if we use one of the inputs as

a variable, then we can get away with a 4-to-1

(4:1) Mux

f 0
1

I0
I1

I2

I3

F

S1 S0

x y

z
z

06/09/2022

64

Multiplexor
• We see it can also be designed via a truth

table based approach, e.g.,

f 0
1

I0
I1

I2

I3

F

S1 S0

x y

z
z

x y z

0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

f

z0I

z1I

0I2 

1I3 

Demultiplexor
• A demultiplexor is the opposite of a Mux,

i.e., a single input is directed to exactly

one of its outputs

• The truth table for a 1-to-2 (1:2) Demux

(i.e., 1 control input and 2 outputs is:

f0
g

O0
I0

S0

x

O1 f1

g

x
f0

f1

g x

0 0 0 0
1 0 1 0
0 1 0 0
1 1 0 1

0f 1f

06/09/2022

65

Demultiplexor
• Clearly a larger Demux are also possible.

For example, a 3-to-8 (3:8) Demux has 3

control inputs and 8 outputs.

 • A related function is a Decoder. In this

case the input g is permanently connected

to a logic 1. This yields a 1-of-2 decoder

(also known as a 1:2 decoder)
g x

0 0 0 0
1 0 1 0
0 1 0 0
1 1 0 1

0f 1f

g =1

x

0 1 0
1 0 1

0f 1f

• See only one output is logic 1 at a time

Decoder
• Clearly an 1-of-n Decoder is possible. For

example, a 1-of-8 Decoder (i.e., a 3:8

demux) has 3 control inputs and 8 outputs.

 • A typical application would be to ‘Enable

(EN)’ 1 out-of-n logic sub-systems.

O0
O1

O2

O3

O4

O5

O6

O7

S2

S1

S0
x

y

z

EN System 0

EN System 1

EN System 7

• So, letting

x=1, y=z=0

will enable

System 1

06/09/2022

66

Decoder
• We can see that a 1-of-n Decoder will

generate all the possible minterms having

n variables.

• Consequently, a logical expression having

DNF form can be implemented by ORing

together the required minterms at the

decoder output.

• Multiple output logic blocks can be created

by using multiple OR gates at the decoder

output, i.e., one for each output.

Decoder

O0
O1
O2

O3

O4

O5
O6

O7

S2

S1

S0
x

y

z

xyzxyzxyzf0 

xyzxyzf1 

• Decoder implementation of a 3 variable, 2

output combinational logic block.

Additional OR gates

to give more

outputs if required

06/09/2022

67

Even More Ways to Implement

Combinational Logic

• We have seen how combinational logic

can be implemented using logic gates

(e.g., AND, OR), Mux and Demux.

• However, it is also possible to generate

combinational logic functions using

memory devices, e.g., Read Only

Memories (ROMs)

ROM Overview

• A ROM is a data storage device:

– Usually written into once (either at manufacture or
using a programmer)

– Read at will

– Essentially is a look-up table, where a group of
input lines (say n) is used to specify the address
of locations holding m-bit data words

– For example, if n = 4, then the ROM has 24 = 16
possible locations. If m = 4, then each location
can store a 4-bit word

– So, the total number of bits stored is , i.e.,
64 in the example (very small!) ROM

nm 2

06/09/2022

68

ROM Example

data

x y z f

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

address

(decimal)

0
1
2
3
4
5
6
7

D0 D1 D2 D3

X X X 1
X X X 1
X X X 1
X X X 1
X X X 0
X X X 0
X X X 0
X X X 1

64-bit

ROM

A0

A1

A2

A3

D0

D1

D2

D3

address data
z
y
x
'0'

Design amounts to putting

minterms in the appropriate

address location

No logic simplification

required

Useful if multiple Boolean

functions are to be

implemented, e.g., in this

case we can easily do up to

4, i.e., 1 for each output line

Reasonably efficient if lots of

minterms need to be

generated

ROM Implementation
• Can be quite inefficient, i.e., become large in

size with only a few non-zero entries, if the
number of minterms in the function to be
implemented is quite small

• Devices which can overcome these problems
are known as programmable logic array (PLA)

• In PLAs, only the required minterms are
generated using a separate AND plane. The
outputs from this plane are ORed together in
a separate OR plane to produce the final
output

06/09/2022

69

Basic PLA Structure

Programmed by

selectively removing

connections in the AND

and OR planes –

controlled by fuses or

memory bits

f0

a

c

b

f1

f2

AND plane

OR plane

Other PLA Style Structures
• In PLAs, only the required minterms are

generated using a separate AND plane.
Output from this plane are available to all OR
gates to give the final output

• A modified structure known as Programmable
Array Logic (PAL) does not have a
programmable OR array and so outputs from
the AND array can not be shared among the
OR gates to give the final outputs.

• This simplifies the structure, but at the cost of
lower efficiency

06/09/2022

70

Basic PAL Structure

f0

a

c

b

fn

AND

plane

OR

plane

Other Memory Devices

• Non-volatile storage is offered by ROMs (and

some other memory technologies, e.g.,

FLASH), i.e., the data remains intact, even

when the power supply is removed

• Volatile storage is offered by Static Random

Access Memory (SRAM) technology

– Data can be written into and read out of the

SRAM, but is lost once power is removed

06/09/2022

71

Memory Application

• Memory devices are often used in computer
systems

• The central processing unit (CPU) often
makes use of busses (a bunch of wires in
parallel) to access external memory devices

• The address bus is used to specify the
memory location that is being read or written
and the data bus conveys the data too and
from that location

• So, more than one memory device will often
be connected to the same data bus

Bus Contention

• In this case, if the output from the data pin of

one memory was a 0 and the output from the

corresponding data pin of another memory

was a 1, the data on that line of the data bus

would be invalid

• So, how do we arrange for the data from

multiple memories to be connected to the

same bus wires?

06/09/2022

72

Bus Contention

• The answer is:

– Tristate buffers (or drivers)

– Control signals

• A tristate buffer is used on the data output of
the memory devices

– In contrast to a normal buffer which is either 1
or 0 at its output, a tristate buffer can be
electrically disconnected from the bus wire, i.e.,
it will have no effect on any other data currently
on the bus – known as the ‘high impedance’
condition

Tristate Buffer

Output Enable

(OE) = 1

OE = 0

Bus line

OE = 1

Bus line

OE = 0

Symbol Functional

analogy

06/09/2022

73

Control Signals

• We have already seen that the memory
devices have an additional control input (OE)
that determines whether the output buffers are
enabled.

• Other control inputs are also provided:

– Write enable (WE). Determines whether data is
written or read (clearly not needed on a ROM)

– Chip select (CS) – determines if the chip is
activated

• Note that these signals can be active low,
depending upon the particular device

06/09/2022

74

Digital Electronics:

Sequential Logic

Introduction, Latches and Flip-

Flops

Introduction
• The logic circuits discussed previously

are known as combinational, in that the

output depends only on the condition of

the latest inputs

• However, we will now introduce a type

of logic where the output depends not

only on the latest inputs, but also on the

condition of earlier inputs. These circuits

are known as sequential, and implicitly

they contain memory elements

06/09/2022

75

Memory Elements

• A memory stores data – usually one bit per

element

• A snapshot of the memory is called the state

• A one bit memory is often called a bistable,

i.e., it has 2 stable internal states

• Flip-flops and latches are particular

implementations of bistables

RS Latch

• An RS latch is a memory element with 2

inputs: Reset (R) and Set (S) and 2

outputs: and . Q Q

Q

Q

R

S

Q 

0

0

1

0

0
1

0
0 1

1 1

QRS comment

Q Q
1
0
0

hold
reset
set

illegal

Where is the next state

and is the current state

Q

Q

06/09/2022

76

RS Latch - Operation

Q

Q

R

S

1

2

a y

0
1

1

b

0
0 0

0
1 0 0
1 1

b complemented

NOR truth table

always 0

• R = 1 and S = 0

– Gate 1 output in ‘always 0’ condition,

– Gate 2 in ‘complement’ condition, so

• This is the (R)eset condition

0Q

1Q

RS Latch - Operation

Q

Q

R

S

1

2

a y

0
1

1

b

0
0 0

0
1 0 0
1 1

b complemented

NOR truth table

always 0

• S = 0 and R to 0

– Gate 2 remains in ‘complement’ condition,

– Gate 1 into ‘complement’ condition,

• This is the hold condition

0Q

1Q

06/09/2022

77

RS Latch - Operation

Q

Q

R

S

1

2

a y

0
1

1

b

0
0 0

0
1 0 0
1 1

b complemented

NOR truth table

always 0

• S = 1 and R = 0

– Gate 1 into ‘complement’ condition,

– Gate 2 in ‘always 0’ condition,

• This is the (S)et condition

1Q

0Q

RS Latch - Operation

Q

Q

R

S

1

2

a y

0
1

1

b

0
0 0

0
1 0 0
1 1

b complemented

NOR truth table

always 0

• S = 1 and R = 1

– Gate 1 in ‘always 0’ condition,

– Gate 2 in ‘always 0’ condition,

• This is the illegal condition

0Q

0Q

06/09/2022

78

RS Latch – State Transition Table
• A state transition table is an alternative

way of viewing its operation

1

0

0
1

QRS comment

hold
reset
set
illegal

1

0

0

0

0
1
1

0

0
1
1 1

Q

0

0
0
0

1

1
1
1

0

0
1
0

1

0
1
0

hold
reset
set
illegal

• A state transition table can also be

expressed in the form of a state diagram

RS Latch – State Diagram

• A state diagram in this case has 2

states, i.e., Q=0 and Q=1

• The state diagram shows the input

conditions required to transition

between states. In this case we see that

there are 4 possible transitions

• We will consider them in turn

06/09/2022

79

RS Latch – State Diagram

1

0

0
1

QRS comment

hold
reset
set
illegal

1

0

0

0

0
1
1

0

0
1
1 1

Q

0

0
0
0

1

1
1
1

0

0
1
0

1

0
1
0

hold
reset
set
illegal

0Q 0Q

From the table we can see:

RSRSSS

RSSRSRRS

RSRSRS







)).((

..).(

...

1Q 1Q

From the table we can see:

R

SSRRSRS ).(..

