1. We cannot proceed to prove the adequacy statement by a straightforward induction on the structure of terms.

► Consider M to be $M_1 M_2$, $\mathbf{fix}(M')$.

2. So we proceed to prove a stronger statement that applies to terms of arbitrary types and implies adequacy.

This statement roughly takes the form:

 $\llbracket M
rbracket \lhd_{ au} M$ for all types au and all $M \in \operatorname{PCF}_{ au}$

where the *formal approximation relations*

 $\triangleleft_{\tau} \subseteq \llbracket \tau \rrbracket \times \mathrm{PCF}_{\tau}$

are *logically* chosen to allow a proof by induction.

Requirements on the formal approximation relations, I

We want that, for $\gamma \in \{nat, bool\}$,

9

$$\begin{array}{l} (\texttt{K}) \ \llbracket M \rrbracket \lhd_{\gamma} M \text{ implies } \forall V (\llbracket M \rrbracket = \llbracket V \rrbracket \implies M \Downarrow_{\gamma} V) \\ & \text{adequacy} \\ We \ de \ fine \ \triangleleft_{\mathsf{h} \not{\circ} \mathsf{t}} \subseteq \llbracket N_{\perp} \times P \subseteq \mathbb{F}_{\mathsf{h} \not{\circ} \mathsf{t}} \quad \exists \mathsf{n} \not{\circ} \mathsf{t} \\ & \exists_{\mathsf{h} \not{\circ} \mathsf{t}} \subseteq \llbracket N_{\perp} \times P \subseteq \mathbb{F}_{\mathsf{h} \not{\circ} \mathsf{t}} \quad \exists \mathsf{n} d \\ & \exists_{\mathsf{h} \not{\circ} \mathsf{t}} \subseteq \llbracket S \bot \times P \subseteq \mathbb{F}_{\mathsf{h} \not{\circ} \mathsf{o} \mathsf{t}} \quad \mathsf{such } \operatorname{That} (\texttt{K}) \text{ holds} \end{array}$$

Check
$$[M] \triangleleft_{not} M$$
 in plus solveness for M
Definition of $d \triangleleft_{\gamma} M$ ($d \in [\gamma], M \in PCF_{\gamma}$)
for $\gamma \in \{nat, bool\}$
 $M_{\downarrow} \ni n \triangleleft_{nat} M \stackrel{\text{def}}{\Rightarrow} (n \in \mathbb{N} \Rightarrow M \Downarrow_{nat} \operatorname{succ}^{n}(\mathbf{0}))$
 $B_{\downarrow} \ni b \triangleleft_{bool} M \stackrel{\text{def}}{\Rightarrow} (b = true \Rightarrow M \Downarrow_{bool} \operatorname{true})$
 $\& (b = false \Rightarrow M \Downarrow_{bool} \operatorname{false})$

NB: Lahot M Labool M

Proof of:
$$\llbracket M \rrbracket \triangleleft_{\gamma} M$$
 implies adequacy
Case $\gamma = nat$.
 $\llbracket M \rrbracket = \llbracket V \rrbracket$
 $\implies \llbracket M \rrbracket = \llbracket succ^{n}(\mathbf{0}) \rrbracket$ for some $n \in \mathbb{N}$
 $\implies n = \llbracket M \rrbracket \triangleleft_{\gamma} M$
 $\implies M \Downarrow succ^{n}(\mathbf{0})$ by definition of \triangleleft_{nat}

Case $\gamma = bool$ is similar.

now do ne define SZ2>Z2?

And conshow [MMAZAZZ M?

Requirements on the formal approximation relations, II

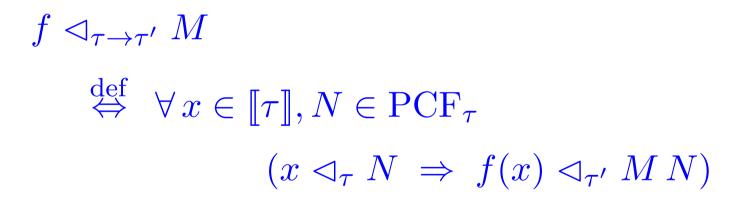
We want to be able to proceed by induction.

