## Building chain-closed subsets (III)

## Logical operations:

- If $S, T \subseteq D$ are chain-closed subsets of $D$ then

$$
S \cup T \quad \text { and } \quad S \cap T
$$

are chain-closed subsets of $D$.

- If $\left\{S_{i}\right\}_{i \in I}$ is a family of chain-closed subsets of $D$ indexed by a set $I$, then $\bigcap_{i \in I} S_{i}$ is a chain-closed subset of $D$.
- If a property $P(x, y)$ determines a chain-closed subset of $D \times E$, then the property $\forall x \in D . P(x, y)$ determines a chain-closed subset of $E$.
$S_{1} T$ chain-closed $\Rightarrow$ SU $I$ chain-closed.
Consider do $5 d_{1} \subseteq \cdots \frac{\subseteq d_{u} \subseteq \cdots}{(n \in a)} \ldots$ in $S U T$.
(1) $\left\{d_{n}\right\} \cap S$ finite.

Then there is $\operatorname{an}^{\prime} N \in \mathbb{N}$ such That $d_{N} 5 d_{N+1} 5 \ldots d_{N+R} 5 \ldots$ in $T$
and $\Psi_{n} d_{n}=\bigsqcup_{k} d_{N+k} \in T S$ SUT
(2) $\left\{d_{n}\right\} \cap T$ fimite

Andagons.
(3) $\left\{d_{u}\right\} \cap S$ and $\left\{d_{n}\right\} \cap \tau$ infin $\bar{C}$. in $S$ in $T$


RIP $\left(L_{n} d_{n}\right) \in S U T$

$$
\begin{aligned}
& L_{n}\left\{d_{n} n S\right\} \in S \\
& \bigsqcup_{n}\left\{d_{n} n T\right\} \in T
\end{aligned}
$$

Lemma: $\{d n\}_{n}\left\{e_{n}\right\}_{n}$ in $D$
such that.

- for every $d_{n}$ There exists an $e_{m}$ such that $d_{n} \subseteq e_{n}$
- for every en n there exists aden such That $e_{m}\left\lceil d_{n}\right.$.

Then

$$
L_{n} d_{n}=L_{m} e_{m}
$$

## Example (III): Partial correctness

Let $\mathcal{F}:$ State $\rightharpoonup$ State be the denotation of

$$
\text { while } X>0 \text { do }(Y:=X * Y ; X:=X-1)
$$

For all $x, y \geq 0$,

$$
\begin{aligned}
& \mathcal{F}[X \mapsto x, Y \mapsto y] \downarrow \\
& \quad \Longrightarrow \mathcal{F}[X \mapsto x, Y \mapsto y]=[X \mapsto 0, Y \mapsto x!\cdot y]
\end{aligned}
$$

## Recall that

$$
\mathcal{F}=f i x(f)
$$

where $f:($ State $\rightharpoonup$ State $) \rightarrow($ State $\rightharpoonup$ State $)$ is given by

$$
f(w)=\lambda(x, y) \in \text { State. } \begin{cases}(x, y) & \text { if } x \leq 0 \\ w(x-1, x \cdot y) & \text { if } x>0\end{cases}
$$

Proof by Scott induction.
We consider the admissible subset of (State $\rightharpoonup$ State) given by

$$
S=\left\{w \left\lvert\, \begin{array}{c|c}
\begin{array}{|c}
\forall x, y \geq 0 . \\
w[X \mapsto x, Y \mapsto y] \downarrow \\
\Rightarrow w[X \mapsto x, Y \mapsto y]=[X \mapsto 0, Y \mapsto x!\cdot y]
\end{array}
\end{array}\right.\right\}
$$

and show that

$$
w \in S \Longrightarrow f(w) \in S
$$

$f(\omega)[x \mapsto x, Y \mapsto y] \downarrow$
$11\left\{\begin{array}{l}(x, y) \quad x \leq 0 \\ \omega(x-1, x \cdot y) \quad x>0\end{array}\right.$


## Topic 5

PCF

## PCF syntax

## Types

$$
\tau::=\text { nat } \mid \text { bool } \mid \tau \rightarrow \tau
$$

## Expressions

$$
\begin{aligned}
M::= & 0|\operatorname{succ}(M)| \operatorname{pred}(M) \\
\mid & \text { true } \mid \text { false } \mid \operatorname{zero}(M) \\
\mid & x \mid \text { if } M \text { then } M \text { else } M \\
\mid & \operatorname{fn} x: \tau . M|M M| \operatorname{fix}(M)
\end{aligned}
$$

where $x \in \mathbb{V}$, an infinite set of variables.
Technicality: We identify expressions up to $\alpha$-conversion of bound variables (created by the fn expression-former): by definition a PCF term is an $\alpha$-equivalence class of expressions.

## PCF typing relation, $\Gamma \vdash M: \tau$

- $\Gamma$ is a type environment, i.e. a finite partial function mapping variables to types (whose domain of definition is denoted $\operatorname{dom}(\Gamma))$
- $M$ is a term
- $\tau$ is a type.


## Notation:

$M: \tau$ means $M$ is closed and $\emptyset \vdash M: \tau$ holds.
$\mathrm{PCF}_{\tau} \stackrel{\text { def }}{=}\{M \mid M: \tau\}$.

