Pre-fixed points

Let D be a poset and $f: D \rightarrow D$ be a function.
An element $d \in D$ is a pre-fixed point of f if it satisfies $f(d) \sqsubseteq d$.

The least pre-fixed point of f, if it exists, will be written

$$
f i x(f)
$$

It is thus (uniquely) specified by the two properties:

$$
\begin{align*}
& f(f i x(f)) \sqsubseteq f i x(f) \tag{lfp1}\\
& \forall d \in D . f(d) \sqsubseteq d \Rightarrow f i x(f) \sqsubseteq d . \tag{lfp2}
\end{align*}
$$

Proof principle

1.

$$
f(f i x(f)) \sqsubseteq f i x(f)
$$

2. Let D be a poset and let $f: D \rightarrow D$ be a function with a least pre-fixed point $f i x(f) \in D$.
For all $x \in D$, to prove that $f i x(f) \sqsubseteq x$ it is enough to establish that $f(x) \sqsubseteq x$.

$$
\frac{f(x) \sqsubseteq x}{f i x(f) \sqsubseteq x}(\text { lfp2 })
$$

(\mathbb{N}, \leq) sauce: $\mathbb{N} \rightarrow \mathbb{N}: n \rightarrow n+1$ If is monotone but dols not hare a least pre-fiseed point.

Least pre-fixed points are fixed points
If it exists, the least pre-fixed point of a mononote function on a partial order is necessarily a fixed point.

$$
\begin{aligned}
& \frac{x 5 y}{f(x)=f(y)}
\end{aligned}
$$

$$
\begin{aligned}
& f(f r x(f))=f x(f)
\end{aligned}
$$

Thesis*

All domains of computation are complete partial orders with a least element.

U
d_{0}

Cpo's and domains

A chain complete poset, or cpo for short, is a poset (D, \sqsubseteq) in which all countable increasing chains $d_{0} \sqsubseteq d_{1} \sqsubseteq d_{2} \sqsubseteq \ldots$ have least upper bounds, $\bigsqcup_{n \geq 0} d_{n}$:

$$
\begin{align*}
& \forall m \geq 0 . d_{m} \sqsubseteq \bigsqcup_{n \geq 0} d_{n} \tag{lub1}\\
& \forall d \in D .\left(\forall m \geq 0 . d_{m} \sqsubseteq d\right) \Rightarrow \bigsqcup_{n \geq 0} d_{n} \sqsubseteq d .
\end{align*}
$$

(lub2)

A domain is a cpo that possesses a least element, \perp :

$$
\forall d \in D . \perp \sqsubseteq d
$$

$\perp \sqsubseteq x$

$$
\overline{x_{i} \sqsubseteq \bigsqcup_{n \geq 0} x_{n}} \quad\left(i \geq 0 \text { and }\left\langle x_{n}\right\rangle \text { a chain }\right)
$$

$$
\frac{\forall n \geq 0 . x_{n} \sqsubseteq x}{\bigsqcup_{n \geq 0} x_{n} \sqsubseteq x} \quad\left(\left\langle x_{i}\right\rangle \text { a chain }\right)
$$

Domain of partial functions, $X \rightharpoonup Y$

Underlying set: all partial functions, f, with domain of definition $\operatorname{dom}(f) \subseteq X$ and taking values in Y.

Partial order:

$$
\begin{array}{rll}
f \sqsubseteq g & \text { iff } & \operatorname{dom}(f) \subseteq \operatorname{dom}(g) \text { and } \\
& \forall x \in \operatorname{dom}(f) \cdot f(x)=g(x) \\
& \text { iff } & \operatorname{graph}(f) \subseteq \operatorname{graph}(g)
\end{array}
$$

$$
=
$$

$$
\bigcup_{n \geq 0} \operatorname{graph}\left(f_{n}\right)
$$

A
Lub of chain $f_{0} \sqsubseteq f_{1} \sqsubseteq f_{2} \sqsubseteq \ldots$ is the partial function f with

$$
\operatorname{dom}(f)=\bigcup_{n \geq 0} \operatorname{dom}\left(f_{n}\right) \text { and }
$$

$$
f(x)= \begin{cases}f_{n}(x) & \text { if } x \in \operatorname{dom}\left(f_{n}\right), \text { some } n \\ \text { undefined } & \text { otherwise }\end{cases}
$$

$L_{n \geqslant 0}$ fo is the partial function f st.

Domain of partial functions, $X \rightharpoonup Y$

Underlying set: all partial functions, f, with domain of definition $\operatorname{dom}(f) \subseteq X$ and taking values in Y.

Partial order:

$$
\begin{array}{rll}
f \sqsubseteq g & \text { iff } & \operatorname{dom}(f) \subseteq \operatorname{dom}(g) \text { and } \\
& \forall x \in \operatorname{dom}(f) . f(x)=g(x) \\
& \text { iff } & g r a p h(f) \subseteq \operatorname{graph}(g)
\end{array}
$$

Lub of chain $f_{0} \sqsubseteq f_{1} \sqsubseteq f_{2} \sqsubseteq \ldots$ is the partial function f with

$$
\begin{aligned}
\operatorname{dom}(f) & =\bigcup_{n \geq 0} \operatorname{dom}\left(f_{n}\right) \text { and } \\
\qquad f(x) & = \begin{cases}f_{n}(x) & \text { if } x \in \operatorname{dom}\left(f_{n}\right), \text { some } n \\
\text { undefined } & \text { otherwise }\end{cases}
\end{aligned}
$$

Least element \perp is the totally undefined partial function.