• Consider the case $M = M_1 M_2$.

 \sim *logical* definition

 $M_1: Z \rightarrow Z'$ $M_2: Z$ $M = M_1 M_2$ $\operatorname{Imig} \in (\operatorname{Iz} \mathcal{Y}) \cap (\operatorname{z}' \mathcal{Y})$ $\begin{bmatrix} M & M \\ M & M \\$ M2YE [ZY $M_1 M_2$ Z By induction, I [[Mi]] SZ-12' M1 $IIm_1 \mathcal{Y}(IIm_2 \mathcal{Y})$ and I[M2] SZM2 f 12-321 + LOGICAL def V d Az A $f(a) \triangleleft_{z'} F \land$

Definition of $f \lhd_{\tau \to \tau'} M \ (f \in (\llbracket \tau \rrbracket \to \llbracket \tau' \rrbracket), M \in \mathrm{PCF}_{\tau \to \tau'})$



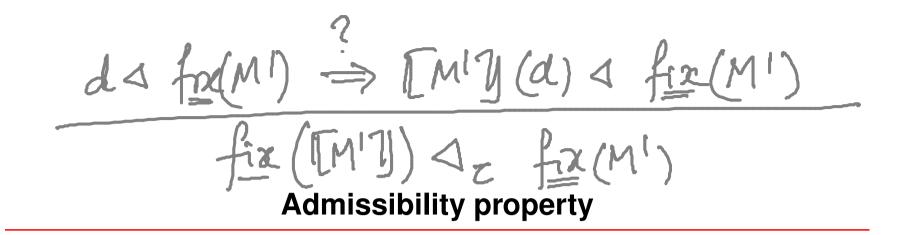
Requirements on the formal approximation relations, III

We want to be able to proceed by induction.

• Consider the case $M = \mathbf{fix}(M')$.

→ *admissibility* property

 $M = \int \mathcal{D}(M')$ M': てって $\mathbb{E}M\mathcal{Y} \triangleleft_{\mathcal{Z}} f_{\underline{\mathcal{I}}}(M')$ $\prod_{n \in \mathbb{N}} (m') \mathcal{Y}$ use Scott induction need on solvissible Ax (Im'N) property.



Lemma. For all types τ and $M \in \mathrm{PCF}_{\tau}$, the set $\{ d \in \llbracket \tau \rrbracket \mid d \lhd_{\tau} M \}$

is an admissible subset of $[\tau]$.

 $1 \in S = f(x) \in S$

By udiction [[M'US M' By The logical definition $\operatorname{TM}^{\prime}\mathcal{Y}(d) <_{Z} M^{\prime}(f_{\mathcal{Y}}(M^{\prime}))$? \\ [[m]](d) & z fix (m!)

Further properties

Lemma. For all types τ , elements $d, d' \in \llbracket \tau \rrbracket$, and terms $M, N, V \in \text{PCF}_{\tau}$,

1. If
$$d \sqsubseteq d'$$
 and $d' \triangleleft_{\tau} M$ then $d \triangleleft_{\tau} M$.
(2.) If $d \triangleleft_{\tau} M$ and $\forall V (M \Downarrow_{\tau} V \Longrightarrow N \Downarrow_{\tau} V)$
then $d \triangleleft_{\tau} N$.
We it with $M = M^{l} (f_{\Sigma}(M^{l}))$
and $\mathcal{N} = f_{\Sigma}(M^{l})$

Requirements on the formal approximation relations, IV

We want to be able to proceed by induction.

• Consider the case $M = \operatorname{fn} x : \tau \cdot M'$.

 \rightsquigarrow substitutivity property for open terms

Fundamental property

Theorem. For all $\Gamma = \langle x_1 \mapsto \tau_1, \dots, x_n \mapsto \tau_n \rangle$ and all $\Gamma \vdash M : \tau$, if $d_1 \triangleleft_{\tau_1} M_1, \dots, d_n \triangleleft_{\tau_n} M_n$ then $\llbracket \Gamma \vdash M \rrbracket [x_1 \mapsto d_1, \dots, x_n \mapsto d_n] \triangleleft_{\tau} M [M_1/x_1, \dots, M_n/x_n]$.

