Adequacy proof idea

1. We cannot proceed to prove the adequacy statement by a straightforward induction on the structure of terms.

- Consider M to be $M_{1} M_{2}$, $\operatorname{fix}\left(M^{\prime}\right)$.

2. So we proceed to prove a stronger statement that applies to terms of arbitrary types and implies adequacy.
This statement roughly takes the form:

$$
\llbracket M \rrbracket \triangleleft_{\tau} M \text { for all types } \tau \text { and all } M \in \mathrm{PCF}_{\tau}
$$

where the formal approximation relations

$$
\triangleleft_{\tau} \subseteq \llbracket \tau \rrbracket \times \mathrm{PCF}_{\tau}
$$

are logically chosen to allow a proof by induction.

Requirements on the formal approximation relations, I
We want that, for $\gamma \in\{$ nat, fol $\}$,
(*) $\llbracket M \rrbracket \triangleleft_{\gamma} M$ implies $\underbrace{\forall V\left(\llbracket M \rrbracket=\llbracket V \rrbracket \Longrightarrow M \Downarrow_{\gamma} V\right)}_{\text {adequacy }}$
We define $\triangleleft_{n a t} \subseteq \mathbb{N}_{1} \times$ PCEnat and \triangle book \subseteq B \perp PCFbool such That (*) holds

check

IMIt $A_{\text {at }} M$ implis adequacy for M

Definition of $d \triangleleft_{\gamma} M\left(d \in \llbracket \gamma \rrbracket, M \in \mathrm{PCF}_{\gamma}\right)$ for $\gamma \in\{$ nat, wool $\}$

$\mathbb{N}_{\perp} \ni n \triangleleft_{\text {nat }} M \stackrel{\text { def }}{\Leftrightarrow}\left(n \in \mathbb{N} \Rightarrow M \Downarrow_{n a t} \operatorname{succ}^{n}(\mathbf{0})\right)$
$B \perp \rightarrow b \triangleleft_{\text {tool }} M \stackrel{\text { def }}{\Leftrightarrow}\left(b=\right.$ true $\Rightarrow M \Downarrow_{\text {bol }}$ true $)$

$$
\&\left(b=\text { false } \Rightarrow M \Downarrow_{\text {bool }} \text { false }\right)
$$

NB: $1 \Delta_{n}+M$
$\perp \triangleleft_{\text {boo }} M$

Proof of: $\llbracket M \rrbracket \triangleleft_{\gamma} M$ implies adequacy

Case $\gamma=$ nat.

$$
\begin{array}{rlr}
\llbracket M \rrbracket & =\llbracket V \rrbracket \\
& \Longrightarrow \llbracket M \rrbracket=\llbracket \operatorname{succ}^{n}(\mathbf{0}) \rrbracket & \text { for some } n \in \mathbb{N} \\
& \Longrightarrow n=\llbracket M \rrbracket \triangleleft_{\gamma} M & \\
& \Longrightarrow M \Downarrow \operatorname{succ}^{n}(\mathbf{0}) & \text { by definition of } \triangleleft_{n a t}
\end{array}
$$

Case $\gamma=$ bool is similar.
(2) How do we define $\nabla_{\tau_{1} \rightarrow \tau_{2}}$?

And canshour $\left[M M \Delta_{z_{1} \rightarrow \tau_{2}} M\right.$?
Requirements on the formal approximation relations, II
We want to be able to proceed by induction.

- Consider the case $M=M_{1} M_{2}$.
$~$ logical definition

Definition of

$$
f \triangleleft_{\tau \rightarrow \tau^{\prime}} M\left(f \in\left(\llbracket \tau \rrbracket \rightarrow \llbracket \tau^{\prime} \rrbracket\right), M \in \mathrm{PCF}_{\tau \rightarrow \tau^{\prime}}\right)
$$

$$
\begin{aligned}
& f \triangleleft_{\tau \rightarrow \tau^{\prime}} M \\
& \stackrel{\text { def }}{\Leftrightarrow} \forall x \in \llbracket \tau \rrbracket, N \in \mathrm{PCF}_{\tau} \\
& \left(x \triangleleft_{\tau} N \Rightarrow f(x) \triangleleft_{\tau^{\prime}} M N\right)
\end{aligned}
$$

Requirements on the formal approximation relations, III

We want to be able to proceed by induction.