RS Latch – State Diagram

1

0

0
1

QRS comment

hold
reset
set
illegal

1

0

0

0

0
1
1

0

0
1
1 1

Q

0

0
0
0

1

1
1
1

0

0
1
0

1

0
1
0

hold
reset
set
illegal

1Q 0Q

From the table we can see:

RSSR

RSRS





).(

..

0Q 1Q

From the table we can see:

RS.

06/09/2022

80

RS Latch – State Diagram

• Which gives the following state diagram:

0Q 1QRS  R

RS.

R
• A similar diagram can be constructed for the

 output

• We will see later that state diagrams are a

useful tool for designing sequential systems

Q

Clocks and Synchronous Circuits

• For the RS latch we have just described, we

can see that the output state changes occur

directly in response to changes in the inputs.

This is called asynchronous operation

• However, virtually all sequential circuits

currently employ the notion of synchronous

operation, that is, the output of a sequential

circuit is constrained to change only at a time

specified by a global enabling signal. This

signal is generally known as the system clock

06/09/2022

81

Clocks and Synchronous Circuits

• The Clock: What is it and what is it for?

– Typically it is a square wave signal at a

particular frequency

– It imposes order on the state changes

– Allows lots of states to appear to update

simultaneously

• How can we modify an asynchronous

circuit to act synchronously, i.e., in

synchronism with a clock signal?

Transparent D Latch

• We now modify the RS Latch such that its

output state is only permitted to change when

a valid enable signal (which could be the

system clock) is present

• This is achieved by introducing a couple of

AND gates in cascade with the R and S inputs

that are controlled by an additional input

known as the enable (EN) input.

06/09/2022

82

Transparent D Latch

Q

Q

R

S

D

EN

D Q

EN

Symbol

a y

0

1

1
0

b

0
0
1

0
0 0

1 1

AND truth table • See from the AND truth table:
– if one of the inputs, say a is 0, the output

is always 0

– Output follows b input if a is 1

• The complement function ensures
that R and S can never be 1 at the
same time, i.e., illegal avoided

Transparent D Latch

Q

Q

R

S

D

EN

RS hold

Q 

0 1

0

1 1

QD comment

Q Q
1
0

RS reset

RS set

EN

0

X

1

• See Q follows D input provided EN=1.
If EN=0, Q maintains previous state

06/09/2022

83

Master-Slave Flip-Flops

• The transparent D latch is so called ‘level’
triggered. We can see it exhibits transparent
behaviour if EN=1. It is often more simple to
design sequential circuits if the outputs
change only on the either rising (positive
going) or falling (negative going) ‘edges’ of
the clock (i.e., enable) signal

• We can achieve this kind of operation by
combining 2 transparent D latches in a so
called Master-Slave configuration

Master-Slave D Flip-Flop
Symbol

D Q D Q D Q D

CLK

Q

Master Slave

Qint

• To see how this works, we will use a timing diagram

• Note that both latch inputs are effectively connected

to the clock signal (admittedly one is a complement

of the other)

06/09/2022

84

Master-Slave D Flip-Flop

D Q D Q D

CLK

Q

Master Slave

Qint

CLK

CLK

D

intQ

Q

Note propagation delays

have been neglected in

the timing diagram

See Q changes on rising

edge of CLK

D Flip-Flops

• The Master-Slave configuration has
now been superseded by new F-F
circuits which are easier to implement
and have better performance

• When designing synchronous circuits it
is best to use truly edge triggered F-F
devices

• We will not consider the design of such
F-Fs on this course

06/09/2022

85

Other Types of Flip-Flops

• Historically, other types of Flip-Flops

have been important, e.g., J-K Flip-

Flops and T-Flip-Flops

• However, J-K FFs are a lot more

complex to build than D-types and so

have fallen out of favour in modern

designs, e.g., for field programmable

gate arrays (FPGAs) and VLSI chips

Other Types of Flip-Flops

• Consequently we will only consider

synchronous circuit design using D-type

FFs

• However for completeness we will

briefly look at the truth table for J-K and

T type FFs

06/09/2022

86

J-K Flip-Flop

• The J-K FF is similar in function to a

clocked RS FF, but with the illegal state

replaced with a new ‘toggle’ state

Q 

0

1

0

0
1

0
0 1

1 1

QKJ comment

Q Q
1
0

hold
reset
set

toggle

Where is the next state

and is the current state

Q

Q

Q Q

Symbol

J

K Q

Q

T Flip-Flop

• This is essentially a J-K FF with its J

and K inputs connected together and

renamed as the T input

Q 

0

1

QT comment

Q Q hold

toggle

Where is the next state

and is the current state

Q

Q

Q Q

Symbol

T

Q

Q

06/09/2022

87

Asynchronous Inputs

• It is common for the FF types we have mentioned

to also have additional so called ‘asynchronous’

inputs

• They are called asynchronous since they take

effect independently of any clock or enable inputs

• Reset/Clear – force Q to 0

• Preset/Set – force Q to 1

• Often used to force a synchronous circuit into a

known state, say at start-up.

Timing

• Various timings must be satisfied if a FF

is to operate properly:

– Setup time: Is the minimum duration that

the data must be stable at the input before

the clock edge

– Hold time: Is the minimum duration that the

data must remain stable on the FF input

after the clock edge

06/09/2022

88

Timing

CLK

D

Q
sut ht

pt

sut Set-up time

ht Hold time

pt Propagation delay

06/09/2022

89

Digital Electronics:

Sequential Logic

Flip-Flop Applications and

Timing Considerations

Counters

• A clocked sequential circuit that goes through a

predetermined sequence of states

• A commonly used counter is an n-bit binary counter.

This has n FFs and 2
n
 states which are passed

through in the order 0, 1, 2, ….2
n
-1, 0, 1, .

• Uses include:

– Counting

– Producing delays of a particular duration

– Sequencers for control logic in a processor

– Divide by m counter (a divider), as used in a

digital watch

06/09/2022

90

Memories

• For example,

– Shift register

• Parallel loading shift register : can be used for

parallel to serial conversion in serial data

communication

• Serial in, parallel out shift register: can be used

for serial to parallel conversion in a serial data

communication system.

Counters

• In most books you will see 2 basic types

of counters, namely ripple counters and

synchronous counters

• In this course we are concerned with

synchronous design principles. Ripple

counters do not follow these principles

and should generally be avoided if at all

possible. We will now look at the

problems with ripple counters

06/09/2022

91

Ripple Counters
• A ripple counter can be made be cascading

together negative edge triggered T-type FFs
operating in ‘toggle’ mode, i.e., T =1

• See that the FFs are not clocked using the

same clock, i.e., this is not a synchronous

design. This gives some problems….

T

Q

Q
‘1’

CLK

T

Q

Q
‘1’

T

Q

Q
‘1’

0Q 1Q 2Q

Ripple Counters
• We will now draw a timing diagram

0Q

CLK

1Q

2Q

0 1 2 3 4 5 6 7 0

• Problems:
See outputs do not change at the same time, i.e., synchronously.

So hard to know when count output is actually valid.

Propagation delay builds up from stage to stage, limiting

maximum clock speed before miscounting occurs.

06/09/2022

92

Ripple Counters
• If you observe the frequency of the counter

output signals you will note that each has half

the frequency, i.e., double the repetition

period of the previous one. This is why

counters are often known as dividers

• Often we wish to have a count which is not a

power of 2, e.g., for a BCD counter (0 to 9).To

do this:

– use FFs having a Reset/Clear input

– Use an AND gate to detect the count of 10 and

use its output to Reset the FFs

Synchronous Counters

• Owing to the problems identified with ripple
counters, they should not usually be used to
implement counter functions

• It is recommended that synchronous counter
designs be used

• In a synchronous design
– all the FF clock inputs are directly connected to the clock

signal and so all FF outputs change at the same time, i.e.,
synchronously

– more complex combinational logic is now needed to
generate the appropriate FF input signals (which will be
different depending upon the type of FF chosen)

06/09/2022

93

Synchronous Counters

• We will now investigate the design of

synchronous counters

• We will consider the use of D-type FFs

only, although the technique can be

extended to cover other FF types.

• As an example, we will consider a 0 to 7

up-counter

Synchronous Counters

• To assist in the design of the counter we will make

use of a modified state transition table. This table

has additional columns that define the required FF

inputs (or excitation as it is known)

– Note we have used a state transition table previously

when determining the state diagram for an RS latch

• We will also make use of the so called ‘excitation

table’ for a D-type FF

• First however, we will investigate the so called

characteristic table and characteristic equation for a

D-type FF

06/09/2022

94

Characteristic Table
• In general, a characteristic table for a FF

gives the next state of the output, i.e., in

terms of its current state and current inputs Q

Q

1
0

0
1

QDQ

0
0

1
1

0
1

0
1

Which gives the characteristic equation,

DQ '

i.e., the next output state is equal to the

current input value

Since is independent of

the characteristic table can

be rewritten as 1
0

QD

0
1

Q Q

Excitation Table
• The characteristic table can be modified to

give the excitation table. This table tells us

the required FF input value required to

achieve a particular next state from a given

current state

1
0

0
1

Q DQ

0
0

1
1

0
1

0
1

As with the characteristic table it can

be seen that , does not depend

upon, , however this is not

generally true for other FF types, in

which case, the excitation table is

more useful. Clearly for a D-FF,

Q
Q

'QD 

06/09/2022

95

Characteristic and Excitation

Tables
• Characteristic and excitation tables can

be determined for other FF types.