NB. The case $\Gamma = \emptyset$ reduces to

 $\llbracket M \rrbracket \lhd_{\tau} M$

for all $M \in \mathrm{PCF}_{\tau}$.

Fundamental property of the relations \triangleleft_{τ}

Proposition. If $\Gamma \vdash M : \tau$ is a valid PCF typing, then for all Γ -environments ρ and all Γ -substitutions σ

 $\rho \triangleleft_{\Gamma} \sigma \; \Rightarrow \; \llbracket \Gamma \vdash M \rrbracket(\rho) \triangleleft_{\tau} M[\sigma]$

- $\rho \triangleleft_{\Gamma} \sigma$ means that $\rho(x) \triangleleft_{\Gamma(x)} \sigma(x)$ holds for each $x \in dom(\Gamma)$.
- $M[\sigma]$ is the PCF term resulting from the simultaneous substitution of $\sigma(x)$ for x in M, each $x \in dom(\Gamma)$.

Given PCF terms M_1, M_2 , PCF type τ , and a type environment Γ , the relation $\Gamma \vdash M_1 \leq_{\text{ctx}} M_2 : \tau$ is defined to hold iff

- Both the typings $\Gamma \vdash M_1 : \tau$ and $\Gamma \vdash M_2 : \tau$ hold.
- For all PCF contexts C for which $C[M_1]$ and $C[M_2]$ are closed terms of type γ , where $\gamma = nat \text{ or } \gamma = bool$, and for all values $V \in PCF_{\gamma}$,

$$\mathcal{C}[M_1] \Downarrow_{\gamma} V \implies \mathcal{C}[M_2] \Downarrow_{\gamma} V$$
.

At a ground type $\gamma \in \{bool, nat\}$, $M_1 \leq_{ctx} M_2 : \gamma$ holds if and only if $\forall V \in PCF_{\gamma} (M_1 \Downarrow_{\gamma} V \implies M_2 \Downarrow_{\gamma} V)$.

At a function type $\tau \to \tau'$, $M_1 \leq_{\mathrm{ctx}} M_2 : \tau \to \tau'$ holds if and only if

 $\forall M \in \mathrm{PCF}_{\tau} (M_1 M \leq_{\mathrm{ctx}} M_2 M : \tau') .$

Topic 8

Full Abstraction

For all types τ and closed terms $M_1, M_2 \in \mathrm{PCF}_{\tau}$,

$$\llbracket M_1 \rrbracket = \llbracket M_2 \rrbracket$$
 in $\llbracket \tau \rrbracket \implies M_1 \cong_{\operatorname{ctx}} M_2 : \tau$.

Hence, to prove

 $M_1 \cong_{\mathrm{ctx}} M_2 : \tau$

it suffices to establish

 $\llbracket M_1 \rrbracket = \llbracket M_2 \rrbracket \text{ in } \llbracket \tau \rrbracket \ .$

Full abstraction

A denotational model is said to be *fully abstract* whenever denotational equality characterises contextual equivalence.

The domain model of PCF is not fully abstract.
In other words, there are contextually equivalent PCF terms with different denotations.

Failure of full abstraction, idea

We will construct two closed terms

 $NB: If T_1 \cong t_x T_2$ Then YFFPCF (bool-1(bool-1 bol)) $[T_1 F] = [T_2 F] \quad i \quad B_1$ $\pi \pi \mathcal{I} (\pi F1) \qquad \pi \mathcal{I} (\pi F1)$ So to show failure of full abstraction There need be a non-de firsble binary boole on function in The model.

• We achieve $T_1 \cong_{\text{ctx}} T_2$ by making sure that

 $\forall M \in \mathrm{PCF}_{bool \to (bool \to bool)} (T_1 M \not \downarrow_{bool} \& T_2 M \not \downarrow_{bool})$

Hence,

$$[T_1]([M]) = \bot = [T_2]([M])$$

for all $M \in \operatorname{PCF}_{bool \to (bool \to bool)}$.

