Denotational semantics of PCF

Proposition. For all typing judgements $\Gamma \vdash M : \tau$, the denotation

$\llbracket \Gamma \vdash M \rrbracket : \llbracket \Gamma \rrbracket \to \llbracket \tau \rrbracket$

is a well-defined continous function.

Denotations of closed terms

For a closed term $M \in \mathrm{PCF}_{\tau}$, we get

 $\llbracket \emptyset \vdash M \rrbracket : \llbracket \emptyset \rrbracket \to \llbracket \tau \rrbracket$

and, since $\llbracket \emptyset \rrbracket = \{ \bot \}$, we have

 $\llbracket M \rrbracket \stackrel{\text{def}}{=} \llbracket \emptyset \vdash M \rrbracket (\bot) \in \llbracket \tau \rrbracket \qquad (M \in \mathrm{PCF}_{\tau})$

Compositionality

Proposition. For all typing judgements $\Gamma \vdash M : \tau$ and $\Gamma \vdash M' : \tau$, and all contexts $\mathcal{C}[-]$ such that $\Gamma' \vdash \mathcal{C}[M] : \tau'$ and $\Gamma' \vdash \mathcal{C}[M'] : \tau'$, if $[\![\Gamma \vdash M]\!] = [\![\Gamma \vdash M']\!] : [\![\Gamma]\!] \rightarrow [\![\tau]\!]$

then $\llbracket \Gamma' \vdash \mathcal{C}[M] \rrbracket = \llbracket \Gamma' \vdash \mathcal{C}[M] \rrbracket : \llbracket \Gamma' \rrbracket \to \llbracket \tau' \rrbracket$

For instance,

Soundness

Proposition. For all closed terms $M, V \in \mathrm{PCF}_{\tau}$,

if $M \Downarrow_\tau V$ then $[\![M]\!] = [\![V]\!] \in [\![\tau]\!]$.

For instance,

For instance,

MIN/2JUV M& fnx. M' MNUV By induction, $I[MY] = I[fnz.M'] = \lambda d. I[XHM'][XHd]$ $\prod N \left[\frac{N}{z} \right] = \prod V$ Lemma $\int [MN] = [V]$ [[M] ([[N]])= [[XHM'] [XH)[N]]

 $\Gamma \vdash N: G$ $T'_{j}X: O \vdash M: C$ $[[\Gamma, \chi: G \vdash M: Z]] : [[\Gamma, \chi: G]] \rightarrow [Z]$ $(x_i:z_i) \in (n, x:\sigma)$ $[[\Gamma + N: G]: [[\Gamma]] \rightarrow [G]$ $[[P + M [N/z] : Z] : [[P] \rightarrow [Z]$ lemma $\lambda p \in [\Gamma n]. [\Gamma, x: G + M: Z] (p[x \mapsto [[\Gamma + N: G](p)])$ in Torl

 $z \notin dom(\Gamma)$

Proposition. Suppose that $\Gamma \vdash M : \tau$ and that $\Gamma[x \mapsto \tau] \vdash M' : \tau'$, so that we also have $\Gamma \vdash M'[M/x] : \tau'$. *Then,*

$$\begin{split} \left[\!\left[\Gamma \vdash M'[M/x]\right]\!\right](\rho) \\ &= \left[\!\left[\Gamma[x \mapsto \tau] \vdash M'\right]\!\right] \left(\rho[x \mapsto \left[\!\left[\Gamma \vdash M\right]\!\right](\rho)\right]\right) \end{split}$$
for all $\rho \in \left[\!\left[\Gamma\right]\!\right].$

In particular when $\Gamma = \emptyset$, $[\![\langle x \mapsto \tau \rangle \vdash M']\!] : [\![\tau]\!] \to [\![\tau']\!]$ and $[\![M'[M/x]]\!] = [\![\langle x \mapsto \tau \rangle \vdash M']\!] ([\![M]\!])$