• These should be used in the design

process if D-type FFs are not used

• For example, for a J-K FF the following

tables are appropriate:

Characteristic and Excitation

Tables

• We will now determine the modified
state transition table for the example 0
to 7 up-counter

1
0

0

1

QKJ

0
0

1

1

1

0

Q

Q
1
0

0
1

Q JQ

0
0

1
1

0
1

0
1

K

x
x

x
x

Truth table Excitation table

06/09/2022

96

Modified State Transition

Table

• In addition to columns representing the

current and desired next states (as in a

conventional state transition table), the

modified table has additional columns

representing the required FF inputs to

achieve the next desired FF states

Modified State Transition Table
• For a 0 to 7 counter, 3 D-type FFs are needed

Current

state

0Q1Q2Q

0 0 0

1

0

1

0

1 1

1 0 0
0 1 0

0

1
1 0 1
0 1 1

1

'
0Q'1Q'

2Q 0D1D2D

1
0
1

1

0

0

0
1
1

0

0
1
1 1

0
0
0

1

1
1
1

0 0 0

1
0
1

1

0

0

0
1
1

0

0
1
1 1

0
0
0

1

1
1
1

0 0 0

Next

state

FF

inputs

Note: Since (or) for a D-FF, the

required FF inputs are identical to the Next state

DQ '

The procedure is to:

 Write down the desired

count sequence in the

current state columns

Write down the required

next states in the next

state columns

Fill in the FF inputs

required to give the

defined next state

'QD 

06/09/2022

97

Synchronous Counter Example

• If using J-K FFs for example, we need J and K
input columns for each FF

• Also note that if we are using D-type FFs, it is not
necessary to explicitly write out the FF input
columns, since we know they are identical to
those for the next state

• To complete the design we now have to
determine appropriate combinational logic circuits
which will generate the required FF inputs from
the current states

• We can do this from inspection, using Boolean
algebra or using K-maps.

Synchronous Counter Example

Current

state

0Q1Q2Q

0 0 0

1

0

1

0

1 1

1 0 0
0 1 0

0

1
1 0 1
0 1 1

1

'
0Q'1Q'

2Q 0D1D2D

1
0
1

1

0

0

0
1
1

0

0
1
1 1

0
0
0

1

1
1
1

0 0 0

1
0
1

1

0

0

0
1
1

0

0
1
1 1

0
0
0

1

1
1
1

0 0 0

Next

state

FF

inputs
By inspection,

00 QD 

Note: FF0 is toggling

Also, 101 QQD 

Use a K-map for , 2D

1Q 0Q

1 1 0 0 0 1 1 0

0

1 1 1

1

1 2Q

20.QQ

2Q

1Q

0Q

21.QQ 210 .. QQQ

06/09/2022

98

Synchronous Counter Example
1Q 0Q

1 1 0 0 0 1 1 0

0

1 1 1

1

1 2Q

20.QQ

2Q

1Q

0Q

21.QQ 210 .. QQQ

So,

2101022

21021202

..)..(

....

QQQQQQD

QQQQQQQD





D

Q

Q

CLK

0Q

0D
D

Q

Q

1Q

1D
D

Q

Q

2Q

2D

Combinati-

onal logic

0Q

0Q

1Q

1Q

2Q

2Q

Synchronous Counter

• A similar procedure can be used to design

counters having an arbitrary count sequence

– Write down the state transition table

– Determine the FF excitation (easy for D-types)

– Determine the combinational logic necessary to

generate the required FF excitation from the

current states – Note: remember to take into

account any unused counts since these can be

used as don’t care states when determining the

combinational logic circuits

06/09/2022

99

Shift Register

• A shift register can be implemented

using a chain of D-type FFs

D

Q

Q

D

Q

Q

1Q 2Q0Q

D

Q

Q

Din

CLK

• Has a serial input, Din and parallel

output Q0, Q1 and Q2.

Shift Register

inD

CLK

0Q

1Q

2Q

• See data moves one position to the

right on application of each clock edge

06/09/2022

100

Shift Register

• Preset and Clear inputs on the FFs can
be utilised to provide a parallel data
input feature

• Data can then be clocked out through
Q2 in a serial fashion, i.e., we now have
a parallel in, serial out arrangement

• This along with the previous serial in,
parallel out shift register arrangement
can be used as the basis for a serial
data link

Serial Data Link

CLK

0Q 1Q 2Q

Parallel in

serial out

0Q 1Q 2Q

Serial in

parallel out

Serial Data

• One data bit at a time is sent across the serial
data link

• See less wires are required than for a parallel
data link

06/09/2022

101

System Timing

• The clock period, Tc, is the time between the
rising edges of a repetitive clock signal

• The clock frequency, fc, is the reciprocal of
the clock period, i.e., 𝑓𝑐 = 1 𝑇𝑐

• Note the unit of frequency is Hz, though
typical modern processors can operate up to
several GHz

• All things being equal, increasing the clock
frequency increases the ‘work’ that a digital
system can accomplish per unit time

System Timing

• The clock period, Tc, is the time between the
rising edges of a repetitive clock signal

• The clock frequency, fc, is the reciprocal of
the clock period, i.e., 𝑓𝑐 = 1 𝑇𝑐

• Note the unit of frequency is Hz, though
typical modern processors can operate up to
several GHz

• All things being equal, increasing the clock
frequency increases the ‘work’ that a digital
system can accomplish per unit time

06/09/2022

102

Set-up Time Constraint

CLK

D

Q
sut ht

sut Set-up time ht Hold time CLK-to-Q Propagation

delay

• Previously, we saw the timing constraints that apply
for correct operation of an edge triggered D-FF

• We will now see how these constraints affect system
clock speed.

tpc

tpc

Set-up Time Constraint

D

Q

Q
D0

CLK

D

Q

Q

CLK

Combinational

Logic (CL)

D1

Q0 Q1

• The above diagram shows a generic path in a
synchronous sequential circuit

• On the rising edge of CLK , FF0 gives output Q0
(after delay tpc).

• This signal enters a block of combinational logic (CL)
producing D1 (after a delay of tpd from Q0 changing),
which is the input to FF1

• To satisfy the setup time for FF1, D1 must settle no
later than the setup time before the next CLK edge

06/09/2022

103

Set-up Time Constraint

CLK

tpc

Tc

Q0

D1

tsu tpd

• The diagram shows the maximum propagation
delay tpd that will enable the worst case setup
time to be satisfied (assuming worst case tpc),
i.e., the minimum clock period is given by,

𝑇𝐶 ≥ 𝑡𝑝𝑐 + 𝑡𝑝𝑑 + 𝑡𝑠𝑢

Set-up Time Constraint
• Note that the clock period of a system (i.e., the

clock speed) is often set by the marketing dept!

• Since the worst case (i.e., maximum) values of
tpc and tsu are specified by the chip
manufacturer, we can rearrange the previous
equation to solve for the maximum propagation
delay through the combinational logic, which is
usually the only variable under the control of
the system designer,

𝑡𝑝𝑑 ≤ 𝑇𝐶 − (𝑡𝑝𝑐 + 𝑡𝑠𝑢)

• If this cannot be achieved by redesigning the
combinational logic, the clock period has to be
increased to ensure correct operation

06/09/2022

104

Clock Skew
• In the previous slides, we have assumed that

the system clock reaches all the FFs at the
same time

• Owing to the physical layout of the clock wiring
giving rise to different wire lengths and hence
different propagation delays, in reality, the clock
edges will not arrive at the FFs at the same
time. This variation is known as clock skew.

• We will not consider it further here, but it has
the effect of increasing both FF setup and hold
times and reduces the allowable propagation
delay through the combinational logic

Metastability
• It is not always possible to control when a FF input

changes in relation to the clock edge

• For example, this can occur when the input signal
comes from an external user input, e.g., a button

• Consider the following example when the D input
change violates the dynamic requirements

• This causes the
output Q to be
undefined

• Momentarily it can
take on a voltage
between 0 and VDD ,
i.e., in the invalid
range

CLK

D

Q

sut ht

? ? ?

06/09/2022

105

Metastability
• This is called a metastable state

• Eventually, the FF output will resolve to a stable valid
0 or 1 voltage level

• In theory, the resolution time is unbounded, however,
we can model the probability of the resolution time
exceeding a particular time t

• We will not go in to the detail of this model, but the
key point is that the probability of the resolution time
exceeding a particular value t, decreases as t
increases, i.e., the longer we wait, the lower is the
probability of the output being in an invalid
metastable state

• Metastability gives rise to severe system problems
and we must minimise the probability of it occurring

Metastability
• To minimise the probability of metastablity we use a

synchroniser. In its simplest form it uses 2 FFs

D

Q

Q
D0

CLK

D

Q

Q

CLK

D1

Q

Tc

CLK

tres

D1

Q

tsu tpc

06/09/2022

106

Metastability

• The output from FF1, D1, will resolve to a valid level
with high probability if Tc is long enough

• FF2 now has valid input that satisfies both its setup
and hold times and yields a valid output Q

Tc

CLK

tres

D1

Q

tsu tpc

Metastability
• To reduce the probability of an invalid output from the

synchroniser, we need to wait a longer time for the
metastable condition at D1 to resolve, i.e., we need to
increase time tres

• So to satisfy the setup time tsu for FF2, we need to
increase the clock period Tc, i.e., slow the clock rate

• Another possibility is to cascade further FFs, since
the probability of a metastable state at the
synchroniser output is essentially the product of that
for each FF
– For this to work well for a reasonable number FFs, the

probability of metastability at the output of each FF has to
be much lower than 1, i.e., we need to ensure that the clock
period is sufficiently long such that metastability can resolve
with a high probability

06/09/2022

107

Digital Electronics:

Sequential Logic

Synchronous State Machines 1

Introduction

• We have seen how we can use FFs (D-types

in particular) to design synchronous counters

• We will now investigate how these principles

can be extended to the design of synchronous

state machines (of which counters are a

subset)

• We will begin with some definitions and then

introduce two popular types of machines

06/09/2022

108

Definitions

• Finite State Machine (FSM) – a deterministic

machine (circuit) that produces outputs which

depend on its internal state and external inputs

• States – the set of internal memorised values,

shown as circles on the state diagram

• Inputs – External stimuli, labelled as arcs on the

state diagram

• Outputs – Results from the FSM

Types of State Machines

• Two types of state machines are in

general use, namely Moore machines

and Mealy machines

• We will see that the state diagrams (and

associated state tables) corresponding

with the 2 types of machine are slightly

different

06/09/2022

109

Machine Schematics

Outputs
Next state

combinational

logic m

CLK

Optional

combinational

logic
D

Q

Q

m
Inputs

n

Current state Moore

Machine

Mealy

Machine

Next state

combinational

logic
D

Q

Q

m

CLK

combinational

logic m
Inputs

n

Current state

Outputs

Moore vs. Mealy Machines

• Outputs from Mealy Machines depend upon

the timing of the inputs

• Outputs from Moore machines come directly

from clocked FFs so:

– They have guaranteed timing characteristics

– They are glitch free

• Any Mealy machine can be converted to a

Moore machine and vice versa, though their

timing properties will be different

06/09/2022

110

Moore Machine State Diagram
• Example FSM has 3 states (A, B and C), inputs e and r, and

output s

[s1 s0]

FF labels

A B

C

[10] [00]

[01]

r

r

re.

re.

re. re.

e

e

In this case the

output s is given

by s1, i.e., s=s1

• See inputs only appear on transitions between states, i.e.,

next state is given by current state and current inputs

• Outputs determined from current state via combinational

logic (if required)

Mealy Machine State Diagram
• Example FSM has 3 states (A, B and C), inputs x and y, and

output s

[s1 s0]

Transition labels:

Inputs/Output

FF labels:

A B

C

[10] [00]

[01]

sy /

sy /

syx /.

syx /.

syx /.

sx /

• Inputs and outputs appear on transitions between states,

i.e., next state is given by current state and current inputs

• Output determined from current state and inputs via

combinational logic

06/09/2022

111

Moore Machine - Example

• We will design a Moore Machine to implement

a traffic light controller

• In order to visualise the problem it is often

helpful to draw the state transition diagram

• This is used to generate the state transition

table

• The state transition table is used to generate

– The next state combinational logic

– The output combinational logic (if required)

Example – Traffic Light Controller

R

R

G

A A

See we have 4 states

So in theory we could

use a minimum of 2 FFs

However, by using 3 FFs

we will see that we do not

need to use any output

combinational logic

So, we will only use 4 of

the 8 possible states

In general, state assignment is a

difficult problem and the optimum

choice is not always obvious

06/09/2022

112

Example – Traffic Light Controller
By using 3 FFs (we will use

D-types), we can assign one

to each of the required

outputs (R, A, G), eliminating

the need for output logic
State

010

R

R

G

A A

State

100

State

001

State

110

We now need to write down

the state transition table

We will label the FF outputs

R, A and G

Remember we do not need to

explicitly include columns for FF

excitation since if we use D-types

these are identical to the next state

Example – Traffic Light Controller
Current

state

GAR

0 0 1

0 1

0 1 1
1 0 0

0

'G'A'R

0
1
0

0

1
0
1

0

1
0
0

1

Next

state R

R

G

A A

State

100

State

001

State

110

State

010

Unused states, 000, 011, 101 and

111. Since these states will never

occur, we don’t care what output

the next state combinational logic

gives for these inputs. These don’t

care conditions can be used to

simplify the required next state

combinational logic

06/09/2022

113

Example – Traffic Light Controller

Current

state

GAR

0 0 1

0 1

0 1 1
1 0 0

0

'G'A'R

0
1
0

0

1
0
1

0

1
0
0

1

Next

state

Unused states, 000,

011, 101 and 111.

We now need to determine the next

state combinational logic

For the R FF, we need to determine DR

To do this we will use a K-map

A G
1 1 0 0 0 1 1 0

0

1

1

1 X

AR.

R

R

G

A

X

X

X

AR.

ARARARDR  ..

Example – Traffic Light Controller

Current

state

GAR

0 0 1

0 1

0 1 1
1 0 0

0

'G'A'R

0
1
0

0

1
0
1

0

1
0
0

1

Next

state

Unused states, 000,

011, 101 and 111.

By inspection we can also see:

ADA 

and,

ARDG .

06/09/2022

114

Example – Traffic Light Controller

D

Q

Q

CLK

A

AD
D

Q

Q

R

RD
D

Q

Q

G

GD

FSM Problems

• Consider what could happen on power-up

• The state of the FFs could by chance be in

one of the unused states

– This could potentially cause the machine to

become stuck in some unanticipated sequence of

states which never goes back to a used state

06/09/2022

115

FSM Problems

• What can be done?

– Check to see if the FSM can eventually

enter a known state from any of the

unused states

– If not, add additional logic to do this, i.e.,

include unused states in the state transition

table along with a valid next state

– Alternatively use asynchronous Clear and

Preset FF inputs to set a known (used)

state at power up

Example – Traffic Light Controller

• Does the example FSM self-start?

• Check what the next state logic outputs

if we begin in any of the unused states

• Turns out:

Start

state

Next state

logic output

000 010
011 100
101 110
111 001

Which are all

valid states

So it does

self start

06/09/2022

116

Example 2

• We extend Example 1 so that the traffic
signals spend extra time for the R and G
lights

• Essentially, we need 2 additional states, i.e.,
6 in total.

• In theory, the 3 FF machine gives us the
potential for sufficient states

• However, to make the machine combinational
logic easier, it is more convenient to add
another FF (labelled S), making 4 in total

Example 2

FF labels

R A G S

R

G

R

A A

State

1000

State

0010

State

1100

State

0101

R

G

State

1001

State

0011

See that new FF

toggles which

makes the next

state logic easier

As before, the first

step is to write

down the state

transition table

06/09/2022

117

Example 2

FF

labels

R A G S

R

G

R

A A

State

1000

State

0010

State

1100

State

0101

R

G

State

1001

State

0011

Current

state

AR G 'G'A'R

Next

state

S

0 1 0 0 0 1 0

'S

1

0 1 1 1 0 0 0

0 1 0 0 0 1 1 0

1
1 0 0 1 0 0 1 0

0 1 0 0 1 1 1 0

1 0 0 0 1 0 0 1

Clearly a lot of unused states.

When plotting k-maps to determine

the next state logic it is probably

easier to plot 0s and 1s in the map

and then mark the unused states

Example 2

We will now use k-maps to determine

the next state combinational logic

Current

state

AR G 'G'A'R

Next

state

S

0 1 0 0 0 1 0

'S

1

0 1 1 1 0 0 0

0 1 0 0 0 1 1 0

1
1 0 0 1 0 0 1 0

0 1 0 0 1 1 1 0

1 0 0 0 1 0 0 1

For the R FF, we need to determine DR

1 1 0 0 0 1 1 0

0 0

0 1

1 1

1 0

AR
SG

1
R

A

G

S

1

0

1

AR.

AR.

0 0

X X

X X X

X X X

X X

ARARARDR  ..

06/09/2022

118

Example 2

We can plot k-maps for DA and DG

to give:

Current

state

AR G 'G'A'R

Next

state

S

0 1 0 0 0 1 0

'S

1

0 1 1 1 0 0 0

0 1 0 0 0 1 1 0

1
1 0 0 1 0 0 1 0

0 1 0 0 1 1 1 0

1 0 0 0 1 0 0 1

By inspection we can also see:

SGSRDA ..  or

SRSRSRDA  ..

SGARDG ..  or

SASGDG .. 

SDS 

06/09/2022

119

Digital Electronics:

Sequential Logic

Synchronous State Machines 2

State Assignment

• As we have mentioned previously, state
assignment is not necessarily obvious or
straightforward

– Depends what we are trying to optimise, e.g.,
• Complexity (which also depends on the

implementation technology, e.g., FPGA, 74 series
logic chips).

– FF implementation may take less chip area than you may
think given their gate level representation

– Wiring complexity can be as big an issue as gate complexity

• Speed

– Algorithms do exist for selecting the ‘optimising’
state assignment, but are not suitable for manual
execution

06/09/2022

120

State Assignment

• If we have m states, we need at least

FFs (or more informally, bits) to encode the

states, e.g., for 8 states we need a min of 3

FFs

• We will now present an example giving

various potential state assignments, some

using more FFs than the minimum

m2log

Example Problem

• We wish to investigate some state
assignment options to implement a divide by
5 counter which gives a 1 output for 2 clock
edges and is 0 for 3 clock edges

CLK

Output

06/09/2022

121

Sequential State Assignment

• Here we simply assign the states in an
increasing natural binary count

• As usual we need to write down the
state transition table. In this case we
need 5 states, i.e., a minimum of 3 FFs
(or state bits). We will designate the 3
FF outputs as c, b, and a

• We can then determine the necessary
next state logic and any output logic.

Sequential State Assignment

Unused states, 101,

110 and 111.

Current

state

abc

0 0 0
1 0 0
0 1 0

abc

1
0
1

0
1
1

0
0
0

1 1 0 0 0 1

Next

state

0 0 1 0 0 0

By inspection we can see:

The required output is from FF b

Plot k-maps to determine the

next state logic:

For FF a:

b a
1 1 0 0 0 1 1 0

0

1

1 1

X c X X

c

a

b

ca.

caDa .

06/09/2022

122

Sequential State Assignment

Unused states, 101,

110 and 111.

Current

state

abc

0 0 0
1 0 0
0 1 0

abc

1
0
1

0
1
1

0
0
0

1 1 0 0 0 1

Next

state

0 0 1 0 0 0

For FF b:

b a
1 1 0 0 0 1 1 0

0

1

1

X c X X

c

a

b

ba.

bababaDb  ..

1

ba.

For FF c:

b a
1 1 0 0 0 1 1 0

0

1

1

X c X X

c

a

b

ba.

baDc .

Sliding State Assignment

Unused states, 010,

101, and 111.

Current

state

abc

0 0 0
1 0 0
1 1 0

abc

1
1
0

0
1
1

0
0
1

0 1 1 0 0 1

Next

state

0 0 1 0 0 0

For FF a:

b a

1 1 0 0 0 1 1 0

0

1

1 1

X c X

X

c

a

b

cb .

cbDa .

Plot k-maps to determine the

next state logic:

By inspection we can see that

we can use any of the FF

outputs as the wanted output

06/09/2022

123

Sliding State Assignment

Unused states, 010,

101, and 111.

Current

state

abc

0 0 0
1 0 0
1 1 0

abc

1
1
0

0
1
1

0
0
1

0 1 1 0 0 1

Next

state

0 0 1 0 0 0

By inspection we can see that:

For FF b:

For FF c:

aDb 

bDc 

Shift Register Assignment

• As the name implies, the FFs are connected

together to form a shift register. In addition,

the output from the final shift register in the

chain is connected to the input of the first

FF:

– Consequently the data continuously cycles

through the register

06/09/2022

124

Shift Register Assignment

Unused states. Lots!