• We achieve $\llbracket T_1 \rrbracket \neq \llbracket T_2 \rrbracket$ by making sure that

 $\llbracket T_1 \rrbracket(por) \neq \llbracket T_2 \rrbracket(por)$

for some *non-definable* continuous function

 $por \in (\mathbb{B}_{\perp} \to (\mathbb{B}_{\perp} \to \mathbb{B}_{\perp}))$.

Parallel-or function

is the unique continuous function $por: \mathbb{B}_{\perp} \to (\mathbb{B}_{\perp} \to \mathbb{B}_{\perp})$ such that

$por true \perp$	—	true
$por \perp true$	=	true
por false false	=	false

In which case, it necessarily follows by monotonicity that

por	true	true	=	true	por false \perp	=	\bot
por	true	false	=	true	$por \perp false$	=	\bot
por	false	true	=	true	$por \perp \perp$	—	\bot

Undefinability of parallel-or

Proposition. There is no closed PCF term

 $P: bool \rightarrow (bool \rightarrow bool)$

satisfying

$$\llbracket P \rrbracket = por : \mathbb{B}_{\perp} \to (\mathbb{B}_{\perp} \to \mathbb{B}_{\perp}) .$$

For i = 1, 2 define $T_i \stackrel{\text{def}}{=} \mathbf{fn} f : bool \to (bool \to bool) .$ if $(f \mathbf{true} \Omega) \mathbf{then}$ if $(f \mathbf{\Omega} \mathbf{true}) \mathbf{then}$ if $(f \mathbf{\Omega} \mathbf{true}) \mathbf{then}$ if $(f \mathbf{false false}) \mathbf{then} \Omega \mathbf{else} B_i$ else Ω else Ω

where $B_1 \stackrel{\text{def}}{=} \mathbf{true}, B_2 \stackrel{\text{def}}{=} \mathbf{false},$ and $\Omega \stackrel{\text{def}}{=} \mathbf{fix}(\mathbf{fn} \ x : bool \ x).$

Failure of full abstraction

Proposition.

 $T_1 \cong_{\mathrm{ctx}} T_2 : (bool \to (bool \to bool)) \to bool$ $\llbracket T_1 \rrbracket \neq \llbracket T_2 \rrbracket \in (\mathbb{B}_{\perp} \to (\mathbb{B}_{\perp} \to \mathbb{B}_{\perp})) \to \mathbb{B}_{\perp}$

Expressions $M := \cdots | \mathbf{por}(M, M)$ $\Gamma \vdash M_1 : bool \quad \Gamma \vdash M_2 : bool$ Typing $\Gamma \vdash \mathbf{por}(M_1, M_2) : bool$ **Evaluation** $M_1 \Downarrow_{bool} \mathbf{true}$ $M_2 \Downarrow_{bool} \mathbf{true}$ $\mathbf{por}(M_1, M_2) \Downarrow_{bool} \mathbf{true} = \mathbf{por}(M_1, M_2) \Downarrow_{bool} \mathbf{true}$ $M_1 \Downarrow_{bool}$ false $M_2 \Downarrow_{bool}$ false $\mathbf{por}(M_1, M_2) \Downarrow_{bool} \mathbf{false}$

The denotational semantics of PCF+por is given by extending that of PCF with the clause

 $\llbracket \Gamma \vdash \mathbf{por}(M_1, M_2) \rrbracket(\rho) \stackrel{\text{def}}{=} por(\llbracket \Gamma \vdash M_1 \rrbracket(\rho)) (\llbracket \Gamma \vdash M_2 \rrbracket(\rho))$

This denotational semantics is fully abstract for contextual equivalence of PCF+por terms:

 $\Gamma \vdash M_1 \cong_{\mathrm{ctx}} M_2 : \tau \iff \llbracket \Gamma \vdash M_1 \rrbracket = \llbracket \Gamma \vdash M_2 \rrbracket.$