- Consider the case $M=\mathrm{fix}\left(M^{\prime}\right)$.
$~$ admissibility property

$$
\begin{aligned}
& M=f \underline{\underline{x}}\left(M^{\prime}\right) \quad M^{\prime}: \tau \rightarrow \tau \\
& ? M y \triangleleft_{r} f \underline{x}\left(\mu^{\prime}\right) \\
& \pi f^{\prime \prime}\left(\mu^{\prime}\right) \rrbracket \\
&
\end{aligned}
$$

$$
f_{x}\left(\mathbb{M}^{\prime}(y)\right.
$$

use scott induction need an admissible property.

$$
\begin{aligned}
& \text { Admissibility property }
\end{aligned}
$$

Lemma. For all types τ and $M \in \mathrm{PCF}_{\tau}$, the set

$$
\left\{d \in \llbracket \tau \rrbracket \mid d \triangleleft_{\tau} M\right\}
$$

is an admissible subset of $\llbracket \tau \rrbracket$.

$$
\frac{x \in S \Rightarrow f(x) \in S}{f x(f) \in S}
$$

Assume
$d \Delta \beta_{x}\left(\mu^{\prime}\right)$
By addiction

$$
\sqrt[I M]{ } \cdot y \Delta_{z \rightarrow z} M^{\prime}
$$

By The loped definition

$$
\begin{gathered}
\pi \mu^{\prime} y(d) \Delta_{2} \mu^{\prime}\left(f_{x}\left(\mu^{\prime}\right)\right) \\
? \| \\
\left.\pi \mu^{\prime}\right](d) \Delta_{2} f x\left(m^{\prime}\right)
\end{gathered}
$$

Further properties

Lemma. For all types τ, elements $d, d^{\prime} \in \llbracket \tau \rrbracket$, and terms $M, N, V \in \mathrm{PCF}_{\tau}$,

1. If $d \sqsubseteq d^{\prime}$ and $d^{\prime} \triangleleft_{\tau} M$ then $d \triangleleft_{\tau} M$.
2. $f d \triangleleft_{\tau} M$ and $\forall V\left(M \Downarrow_{\tau} V \Longrightarrow N \Downarrow_{\tau} V\right)$ then $d \triangleleft_{\tau} N$.
use it with $M=M^{\prime}\left(f x\left(M^{\prime}\right)\right)$
and $N=f i \underline{x}\left(M^{\prime}\right)$

Requirements on the formal approximation relations, IV

We want to be able to proceed by induction.

- Consider the case $M=\mathbf{f n} x: \tau . M^{\prime}$.
\leadsto substitutivity property for open terms

Fundamental property

Theorem. For all $\Gamma=\left\langle x_{1} \mapsto \tau_{1}, \ldots, x_{n} \mapsto \tau_{n}\right\rangle$ and all $\Gamma \vdash M: \tau$, if $d_{1} \triangleleft_{\tau_{1}} M_{1}, \ldots, d_{n} \triangleleft_{\tau_{n}} M_{n}$ then
$\llbracket \Gamma \vdash M \rrbracket\left[x_{1} \mapsto d_{1}, \ldots, x_{n} \mapsto d_{n}\right] \triangleleft_{\tau} M\left[M_{1} / x_{1}, \ldots, M_{n} / x_{n}\right]$.

NB. The case $\Gamma=\emptyset$ reduces to

$$
\llbracket M \rrbracket \triangleleft_{\tau} M
$$

for all $M \in \mathrm{PCF}_{\tau}$.

Fundamental property of the relations \triangleleft_{τ}

Proposition. If $\Gamma \vdash M: \tau$ is a valid PCF typing, then for all
Γ-environments ρ and all Γ-substitutions σ

$$
\rho \triangleleft_{\Gamma} \sigma \Rightarrow \llbracket \Gamma \vdash M \rrbracket(\rho) \triangleleft_{\tau} M[\sigma]
$$

- $\rho \triangleleft_{\Gamma} \sigma$ means that $\rho(x) \triangleleft_{\Gamma(x)} \sigma(x)$ holds for each $x \in \operatorname{dom}(\Gamma)$.
- $M[\sigma]$ is the PCF term resulting from the simultaneous substitution of $\sigma(x)$ for x in M, each $x \in \operatorname{dom}(\Gamma)$.