Current

state

a

1
0
0

0

Next

state

1

bc

1 0
1 1
0 1

0 0
0 0

abc

0
0
0

1
0
0

1
1
0

1 0 0
1 1 0

0
0
1

1
0

de

0
0
0

1
1

0
1
1

0
0

d e

0
0
1

1
0

Because of the shift register

configuration and also from the

state table we can see that:

eDa 
aDb 
bDc 
cDd 
dDe 

By inspection we can see that

we can use any of the FF

outputs as the wanted output

See needs 2 more FFs, but no logic and simple wiring

One Hot State Encoding

• This is a shift register design style where only

one FF at a time holds a 1

• Consequently we have 1 FF per state,

compared with for sequential assignment

• However, can result in simple fast state

machines

• Outputs are generated by ORing together

appropriate FF outputs

m2log

06/09/2022

125

One Hot - Example
• We will return to the traffic signal example,

which recall has 4 states

R

R

G

A A

For 1 hot, we need 1 FF for

each state, i.e., 4 in this case

The FFs are connected to form

a shift register as in the

previous shift register example,

however in 1 hot, only 1 FF

holds a 1 at any time

We can write down the state

transition table as follows

One Hot - Example

R

R

G

A A

Unused states. Lots!

Current

state

Next

state

a

0
0
0

1

g

0
0
1

0

ra

0
1
0

0

1
0
0

0

r a

0
0
1

0

g

0
1
0

0

ar 

1
0
0

0

0
0
0

1

r

Because of the shift register configuration

and also from the state table we can see

that: gDa  raDg  rDra  aDr 

To generate the R, A and G outputs we do the following ORing:

rarR  araA  gG 

06/09/2022

126

One Hot - Example
gDa  raDg  rDra  aDr 

rarR  araA  gG 

D

Q

Q
r ra

D

Q

Q
g

D

Q

Q
Dr

CLK

D

Q

Q a
Dra Dg Da

R A G

Tripos Example
• The state diagram for a synchroniser is shown.

It has 3 states and 2 inputs, namely e and r.

The states are mapped using sequential

assignment as shown.

[s1 s0]

FF labels

Sync Hunt

Sight

[10] [00]

[01]

r

r

re.

re.

re. re.

e

e

An output, s should be

true if in Sync state

06/09/2022

127

Tripos Example

Sync Hunt

Sight

[10] [00]

[01]

r

r

re.

re.

re. re.

e

e

Unused state 11

Current

state

re

0 X
1 X

'
1s

'
0s

0
1

0
0

Next

state

0s

0 0
0 0

Input

1s

X 0 1 0
0 1 0 0 1 0

1 0

1 1 0 1 1 0

0 1 0 0 0 1
X 0 0 1 0 1

1 1 0 1 0 1

X X X X 1 1
From inspection, 1ss 

Tripos Example
Plot k-maps to determine the

next state logic

Current

state

re

0 X
1 X

'
1s

'
0s

0
1

0
0

Next

state

0s

0 0
0 0

Input

1s

X 0 1 0
0 1 0 0 1 0

1 0

1 1 0 1 1 0

0 1 0 0 0 1
X 0 0 1 0 1

1 1 0 1 0 1

X X X X 1 1

For FF 1:

1 1 0 0 0 1 1 0

0 0

0 1

1 1

1 0

01 ss
re

1
1s

0s

e

r

1

1

res ..0

es .1

X X X X

1

rs .1

resrsesD 0111 

06/09/2022

128

Tripos Example
Plot k-maps to determine the

next state logic

Current

state

re

0 X
1 X

'
1s

'
0s

0
1

0
0

Next

state

0s

0 0
0 0

Input

1s

X 0 1 0
0 1 0 0 1 0

1 0

1 1 0 1 1 0

0 1 0 0 0 1
X 0 0 1 0 1

1 1 0 1 0 1

X X X X 1 1

For FF 0:

1 1 0 0 0 1 1 0

0 0

0 1

1 1

1 0

01 ss
re

1

1s

0s

e

r

1

1
rss .. 01

es .0

X X X X

1

rssesD ... 0100 

Tripos Example
• We will now re-implement the synchroniser

using a 1 hot approach

• In this case we will need 3 FFs

Sync Hunt

Sight

[100] [001]

[010]

r

r

re.

re.

re. re.

e

e

[s2 s1 s0]

FF labels

An output, s should be

true if in Sync state

From inspection, 2ss 

06/09/2022

129

Tripos Example

Sync Hunt

Sight

[100] [001]

[010]

r

r

re.

re.

re. re.

e

e

Current

state

re

0 X
1 X

'
2s

0
0

Next

state

0s

1
1

Input

X 0 0
0 1 0 0

0

1 1 1 0

0 1 0 0
X 0 1 0

1 1 1 0

'
1s

0
1

1
0
0

0
0

0

0
0

1s

1
1

1

0
0

0

'
0s

1
0

0
1
0

1
0

0

0
0

2s

0
0

0

1
1

1

Remember when interpreting this table, because of the 1-

hot shift structure, only 1 FF is 1 at a time, consequently it

is straightforward to write down the next state equations

Tripos Example

Current

state

re

0 X
1 X

'
2s

0
0

Next

state

0s

1
1

Input

X 0 0
0 1 0 0

0

1 1 1 0

0 1 0 0
X 0 1 0

1 1 1 0

'
1s

0
1

1
0
0

0
0

0

0
0

1s

1
1

1

0
0

0

'
0s

1
0

0
1
0

1
0

0

0
0

2s

0
0

0

1
1

1

so,

For FF 2:

resesresD 2212 

For FF 1: esrsD .. 101 

For FF 0:

resresrsD 2100 

𝐷2 = 𝑠0 . 𝑒. 𝑟 + 𝑠2. 𝑒

1012  sss
Simplification is possible since:

𝑠0 = 𝑠1 + 𝑠2, hence,

𝐷0 = 𝑠0𝑟 + 𝑠0 . 𝑒. 𝑟
𝐷0 = 𝑟 . 𝑠0 + 𝑠0 . (𝑠0 + 𝑒)
𝐷0 = 𝑟 . 𝑠0 + 𝑒 = 𝑟 . 𝑠0 + 𝑟 . 𝑒

06/09/2022

130

Tripos Example

Sync Hunt

Sight

[100] [001]

[010]

r

r

re.

re.

re. re.

e

e

Note that it is not strictly

necessary to write down the

state table, since the next state

equations can be obtained from

the state diagram

It can be seen that for each

state variable, the required

equation is given by terms

representing the incoming arcs

on the graph

For example, for FF 2: resesresD 2212 

Tripos Example

• So in this example, the 1 hot is easier to

design, but it results in slightly more

hardware compared with the sequential

state assignment design

06/09/2022

131

Digital Electronics:

Sequential Logic

Further Considerations

Elimination of Redundant

States

• Sometimes, when designing state

machines it is possible that

unnecessary states may be introduced

• In general, reducing the number of

states may reduce the number of FFs

required and may also reduce the

complexity of the next state logic owing

to the presence of more unused states

(don’t cares)

06/09/2022

132

Elimination of Redundant

States - Example
• Consider the following State Table that

corresponds with a Mealy Machine

implementation

• This is so, since the inputs and outputs from

the machine are on the transitions (arcs)

between states

• The following state table is drawn in a

compact form by incorporating the 2 possible

input values as parallel columns within both

the next state and output columns of the table

Example

Current

State

Next

State Output (Z)

C
E
G
I
K

P
M

A
A
A
A
A
A
A
A

B
D
F
H
J

N
L

A
A
A
A
A
A
A
A

0
0
0

0
0

0
0

0
0
1
0
1
0
0
0

0
0
0
0
0

0
0

0
0
0
0
0
0
0
0

A
B

D
C

E

G
F

H
I
J
K
L
M
N
P

X=0 X=1 X=0 X=1
• From the table, we see

that there is no way of

telling states H and I apart,

so we can replace I with H

when it appears in the

Next State portion of the

table

06/09/2022

133

Example

Current

State

Next

State Output (Z)

C
E
G
H
K

P
M

A

A
A
A
A
A
A

B
D
F
H
J

N
L

A

A
A
A
A
A
A

0
0
0

0
0

0
0

0

1
0
1
0
0
0

0
0
0
0
0

0
0

0

0
0
0
0
0
0

A
B

D
C

E

G
F

H

J
K
L
M
N
P

X=0 X=1 X=0 X=1
• We also see that there is

now no way to get to state

I so we can remove row I

from the table

• Similarly, rows K, M, N and

P have the same next

state and output as H and

can be replaced by H

Example

Current

State

Next

State Output (Z)

C
E
G
H
H

H
H

A

A

A

B
D
F
H
J

H
L

A

A

A

0
0
0

0
0

0
0

0

1

1

0
0
0
0
0

0
0

0

0

0

A
B

D
C

E

G
F

H

J

L

X=0 X=1 X=0 X=1
• Similarly, there is now no

way to get to states K, M,

N and P and so we can

remove these rows from

the table

• Also, the next state and

outputs are identical for

rows J and L, thus L can

be replaced by J and row L

eliminated from the table

06/09/2022

134

Example

Current

State

Next

State Output (Z)

C
E
G
H
H

H
H

A

A

B
D
F
H
J

H
J

A

A

0
0
0

0
0

0
0

0

1

0
0
0
0
0

0
0

0

0

A
B

D
C

E

G
F

H

J

X=0 X=1 X=0 X=1
• Now rows D and G are

identical, as are rows E

and F.

• Consequently, G can be

replaced by D, and row G

eliminated. Also, F can be

replaced by E and row F

eliminated from the table

Example

Current

State

Next

State Output (Z)

C
E
D
H
H

A

A

B
D
E
H
J

A

A

0
0
0

0
0

0

1

0
0
0
0
0

0

0

A
B

D
C

E

H

J

X=0 X=1 X=0 X=1
• The procedure employed

to find equivalent states in

this example is known as

row matching.

• However, we note row

matching is not sufficient to

find all the equivalent

states except for certain

special cases

06/09/2022

135

Elimination of Redundant

States – State Equivalence
• The previous row matching approach only

works in certain cases.