Generalities of denotational semantics

• Terms
- interpretations for successor, predecessor, --
fin:
$$(\mathcal{D} \rightarrow \mathcal{D}) \rightarrow \mathcal{D}$$

pairing: $\mathcal{D} \rightarrow \mathcal{E}$ $\mathcal{D} \rightarrow \mathcal{F}$
pairing: $\mathcal{D} \rightarrow \mathcal{E} \times \mathcal{F}$
projections: $\mathcal{D}_1 \times \cdots \times \mathcal{D}_n \rightarrow \mathcal{D}_i$

curryng: DREME $\mathcal{D} \rightarrow (E \rightarrow F)$

evolution: $(D \rightarrow E) \times D \longrightarrow E$

Even plas: · Scott domains (cpos). · Stable domains and functions

Topic 7

Relating Denotational and Operational Semantics

For any closed PCF terms M and V of ground type $\gamma \in \{\overbrace{nat, \ bool}\}$ with V a value

$$\llbracket M \rrbracket = \llbracket V \rrbracket \in \llbracket \gamma \rrbracket \implies M \Downarrow_{\gamma} V .$$

For any closed PCF terms M and V of *ground* type $\gamma \in \{nat, bool\}$ with V a value

$$\llbracket M \rrbracket = \llbracket V \rrbracket \in \llbracket \gamma \rrbracket \implies M \Downarrow_{\gamma} V.$$

NB. Adequacy does not hold at function types:

$$\llbracket \mathbf{fn} \ x : \tau. \ (\mathbf{fn} \ y : \tau. \ y) \ x \rrbracket = \llbracket \mathbf{fn} \ x : \tau. \ x \rrbracket \quad : \llbracket \tau \rrbracket \to \llbracket \tau \rrbracket$$

but

 $\mathbf{fn} \ x:\tau. \left(\mathbf{fn} \ y:\tau. \ y\right) x \not \downarrow_{\tau \to \tau} \mathbf{fn} \ x:\tau. \ x$

1. We cannot proceed to prove the adequacy statement by a straightforward induction on the structure of terms.

► Consider M to be $M_1 M_2$, $\mathbf{fix}(M')$.

$$\begin{bmatrix} M_1 & M_2 \end{bmatrix} = \begin{bmatrix} V \end{bmatrix} \in \llbracket \sigma \end{bmatrix} \xrightarrow{?} & M_1 & M_2 & M_2 & M_1 : \sigma \rightarrow \sigma \\ M_1 : \sigma \rightarrow \sigma & M_2 : \sigma \\ M_2 : \sigma \\ \end{bmatrix}$$

$$\begin{bmatrix} M_1 & M \\ M_2 : \sigma \end{bmatrix} \xrightarrow{?} \begin{bmatrix} M_1 & M_2 & M_2 \\ M_2 : \sigma \end{bmatrix}$$

$$\begin{bmatrix} M_2 \end{bmatrix} \in \llbracket \sigma \end{bmatrix} \xrightarrow{?} \begin{bmatrix} M_1 & M_2 & M_2 \\ M_2 : \sigma \end{bmatrix}$$

1.

1. We cannot proceed to prove the adequacy statement by a straightforward induction on the structure of terms.

► Consider M to be $M_1 M_2$, $\mathbf{fix}(M')$.

2. So we proceed to prove a stronger statement that applies to terms of arbitrary types and implies adequacy.

1. We cannot proceed to prove the adequacy statement by a straightforward induction on the structure of terms.

► Consider M to be $M_1 M_2$, $\mathbf{fix}(M')$.

2. So we proceed to prove a stronger statement that applies to terms of arbitrary types and implies adequacy.

This statement roughly takes the form:

 $\llbracket M \rrbracket \lhd_{\tau} M$ for all types au and all $M \in \mathrm{PCF}_{\tau}$

where the *formal approximation relations*

 $\triangleleft_{\tau} \subseteq \llbracket \tau \rrbracket \times \mathrm{PCF}_{\tau}$

are *logically* chosen to allow a proof by induction.