Contextual preorder between PCF terms

Given PCF terms M_{1}, M_{2}, PCF type τ, and a type environment Γ, the relation $\Gamma \vdash M_{1} \leq_{c t x} M_{2}: \tau$ is defined to hold ff

- Both the typing $\Gamma \vdash M_{1}: \tau$ and $\Gamma \vdash M_{2}: \tau$ hold.
- For all PCF contexts \mathcal{C} for which $\mathcal{C}\left[M_{1}\right]$ and $\mathcal{C}\left[M_{2}\right]$ are closed terms of type γ, where $\gamma=$ nat or $\gamma=$ boole, and for all values $V \in \mathrm{PCF}_{\gamma}$,

$$
\mathcal{C}\left[M_{1}\right] \Downarrow_{\gamma} V \Longrightarrow \mathcal{C}\left[M_{2}\right] \Downarrow_{\gamma} V .
$$

NB:

$$
\llbracket M_{1} \rrbracket \Delta M_{2} \Leftrightarrow M_{1} \leqslant d x M_{2}
$$

Extensionality properties of $\leq_{\text {ctx }}$

At a ground type $\gamma \in\{b o o l, n a t\}$, $M_{1} \leq_{c t x} M_{2}: \gamma$ holds if and only if

$$
\forall V \in \mathrm{PCF}_{\gamma}\left(M_{1} \Downarrow_{\gamma} V \Longrightarrow M_{2} \Downarrow_{\gamma} V\right)
$$

At a function type $\tau \rightarrow \tau^{\prime}$,
$M_{1} \leq_{\text {ctx }} M_{2}: \tau \rightarrow \tau^{\prime}$ holds if and only if

$$
\forall M \in \operatorname{PCF}_{\tau}\left(M_{1} M \leq_{\text {ctx }} M_{2} M: \tau^{\prime}\right)
$$

Topic 8

Full Abstraction

Proof principle

For all types τ and closed terms $M_{1}, M_{2} \in \mathrm{PCF}_{\tau}$,

$$
\llbracket M_{1} \rrbracket=\llbracket M_{2} \rrbracket \text { in } \llbracket \tau \rrbracket \Longrightarrow M_{1} \cong_{\text {ctx }} M_{2}: \tau .
$$

Hence, to prove

$$
M_{1} \cong_{c t x} M_{2}: \tau
$$

it suffices to establish

$$
\llbracket M_{1} \rrbracket=\llbracket M_{2} \rrbracket \text { in } \llbracket \tau \rrbracket .
$$

Full abstraction

A denotational model is said to be fully abstract whenever denotational equality characterises contextual equivalence.

- The domain model of PCF is not fully abstract.

In other words, there are contextually equivalent PCF terms with different denotations.

We will construct two closed terms

$$
\begin{aligned}
& T_{1}, T_{2} \in \operatorname{PCF}_{(\underbrace{\text { bool } \rightarrow \text { boool } \rightarrow \text { bool }) \rightarrow \text { bool }}_{\text {Type }}} \text { of biwary } \\
& T_{1} \cong_{c t x} T_{2} \text { booleon fuction. } \\
& \text { and } \\
& \llbracket T_{1} \rrbracket \neq \llbracket T_{2} \rrbracket \\
& \exists f \in\left(B_{\perp} \rightarrow\left(B_{\perp} \rightarrow B_{\perp}\right)\right) . \quad \llbracket T_{i} \eta(f) \neq \pi T_{2} \eta(f) \in \mathbb{B}_{\perp}
\end{aligned}
$$

NB: If $T_{1} \cong c t x T_{2}$
Then

$$
\begin{aligned}
& \forall F \in P G F(\text { bod }-(\text { hod } \rightarrow \text { hel })) \\
& \pi T_{1} F y=\pi T_{2} F \eta \quad \text { in } B_{1} \\
& \pi T_{1}^{\prime \prime}(\pi F \eta) \quad \text { " }
\end{aligned}
$$

So to show failure of full abstraction There need be a non-defivable binary boole an function in π_{r} novel.

- We achieve $T_{1} \cong{ }_{c t x} T_{2}$ by making sure that

$$
\forall M \in \mathrm{PCF}_{\text {bool } \rightarrow(\text { bool } \rightarrow \text { bool })}\left(T_{1} M \psi_{\text {bool }} \& T_{2} M \psi_{\text {bool }}\right)
$$

Hence,

$$
\llbracket T_{1} \rrbracket(\llbracket M \rrbracket)=\perp=\llbracket T_{2} \rrbracket(\llbracket M \rrbracket)
$$

for all $M \in \mathrm{PCF}_{\text {bool } \rightarrow(\text { bool } \rightarrow \text { bool })}$.