• We will now consider a more general

approach that identifies state equivalence to

help eliminate states

• For a sequential network, if for every possible

input sequence X, if the output sequence is

identical whether we start in state p or q, there

is no way of telling p and q apart by looking at

the output sequence

State Equivalence

• Thus we say state p is equivalent to state q,

i.e., 𝑝 ≡ 𝑞

• The above definition can be difficult to apply in

practice since an infinite number of input

sequences may be required

• We will now consider a more practical

approach that uses the following theorem

• 2 states p and q of a sequential network are

equivalent if for every single input x, the

outputs are the same and the next states are

equivalent

06/09/2022

136

State Equivalence
• That is,

𝜆(𝑝, 𝑥) = 𝜆(𝑞, 𝑥) and 𝛿 𝑝, 𝑥 ≡ 𝛿(𝑞, 𝑥)

where, 𝜆(𝑝, 𝑥) is the output given the present

state p and input x and,

𝛿(𝑝, 𝑥) is the next state given the

present state p and input x

• We will use this theorem to find all equivalent

states in a state table

• Note the row matching procedure is actually a

special case of this theorem where the next

states are the same rather than just equivalent

State Equivalence - Proof
• Assume,

𝜆(𝑝, 𝑥) = 𝜆(𝑞, 𝑥) and 𝛿 𝑝, 𝑥 ≡ 𝛿(𝑞, 𝑥)

for every input x. Then from previous defn,

for every input seq X we have output seq,

𝜆[𝛿 𝑝, 𝑥 , 𝑋] = 𝜆[𝛿 𝑞, 𝑥 , 𝑋]

For input seq, Y = x followed by X , we have,

𝜆 𝑝, 𝑌 = 𝜆 𝑝, 𝑥 followed by 𝜆[𝛿 𝑝, 𝑥 , 𝑋]

Hence

𝜆 𝑞, 𝑌 = 𝜆 𝑞, 𝑥 followed by 𝜆[𝛿 𝑞, 𝑥 , 𝑋]

𝜆(𝑝, 𝑌) = 𝜆(𝑞, 𝑌) for every input seq Y,

and from the defn 𝑝 ≡ 𝑞

06/09/2022

137

Determination of State Equivalence

using an Implication Table

• We will describe the procedure using the
following example

• The first step is to construct the Implication
Table

– It has a cell for every possible pair of states

– Note cells above the diagonal are omitted (since
they already exist below the diagonal)

– Diagonal cells are also omitted since they
correspond to same state pairs

Implication Table

• To fill in 1st column

– Compare row A with each of the other rows

– We see that the output for row A is different to the
output for row C, so we place an X in this cell to
indicate that A ≠ C

– Similarly we place an X in cells A-E, A-F and A-H
to indicate that A ≠ E, A ≠ F and A ≠ H because of
the output differences

– State A and B have the same outputs, hence from
the theorem, A ≡ B if D ≡ F and C ≡ H.

– To indicate this we write the ‘implied pairs’ D-F
and C-H in the A-B cell

06/09/2022

138

Implication Table
– Similarly, since State A and D have the same

outputs, we write the ‘implied pairs’ A-D and C-E
in the A-D cell to indicate that, A ≡ D if A ≡ D and
C ≡ E

– The entries B-D and C-H in the A-G cell indicate
that A ≡ G if B ≡ D and C ≡ H

– Next row B of the state table is compared pairwise
with the remaining rows in the table and so column
B is filled-in

– Similarly the remaining columns in the implication
table are filled-in

– Note that ‘self implied’ pairs are removed from the
table, e.g., in the A-D cell we have A ≡ D if A ≡ D

Example

Present

State

Next

State Output

(Z)

C
H
D
E
A

H
B

G

D
F
E

C

B
F

C

0
0
1
0
1

0
1

1

A
B

D
C

E

G
F

H

X=0 X=1

A

B

D

C

E

G

F

H

A B D E F G C

B-D

C-H

A-D

C-E

A-F

E-H

C-E

D-G

A-B

E-H

C-F

A-B

C-F

B-G
A-G

B-F

C-E

A-D

E-F

B-D

D-F

C-H

06/09/2022

139

Implication Table
– At this stage the cells in the implication table are

filled-in either with implied pairs or an X

– We now check each implied pair

– If one of the pairs in say cell i-j is not equivalent,
then i ≠ j

– So, looking at cell A-B, we see it has 2 implied
pairs D-F and C-H. Since D ≠ F (see the D-F cell
has an X in it), A ≠ B and we place an X in the A-B
cell as shown in the following updated table

– Continuing with the 1st column we see cell A-D
contains implied pair C-E. Since cell C-E does not
contain an X, we cannot determine at this stage
whether A ≡ D or not

– Similarly with cell A-G

Example
– We can place an X in cells B-D and B-G

since A ≠ F and B ≠ F

– Similarly we can check the
remaining columns and place an X
in cells C-F, D-G, E-F and F-H

B

D

C

E

G

F

H

A B D E F G C

B-D

C-H

A-D

C-E

A-F

E-H

C-E

D-G

A-B

E-H

C-F

A-B

C-F

B-G
A-G

B-F

C-E

A-D

E-F

B-D

D-F

C-H

– In going from the original to
the updated table, note that
we found several additional
equivalent state pairs

– So we must go
through again to see
if the added Xs
make any other
pairs non-equivalent

06/09/2022

140

Example
– Rechecking col. A we can place an X in

cell A-G since cell B-D has an X

– Similarly with cells C-H and E-H

B

D

C

E

G

F

H

A B D E F G C

B-D

C-H

A-D

C-E

A-F

E-H

C-E

D-G

A-B

E-H

C-F

A-B

C-F

B-G
A-G

B-F

C-E

A-D

E-F

B-D

D-F

C-H

– Since we added some more Xs
we must go through again to
see if the added Xs make any
other pairs non-equivalent

– No more Xs are
added, so all cells
with non equivalent
states have now
been Xed out

Example
• The ‘coordinates’ of the remaining cells

correspond to the equivalent state pairs, i.e.,
cell A-D and cell C-E so,

– A ≡ D and C ≡ E

• So in the state table we can replace D with A
and E with C and then eliminate rows D and E

Present

State

Next

State Output

(Z)

C
H
A

A
F
C

0
0
1

A
B
C

H
B

G
B
F

C
0
1

1
G
F

H

X=0 X=1

06/09/2022

141

Implementation of FSMs

• We saw previously that programmable logic
can be used to implement combinational logic
circuits, i.e., using PLA devices

• PAL style devices have been modified to
include D-type FFs to permit FSMs to be
implemented using programmable logic

• One particular style is known as Generic
Logic Array (GLA)

GLA Devices

• They are similar in concept to PLAs, but

have the option to make use of a D-type flip-

flops in the OR plane (one following each OR

gate). In addition, the outputs from the D-

types are also made available to the AND

plane (in addition to the usual inputs)

– Consequently it becomes possible to build

programmable sequential logic circuits

06/09/2022

142

AND plane

OR plane D
Q

Q

D
Q

Q

GLA

Device

GLA Devices

• A modified form of a GLA known as a

Generic Array Logic (GAL) is used in the

Hardware Laboratory classes to implement

various FSMs.

06/09/2022

143

GAL Devices

f0

a

b

fn

AND

plane

OR

plane

D
Q

Q

D
Q

Q

CLK

FPGA

• Field Programmable Gate Arrays (FPGAs) are

the latest type of programmable logic

• Are an array of configurable logic blocks (CLBs)

surrounded by Input Output Blocks (IOBs):

– programmable routing channels permit CLBs to be

connected to other CLBs and to IOBs

– CLBs contain look up tables (LUTs), multiplexers

(MUXs) and D-type FFs

– The FPGA is configured by specifying the contents

of the LUTs and select signals for the MUXs

06/09/2022

144

FPGA – Xilinx Spartan

FPGA – Xilinx Spartan
• Simplified schematic showing CLBs and

programmable routing channels, i.e., wires

plus programmable switch matrices (SMs)

06/09/2022

145

FPGA - Spartan CLB

FPGA - Spartan CLB
• Has 2, 4-input LUTs (F and G) and 1, 3 input

LUT (H)

• Has to ‘combinational’ outputs (Y and X) and

2 ‘registered’ outputs (i.e., from D-FFs) YQ

and XQ

• Depending on MUX configuration Y is given

by output of either G or H LUTs and X from

either F or H LUTs.

• D-FF inputs come from DIN, or from F, G, or

H LUTs

06/09/2022

146

FPGA - Spartan CLB
• Thus each CLB can perform up to 2

combinational and/or 2 registered functions

• All functions can involve at least 4 input

variables (e.g., G1 to G4, and F1 to F4), but

can be up to 9 (owing to the possibility of

implementing 2-level combinational logic

functions), i.e., G1 to G4, F1 to F4, H1.

• Created using either a schematic (block)

diagram or more likely a Hardware

Description Language (HDL) of the design

FPGA - Spartan CLB
• The synthesis tool determines how the LUTs,

MUXs and routing channels are configured

• This configuration information is then

downloaded to the FPGA

• Xilinx devices store their configuration

information in static RAM (SRAM) so can be

easily reprogrammed

• The SRAM contents can be downloaded

either from a computer or from an EEPROM

device when the system is powered-up

06/09/2022

147

FPGA
• Other FPGA manufacturers are available,

e.g., Altera.

• Particular manufacturers have many different

product lines

• Main differences will be the no. of CLBs, the

structure of the CLBs, internal or external

ROM, additional features such as specialised

arithmetic blocks, user RAM etc.

06/09/2022

148

Digital Electronics:

Electronics, Devices and

Circuits

Dr. I. J. Wassell

Digital Electronics:

Electronics, Devices and

Circuits

Underlying Concepts

06/09/2022

149

Introduction

• In the coming lectures, ultimately we will

consider how logic gates can be built using

electronic circuits

• In the first part, basic concepts concerning

electrical concepts, electrical circuits,

materials and circuit theory (both linear and

non-linear) will be presented

• In the second part, we will consider transistor

operation and characteristics followed by gate

circuit design and characteristics

Basic Electricity

• An electric current is produced when charged

particles (e.g., electrons in metals, or

electrons and ions in a gas or liquid) move in

a definite direction

• In metals, the outer electrons are held loosely

by their atoms and are free to move around

the fixed positive metal ions

• This free electron motion is random, and so

there is no net flow of charge in any direction,

i.e., no current flow

06/09/2022

150

Basic Electricity

• If a metal wire is connected across the

terminals of a battery, the battery acts as an

‘electron pump’ and forces the free electrons

to drift toward the +ve terminal and in effect

flow through the battery

• The drift speed of the free electrons is low,

e.g., < 1 mm per second owing to frequent

collisions with the metal ions.