## PCF typing relation (sample rules)

$$
\begin{gathered}
(: \text { fn }) \frac{\Gamma[x \mapsto \tau] \vdash M: \tau^{\prime}}{\Gamma \vdash \operatorname{fn} x: \tau \cdot M: \tau \rightarrow \tau^{\prime}} \text { if } x \notin \operatorname{dom}(\Gamma) \\
(: \text { app }) \frac{\Gamma \vdash M_{1}: \tau \rightarrow \tau^{\prime} \quad \Gamma \vdash M_{2}: \tau}{\Gamma \vdash M_{1} M_{2}: \tau^{\prime}} \\
(: \text { fix }) \frac{\Gamma \vdash M: \tau \rightarrow \tau}{\Gamma \vdash \operatorname{fix}(M): \tau}
\end{gathered}
$$

$H=f_{x}$ (fun. fr. $x$ fun. © (theron) Then $F_{I}$ else $G x($ pred $n)(h x($ pred $x)))$
functions in PEF
Partial recursive functions in PEF

- Primitive recursion.

$$
\left\{\begin{array}{l}
h(x, 0)=f(x) \\
h(x, y+1)=g(x, y, h(x, y))
\end{array}\right.
$$

F: wat $\rightarrow$ nat
$G:$ nat $\rightarrow$ nat $\rightarrow$ nat $\rightarrow$ nat.
$H:$ nat $\rightarrow$ nat $\rightarrow$ wat.
$h x n=$ 本 $($ zero $)$ then $F_{x}$ ell $G x($ pred $n)(h x($ pred $n))$
$F_{x n}=f(\operatorname{zero}(K x n))$ Then $n$ $\underset{\text { else }}{\text { Partial recursive face }} \underset{\text { functions }}{ }$ in Partial recursive functions in PCF

- Primitive recursion.

$$
\left\{\begin{array}{l}
h(x, 0)=f(x) \\
h(x, y+1)=g(x, y, h(x, y))
\end{array}\right.
$$

$M=f_{n} \cdot x \cdot f\left(f_{n}\left(f_{i} f_{i} f\left(\right.\right.\right.$ zero $\left.K x_{n}\right)$ Then $n$ elbe $\left.f(\operatorname{succu})\right)(O)$

- Minimisation. fin

$$
m(x)=\text { the least } y \geq 0 \text { such that } k(x, y)=0
$$

$M: n a t \rightarrow n a t$
$K: n a t \rightarrow n a t \rightarrow n a t$.

## PCF evaluation relation

takes the form

$$
M \Downarrow_{\tau} V
$$

where

- $\tau$ is a PCF type
- $M, V \in \mathrm{PCF}_{\tau}$ are closed PCF terms of type $\tau$
- $V$ is a value,

$$
V::=\mathbf{0}|\operatorname{succ}(V)| \text { true } \mid \text { false } \mid \mathbf{f n} x: \tau . M
$$

## PCF evaluation (sample rules)

$$
\begin{gathered}
\left(\Downarrow_{\text {val }}\right) \quad V \Downarrow_{\tau} V \quad(V \text { a value of type } \tau) \\
\left(\Downarrow_{\mathrm{cbn}^{2}}^{2}\right) \frac{M_{1} \Downarrow_{\tau \rightarrow \tau^{\prime}} \mathrm{fn} x: \tau \cdot M_{1}^{\prime} \quad M_{1}^{\prime}\left[M_{2} / x\right] \Downarrow_{\tau^{\prime}} V}{M_{1} M_{2} \Downarrow_{\tau^{\prime}} V}
\end{gathered}
$$

## PCF evaluation (sample rules)

$$
\left(\Downarrow_{\text {val }}\right) \quad V \Downarrow_{\tau} V \quad(V \text { a value of type } \tau)
$$

$\left(\Downarrow_{\mathrm{cbn}}\right) \frac{M_{1} \Downarrow_{\tau \rightarrow \tau^{\prime}} \mathrm{fn} x: \tau . M_{1}^{\prime} \quad M_{1}^{\prime}\left[M_{2} / x\right] \Downarrow_{\tau^{\prime}} V}{M_{1} M_{2} \Downarrow_{\tau^{\prime}} V}$

$$
\left(\Downarrow_{\mathrm{fix}}\right) \frac{M \mathrm{fix}(M) \Downarrow_{\tau} V}{\operatorname{fix}(M) \Downarrow_{\tau} V}
$$

$$
\left.\Omega=\operatorname{fix}^{(f n} x: \tau \cdot x\right): \tau
$$

? a non-terminating program.

$$
\begin{aligned}
& \text { for }\left(f_{n} x \cdot x\right) \\
& \frac{f_{n x} x \Downarrow f_{n x \cdot x} \quad x\left[^{f_{\underline{\prime}}\left(f_{n} x \cdot x\right)} / x\right] \Downarrow}{\left(f_{n} x \cdot x\right)\left(f_{x}\left(f_{n} x \cdot x\right)\right) \Downarrow} \frac{f_{\operatorname{xi}}\left(f_{n} x \cdot x\right)=\Omega \Downarrow}{}
\end{aligned}
$$

## Contextual equivalence

Two phrases of a programming language are contextually
equivalent if any occurrences of the first phrase in a complete program can be replaced by the second phrase without affecting the observable results of executing the program.

## Contextual equivalence of PCF terms

Given PCF terms $M_{1}, M_{2}$, PCF type $\tau$, and a type environment $\Gamma$, the relation $\Gamma \vdash M_{1} \cong{ }_{c t x} M_{2}: \tau$
is defined to hold iff

- Both the typings $\Gamma \vdash M_{1}: \tau$ and $\Gamma \vdash M_{2}: \tau$ hold.
- For all PCF contexts $\mathcal{C}$ for which $\mathcal{C}\left[M_{1}\right]$ and $\mathcal{C}\left[M_{2}\right]$ are closed terms of type $\gamma$, where $\gamma=$ nat or $\gamma=$ bool, and for all values $V: \gamma$,

$$
\mathcal{C}\left[M_{1}\right] \Downarrow_{\gamma} V \Leftrightarrow \mathcal{C}\left[M_{2}\right] \Downarrow_{\gamma} V .
$$