- We achieve $\llbracket T_{1} \rrbracket \neq \llbracket T_{2} \rrbracket$ by making sure that

$$
\llbracket T_{1} \rrbracket(\text { por }) \neq \llbracket T_{2} \rrbracket(\text { por })
$$

for some non-definable continuous function

$$
\text { por } \in\left(\mathbb{B}_{\perp} \rightarrow\left(\mathbb{B}_{\perp} \rightarrow \mathbb{B}_{\perp}\right)\right)
$$

Parallell-or function

is the unique continuous function por : $\mathbb{B}_{\perp} \rightarrow\left(\mathbb{B}_{\perp} \rightarrow \mathbb{B}_{\perp}\right)$ such that

$$
\begin{array}{ll}
\text { por true } \perp & =\text { true } \\
\text { por } \perp \text { true } & =\text { true } \\
\text { por false false } & =\text { false }
\end{array}
$$

In which case, it necessarily follows by monotonicity that

$$
\begin{array}{llll}
\text { por true true } & =\text { true } & & \text { por false } \perp
\end{array}=\perp
$$

Undefinability of parallel-or

Proposition. There is no closed PCF term

$$
P: \text { bool } \rightarrow(\text { bool } \rightarrow \text { bool })
$$

satisfying

$$
\llbracket P \rrbracket=\text { por }: \mathbb{B}_{\perp} \rightarrow\left(\mathbb{B}_{\perp} \rightarrow \mathbb{B}_{\perp}\right)
$$

Parallel-or test functions

For $i=1,2$ define

$$
\begin{gathered}
T_{i} \stackrel{\text { def }}{=} \text { fn } f: \text { bool } \rightarrow(\text { bool } \rightarrow \text { bool }) . \\
\text { if }(f \text { true } \Omega) \text { then } \\
\text { if }(f \Omega \text { true }) \text { then } \\
\text { if }(f \text { false false }) \text { then } \Omega \text { else } B_{i} \\
\text { else } \Omega \\
\text { else } \Omega
\end{gathered}
$$

where $B_{1} \stackrel{\text { def }}{=}$ true, $B_{2} \stackrel{\text { def }}{=}$ false, and $\Omega \stackrel{\text { def }}{=} \mathbf{f i x}(\mathbf{f n} x$: bool. $x)$.

Failure of full abstraction

Proposition.

$$
\begin{aligned}
& T_{1} \cong{ }_{\text {ctx }} T_{2}:(\text { bool } \rightarrow(\text { bool } \rightarrow \text { bool })) \rightarrow \text { bool } \\
& \llbracket T_{1} \rrbracket \neq \llbracket T_{2} \rrbracket \in\left(\mathbb{B}_{\perp} \rightarrow\left(\mathbb{B}_{\perp} \rightarrow \mathbb{B}_{\perp}\right)\right) \rightarrow \mathbb{B}_{\perp}
\end{aligned}
$$

PCF+por

Expressions $\quad M::=\cdots \mid \operatorname{por}(M, M)$
Typing $\frac{\Gamma \vdash M_{1}: \text { bool } \quad \Gamma \vdash M_{2}: \text { bool }}{\Gamma \vdash \operatorname{por}\left(M_{1}, M_{2}\right): \text { bool }}$

Evaluation

$$
\begin{gathered}
\frac{M_{1} \Downarrow_{\text {bool }} \text { true }}{\operatorname{por}\left(M_{1}, M_{2}\right) \Downarrow_{\text {bool }} \text { true }} \\
\frac{M_{2} \Downarrow_{\text {bool }} \text { true }}{\operatorname{por}\left(M_{1}, M_{2}\right) \Downarrow_{\text {bool }} \text { true }} \\
\frac{M_{1} \Downarrow_{\text {bool }} \text { false }}{\operatorname{por}\left(M_{1}, M_{2}\right) \Downarrow_{2} \Downarrow_{\text {bool }} \text { false }}
\end{gathered}
$$

Plotkin's full abstraction result

The denotational semantics of PCF+por is given by extending that of PCF with the clause
$\llbracket \Gamma \vdash \operatorname{por}\left(M_{1}, M_{2}\right) \rrbracket(\rho) \stackrel{\text { def }}{=} \operatorname{por}\left(\llbracket \Gamma \vdash M_{1} \rrbracket(\rho)\right)\left(\llbracket \Gamma \vdash M_{2} \rrbracket(\rho)\right)$

This denotational semantics is fully abstract for contextual equivalence of PCF+por terms:

$$
\Gamma \vdash M_{1} \cong{ }_{c t x} M_{2}: \tau \Leftrightarrow \llbracket \Gamma \vdash M_{1} \rrbracket=\llbracket \Gamma \vdash M_{2} \rrbracket .
$$