• However, they all start drifting together as

soon as the battery is applied

Basic Electricity
• The flow of electrons in one direction is known

as an electric current and reveals itself by

making the metal warmer and by deflecting a

nearby magnetic compass

• Before electrons were discovered it was

imagined that the flow of current was due to

positively charged particles flowing out of +ve

toward –ve battery terminal

+

-

Flow of electrons in

metal wire connected

across a battery

Direction of

current flow

06/09/2022

151

Basic Electricity

• Note that ‘conventional’ current flow is still

defined as flowing from the +ve toward the –

ve battery terminal (i.e., the opposite way to

the flow of the electrons in the metal)!

• A huge number of charged particles

(electrons in the case of metals) drift past

each point in a circuit per second.

• The unit of charge is the Coulomb (C) and

one electron has a charge of 1.6*10-19 C

Basic Electricity

• Thus one C of charge is equivalent to

6.25*1018 electrons

• When one C of charge passes a point in a

circuit per second, this is defined as a current

(I) of 1 Ampere (A), i.e., I = Q/t, where Q is

the charge (C) and t is time in seconds (s),

i.e., current is the rate of flow of charge.

06/09/2022

152

Basic Electricity
• In the circuit shown below, it is the battery that

supplies the electrical force and energy that

drives the electrons around the circuit.

• The electromotive force (emf) VB of a battery

is defined to be 1 Volt (V) if it gives 1 Joule (J)

of electrical energy to each C of charge

passing through it.

+

-

Flow of current

Lamp VB
VL

Basic Electricity

• The lamp in the previous circuit changes most

of the electrical energy carried by the free

electrons into heat and light

• The potential difference (pd) VL across the

lamp is defined to be 1 Volt (V) if it changes 1

Joule (J) of electrical energy into other forms

of energy (e.g., heat and light) when 1 C of

charge passes through it, i.e., VL=E/Q, where

E is the energy dissipated (J) and Q is the

charge (C)

06/09/2022

153

Basic Electricity

• Note that pd and emf are usually called

voltages since both are measured in V

• The flow of electric charge in a circuit is

analogous to the flow of water in a pipe. Thus

a pressure difference is required to make

water flow – To move electric charge we

consider that a pd is needed, i.e., whenever

there is a current flowing between 2 points in

a circuit there must be a pd between them

Basic Electricity

• What is the power dissipated (PL) in the

lamp in the previous circuit?

• PL=E/t (J/s). Previously we have, E = QVL,

and so, PL= QVL /t (W) .

• Now substitute Q = It from before to give,

PL= It VL /t = IVL (W) , an expression that

hopefully is familiar

06/09/2022

154

Basic Electricity

• So far, we have only considered metallic

conductors where the charge is carried by

‘free’ electrons in the metal lattice.

• We will now consider the electrical properties

of some other materials, specifically,

insulators and semiconductors

Basic Materials

• The electrical properties of materials are

central to understanding the operation of

electronic devices

• Their functionality depends upon our ability to

control properties such as their current-

voltage characteristics

• Whether a material is a conductor or insulator

depends upon how strongly bound the outer

valence electrons are to their atomic cores

06/09/2022

155

Insulators

• Consider a crystalline insulator, e.g., diamond

• Electrons are strongly bound and unable to

move

• When a voltage difference is applied, the

crystal will distort a bit, but no charge (i.e.,

electrons) will flow until breakdown occurs

V

Conductors

• Consider a metal conductor, e.g., copper

• Electrons are weakly bound and free to move

• When a voltage difference is applied, the

crystal will distort a bit, but charge (i.e.,

electrons) will flow
V

06/09/2022

156

Semiconductors

• Since there are many free electrons in a

metal, it is difficult to control its electrical

properties

• Consequently, what we need is a material

with a low free electron density, i.e., a

semiconductor, e.g., Silicon

• By carefully controlling the free electron

density we can create a whole range of

electronic devices

Semiconductors

Si crystalline lattice –

poor conductor at low

temperatures

Si is tetravalent, i.e., it has 4 electrons in

its valance band

Si crystals held together by ‘covalent’

bonding

8 valence electrons yield a stable state

– each Si atom now appears to have 8

electrons, though in fact each atom only

has a half share in them. Note this is a

much more stable state than is the

exclusive possession of 4 valence

electrons

• Silicon (Si, Group IV) is a poor conductor of

electricity, i.e., a semiconductor

Si

Si

Si

Si

Si

Si

Si

Si

Si

Shared

valence

electrons

06/09/2022

157

Semiconductors

As temperature rises, thermal vibration

of the atoms causes bonds to break:

electrons are free to wander around the

crystal.

When an electron breaks free (i.e.,

moves into the ‘conduction band’ it

leaves behind a ‘hole’ or absence of

negative charge in the lattice

The hole can appear to move if it is

filled by an electron from an adjacent

atom

The availability of free electrons makes

Si a conductor (a poor one at room

temperature)

• As temperature rises conductivity rises

Si

Si

Si

Si

Si

Si

Si

Si

Si

Free

electron
Hole

n-type Si

The additional electron needs only a

little energy to move into the conduction

band.

This electron is free to move around the

lattice

Owing to its negative charge carriers

(free electrons), the resulting

semiconductor is known as n-type

Arsenic is known as a donor since it

donates an electron

• n-type silicon (Group IV) is doped with arsenic

(Group V) that has an additional electron that is not

involved in the bonds to the neighbouring Si atoms

Free

electron

Si

Si

Si

Si

As+

Si

Si

Si

Si

06/09/2022

158

p-type Si

The B atom has only 3 valence

electrons, it accepts an extra electron

from one of the adjacent Si atoms to

complete its covalent bonds

This leaves a hole (i.e., absence of a

valence electron) in the lattice

This hole is free to move in the lattice –

actually it is the electrons that do the

shifting, but the result is that the hole is

shuffled from atom to atom

Owing to its positive charge carriers (free

holes), the resulting semiconductor is

known as p-type

B is known as an acceptor

• p-type silicon (Group IV) is doped with boron (B,

Group III)

Free

hole

Si

Si

Si

Si

B-

Si

Si

Si

Si

Semiconductors

• The Metal Oxide Semiconductor Field Effect

Transistor (MOSFET) devices that are used to

implement virtually all digital logic circuits are

fabricated from n and p type silicon

• Later on, we will see how MOSFETs can be used to

implement digital logic circuits

06/09/2022

159

Circuit Theory

• Electrical engineers have an alternative (but

essentially equivalent) view concerning pd.

• That is, conductors, to a greater or lesser

extent, oppose the flow of current. This

‘opposition’ is quantified in terms of resistance

(R). Thus the greater is the resistance, the

larger is the potential difference measured

across the conductor (for a given current).

Circuit Theory

• The resistance (R) of a conductor is defined

as R=V/I, where V is the pd across the

conductor and I is the current through the

conductor.

• This is know as Ohms Law and is usually

expressed as V=IR, where resistance is

defined to be in Ohms (W).

• So for an ohmic (i.e., linear) conductor,

plotting I against V yields a straight line

through the origin

06/09/2022

160

Circuit Theory

• Conductors made to have a specific value of

resistance are known as resistors.

• They have the following symbol in an

electrical circuit: R W

• Analogy:

• The flow of electric charges can be

compared with the flow of water in a pipe.

• A pressure (voltage) difference is needed

to make water (charges) flow in a pipe

(conductor).

Circuit Theory

• Kirchhoff's Current Law – The sum of currents

entering a junction (or node) is zero, e.g.,

I1

I2

I3
I1+I2-I3 = 0 or I1+I2 = I3

• That is, what goes into the junction is equal to

what comes out of the junction – Think water

pipe analogy again!

06/09/2022

161

Circuit Theory
• Kirchhoff's Voltage Law – In any closed loop

of an electric circuit the sum of all the voltages

in that loop is zero, e.g.,

V1-V2-V3-V4-V5+V6 = 0
V5

+
-

+

+

Ra Rb

Rc
V1

V2 V3 V4

V6

• We will now analyse a simple 2 resistor circuit

known as a potential divider

Potential Divider

V

R1

R2

I

x

V1

V2

0V

• What is the voltage at point x relative to the

0V point?

21 VVV 

11 IRV  22 IRV 

)(2121 RRIIRIRV 

)(21 RR

V
I



















21

2
2

21
2

)(RR

R
VR

RR

V
VVx

Note: circle represents

an ideal voltage source,

i.e., a perfect battery

06/09/2022

162

Solving Non-linear circuits
• Not all electronic devices have linear I-V

characteristics, importantly in our case this
includes the FETs used to build logic circuits

• Linear means that superposition applies:

– If an input x1(t) gives an output y1(t), and input x2(t)

gives an output y2(t), then input [x1(t)+x2(t)] gives an

output [y1(t)+y2(t)]

• For a circuit that includes a non-linear
component, we cannot use the algebraic
approach. Instead, we will now use a graphical
approach to solve the potential divider example

Potential Divider
• How can we do this graphically?

V

R1

R2

I

x

V1

V2

0V

So if V = 10V, R1 = 1W and R2 = 2W

V7.6
21

2
10

21

2 






















RR

R
VVx

Current

through

R2 (2W)

Current

through

R1 (1W)

x=6.7V V=10V 0V Voltage

across R2

Voltage

across R1

06/09/2022

163

Graphical Approach

• Clearly approach works for a linear circuit.

• How could we apply this if we have a non-
linear device, e.g., a transistor in place of
R2?

• What we do is substitute the V-I
characteristic of the non-linear device in
place of the linear characteristic (a straight
line due to Ohm’s Law) used previously for
R2

Graphical Approach

V

R1

Device

I

x

V1

V2

0V

Current

through

Device

Current

through

R1 (1W)

x=aV V=10V 0V Voltage across

Device
Voltage

across R1

So if V = 10V and R1 = 1W

Device

characteristic

The voltage at x is aV as shown

in the graph

06/09/2022

164

Digital Electronics:

Electronics, Devices and

Circuits

Transistors and Gates

Introduction

• Basic introduction to the p-n junction

• Operation an characteristics of Metal Oxide

Semiconductor Field Effect Transistors

(MOSFETs)

• n-MOS inverter, characteristics and problems

• Complimentary MOS (CMOS) inverter and

other logic gates

• Other logic families

• Noise margin

06/09/2022

165

p-n Junction
• The key to building useful devices is combining p

and n type semiconductors to form a p-n junction
• Electrons and holes diffuse across

junction due to large concentration

gradient

• On n-side, diffusion out of

electrons leaves +ve charged

atoms

• On p-side, diffusion out of holes

leaves -ve charged atoms

• Leaves a space-charge (depletion)

region with no free charges

• Space charge gives rise to electric

field that opposes diffusion

• Equilibrium is reached where no more charges move across junction

Biased p-n Junction

• Reverse bias: By making n-type +ve, electrons are removed from

it increasing size of space charge region. Similarly holes are

removed from p-type region. Thus space charge region and its

associated field are increased.

• The current flow, known as the reverse saturation current is

of the order of nA, i.e., essentially zero.

• So when a p-n junction is ‘reverse biased’ no current flows.

+

06/09/2022

166

Biased p-n Junction

• Thus the p-n junction allows significant current flow in only one

direction

• So a significant current flows only when ‘forward’ biased

• A device with a single p-n junction is known as a diode

• With forward bias, on the p-side holes are pushed toward junction

where they neutralise some of the –ve space charge.

• Similarly on the n-side, electrons are pushed toward the junction and

neutralise some of the +ve space charge.

• So depletion region and associated field are reduced.

• This allows diffusion current to increase significantly

+

n-Channel MOSFET
• We will now briefly introduce the n-channel

MOSFET

• The charge carriers in this device are

electrons

Gate

(G)

Drain

(D)

Source

(S)

The current flow from D to S (IDS) is

controlled by the voltage applied

between G and S (VGS), i.e., G has

to be +ve wrt S for current IDS to flow

(transistor On)

We will consider enhancement mode

devices in which no current flows

(IDS=0, i.e., the transistor is Off)

when VGS=0V

06/09/2022

167

n-Channel MOSFET

Drain (and Source) diode

reverse biased, so no path for

current to flow from S to D, i.e.,

the transistor is off

n+

n+ S

0V

G

D

+VD

p-type

Reverse

biased

p-n

junctions

Silicon

dioxide

insulator

OFF

n-Channel MOSFET

Consider the situation when the Gate (G)

voltage (VG) is raised to a positive

voltage, say VD

Electrons attracted to underside of the G,

so this region is ‘inverted’ and becomes

n-type. This region is known as the

channel

There is now a continuous path from n-

type S to n-type D, so electrons can flow

from S to D, i.e., the transistor is on

The G voltage (VG) needed for this to

occur is known as the threshold voltage

(Vt). Typically 0.3 to 0.7 V.

n+

n+ S

0V

G
D

+VD

p-type

n-type

layer:

‘inversion’

Silicon

dioxide

insulator

ON

+VG

06/09/2022

168

p-Channel MOSFET
• Similarly we have p-channel MOSFETs where

the charge carriers are holes

Gate

(G)

Drain

(D)

Source

(S)

The current flow from S to D (IDS)

is controlled by the voltage applied

between G and S (VGS), i.e., G has

to be -ve wrt S for current IDS to

flow (transistor On)

We will be consider enhancement

mode devices in which no current

flows (IDS=0, i.e., the transistor is

Off) when VGS=0V

p-Channel MOSFET
• Two varieties, namely p and n channel

• p-channel have the opposite construction, i.e., n-

type substrate and p-type S and D regions

p+

p+ S

0V

G

D

+VS

n-type

Reverse

biased

p-n

junctions

Silicon

dioxide

insulator

OFF

p+

p+ S

0V

G
D

+VS

n-type

p-type

layer:

‘inversion’

Silicon

dioxide

insulator

ON

0V

06/09/2022

169

n-MOSFET Characteristics

Plots V-I characteristics

of the device for various

Gate voltages (VGS)

At a constant value of VDS , we can

also see that IDS is a function of the

Gate voltage, VGS

The transistor begins to conduct

when the Gate voltage, VGS , reaches

the Threshold voltage: VT

n-MOS Inverter

VDD=

10V

R1=1kW

I

Vout

V1

VDS

0V
VGS

Vin

We can use the graphical

approach to determine the

relationship between Vin

and Vout

Note Vin=VGS

and Vout=VDS

Resistor

characteristic

06/09/2022

170

n-MOS Inverter
• Note it does not have the ‘ideal’ characteristic

that we would like from an ‘inverter’ function

Actual
Ideal

However if we specify suitable voltage thresholds, we can

achieve a ‘binary’ action.

n-MOS Inverter
Actual

So if we say:

voltage > 9V is logic 1

voltage < 2V is logic 0

The gate will work as follows:

Vin > 9V then Vout < 2V and if

Vin < 2V then Vout > 9V

06/09/2022

171

n-MOS Logic

• It is possible (and was done in the early days)

to build other logic functions, e.g., NOR and

NAND using n-MOS transistors

• However, n-MOS logic has fundamental

problems:

– Power consumption

– Slow output transition times from low to high

voltage levels when connected to capacitive loads

n-MOS Logic
• For example the metal track used on circuit boards

to connect gate inputs and outputs has a finite
capacitance to ground, i.e., to the 0V connection.
– We modify the circuit model to include this stray

capacitance C

VDD=

10V

R1=1kW

I

Vout

V1

0V
VGS

Vin

C

IC

• This significantly increases the rise time of the
output signal, Vout

06/09/2022

172

n-MOS Logic
• When the transistor turns-off (open circuit), capacitor

C modelling the stray capacitance, charges through
R1. So the rise-time of Vout is controlled by R1. When
the transistor turns-on (short circuit), C discharges
through the transistor with on resistance RON. So the
fall-time of Vout is controlled by RON.

• Since R1 > RON , rise time > fall time for Vout

VDD=

10V

R1=1kW

I

Vout

V1

0V
VGS

Vin

C

IC

n-MOS Logic
• Power consumption is also a problem

Vout
VDD=

10V

R1=1kW

I

V1

VDS

0V
VGS

Vin

Transistor OFF

No problem since no current is

flowing through R1, i.e., Vout = 10V

Transistor ON

This is a problem since current is flowing

through R1 . For example, if Vout = 1V

(corresponds with Vin = 10V and ID = I =

9mA), the power dissipated in the

resistor is the product of voltage across it

and the current through it, i.e.,

mW 819109 3
1  VIPdisp

06/09/2022

173

CMOS Logic

• To overcome these problems, complementary

MOS (CMOS) logic was developed

• As the name implies it uses p-channel as well

as n-channel MOS transistors

• Essentially, p-MOS transistors are n-MOS

transistors but with all the polarities reversed!

CMOS Inverter

VSS=

10V
Vout Vin

p-

MOS

n-

MOS

Vin

N-

MOS

P-

MOS Vout

low off on high
high on low off

Using the graphical approach

we can show that the

switching characteristics are

now much better than for the

n-MOS inverter

06/09/2022

174

CMOS Inverter

• It can be shown that the transistors only

dissipate power while they are switching.

This is when both transistors

are on. When one or the other

is off, the power dissipation is

zero

CMOS is also better at driving

capacitive loads since it has a

p-MOS transistor (instead of a

resistor) controlling the rising

edge of the output signal

CMOS Gates

• CMOS can also be used to build NAND

and NOR gates

• They have similar electrical properties

to the CMOS inverter

06/09/2022

175

CMOS Gates

• To ease analysis of the following circuits it is

worth recapping the function of the transistors.

• For both n and p-type MOS transistors

– If there is no potential difference (pd) between

Gate (G) and Source (S), the transistor is Off, i.e.,

an open circuit between Source (S) and Drain (D)

– If there is a sufficiently large pd between Gate and

Source, the transistor is On, i.e., a short circuit

between Source (S) and Drain (D) – Note for n-

MOS G is more +ve than S and for p-MOS G is

more -ve than S

CMOS NAND Gate

06/09/2022

176

CMOS NOR Gate

VSS=10V

Vout

VA

VB

T2 T1

T3

T4

0V

Vout

low off on high
high on low

off

T1 T2 T3 T4 VB VA

low
low

low high
high high

on
off off

off off
off off

on
on on

on on
low
low

Logic Families

• NMOS – compact, slow, cheap, obsolete

• CMOS – Older families slow (4000 series
about 60ns), but new ones (74AC) much
faster (3ns). 74HC series popular

• TTL – Uses bipolar transistors. Known as 74
series. Note that most 74 series devices are
now available in CMOS. Older versions slow
(LS about 16ns), newer ones faster (AS
about 2ns)

• ECL – High speed, but high power
consumption

06/09/2022

177

Logic Families

• Best to stick with the particular family
which has the best performance, power
consumption cost trade-off for the
required purpose

• It is possible to mix logic families and
sub-families, but care is required
regarding the acceptable logic voltage
levels and gate current handling
capabilities

Meaning of Voltage Levels

• As we have seen, the relationship between

the input voltage to a gate and the output

voltage depends upon the particular

implementation technology

• Essentially, the signals between outputs and

inputs are ‘analogue’ and so are susceptible

to corruption by additive noise, e.g., due to

cross talk from signals in adjacent wires

• What we need is a method for quantifying the

tolerance of a particular logic to noise

06/09/2022

178

Noise Margin

• Tolerance to noise is quantified in terms of the

noise margin

worst case input voltage,VIL(max)

worst case output voltage,VOL(max)

worst case input voltage,VIH(min)

worst case output voltage,VOH(min)

Logic 0 noise margin = VIL(max) - VOL(max)

Logic 1 noise margin = VOH(min) - VIH(min)

0V

supply voltage (VDD)

noise margin

noise margin
Logic 1

(High)

Logic 0

(Low)

undefined

Noise Margin

• For the 74 series High Speed CMOS
(HCMOS) used in the hardware labs (using
the values from the data sheet):

Logic 0 noise margin = VIL(max) - VOL(max)

Logic 0 noise margin = 1.35 – 0.1 = 1.25 V

Logic 1 noise margin = VOH(min) - VIH(min)

Logic 1 noise margin = 4.4 – 3.15 = 1.25 V

See the worst case noise margin = 1.25V, which is much

greater than the 0.4 V typical of TTL series devices.

Consequently HCMOS devices can tolerate more noise pick-

up before performance becomes compromised