Some properties of lubs of chains

Let D be a cpo.

1. For $d \in D, \bigsqcup_{n} d=d$.
2. For every chain $d_{0} \sqsubseteq d_{1} \sqsubseteq \ldots \sqsubseteq d_{n} \sqsubseteq \ldots$ in D,

$$
\bigsqcup_{n} d_{n}=\bigsqcup_{n} d_{N+n}
$$

for all $N \in \mathbb{N}$.
? $d_{k} \subseteq d_{N+k}$?

$$
d_{k} \subseteq d_{k+1} \leq d_{k+2} \subseteq \ldots 5 d_{k+N}
$$

$$
\begin{aligned}
& e_{0} 5 e_{1} 5 \cdots e_{n} 5 \ldots 5 L_{n} e_{n}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3. For every pair of chains } d_{0} \sqsubseteq d_{1} \sqsubseteq \ldots \sqsubseteq d_{n} \sqsubseteq \ldots \text { and } \sqsubseteq \bigsqcup_{n} d n \\
& e_{0} \sqsubseteq e_{1} \sqsubseteq \ldots \sqsubseteq e_{n} \sqsubseteq \ldots \text { in } D \text {, } \\
& \text { if } d_{n} \sqsubseteq e_{n} \text { for all } n \in \mathbb{N} \text { then } \bigsqcup_{n} d_{n} \sqsubseteq \bigsqcup_{n} e_{n} \text {. } \\
& \left(\frac{C h}{3}(D), \frac{5}{3}\right) \\
& \text { the set } \\
& \text { of chains } \\
& \text { in } D \\
& \underline{C h}(D) \xrightarrow[\sum_{\text {is nonofone }}]{\Delta} D:\left\langle d_{n}\right\rangle_{n \in \mathbb{N}} \mapsto \bigcup_{n} \bigcup_{d n} \Xi_{D} e_{n}
\end{aligned}
$$

$$
\frac{\overline{d_{n} \sqsubseteq e_{n}} \sqrt{e_{n} 5 L_{k} e_{k}}}{d_{n} \Sigma L_{k} e_{k}}
$$

3. For every pair of chains $d_{0} \sqsubseteq d_{1} \sqsubseteq \ldots \sqsubseteq d_{n} \sqsubseteq \ldots$ and $e_{0} \sqsubseteq e_{1} \sqsubseteq \ldots \sqsubseteq e_{n} \sqsubseteq \ldots$ in D, if $d_{n} \sqsubseteq e_{n}$ for all $n \in \mathbb{N}$ then $\bigsqcup_{n} d_{n} \sqsubseteq \bigsqcup_{n} e_{n}$.

$$
\frac{\forall n \geq 0 . x_{n} \sqsubseteq y_{n}}{\bigsqcup_{n} x_{n} \sqsubseteq \bigsqcup_{n} y_{n}} \quad\left(\left\langle x_{n}\right\rangle \text { and }\left\langle y_{n}\right\rangle \text { chains }\right)
$$

$$
\begin{aligned}
& \bigsqcup_{m} d_{m, 0} \Sigma \bigcup_{m} d_{m, 1} \subseteq \ldots \quad E L_{n}\left(\sum_{m} d_{m, n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& d_{L_{1}, 0} \subseteq d_{L_{1}, 1} \subseteq d_{m, 2} E \ldots 5 d_{m, n} \sqsubseteq \ldots \\
& \begin{array}{ll}
1 & \text { w } \\
\vdots & \vdots \\
\left.\vdots .2 R_{1} R^{E}\right)_{1}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& d_{1,05} d_{1,1} 5 d_{1,2} \tau \ldots d_{1, n} \subseteq \ldots \prod_{n}^{u 1} d_{1, n} \\
& \text { U1 } \omega_{1} \text { ul } \quad . . \quad u_{1} \\
& d_{0,0} \Sigma d_{0,1} \Sigma d_{0,2} \subseteq \ldots \tau d_{0, n} \tau \ldots L_{n} d_{0, n}
\end{aligned}
$$

$U_{k} d k_{1} k$

$$
\begin{aligned}
& d_{m, n} \subseteq d_{\text {naxa }}(n, n), \text { max }(m, n)
\end{aligned}
$$

$$
\begin{aligned}
& L_{m}\left(L_{n} d_{m, n}\right)=\bigsqcup_{k} d_{R, k}
\end{aligned}
$$

Diagonalising a double chain

Lemma. Let D be a cpo. Suppose that the doubly-indexed family of elements $d_{m, n} \in D(m, n \geq 0)$ satisfies

$$
m \leq m^{\prime} \& n \leq n^{\prime} \Rightarrow d_{m, n} \sqsubseteq d_{m^{\prime}, n^{\prime}}
$$

Then

$$
\bigsqcup_{n \geq 0} d_{0, n} \sqsubseteq \bigsqcup_{n \geq 0} d_{1, n} \sqsubseteq \bigsqcup_{n \geq 0} d_{2, n} \sqsubseteq \ldots
$$

and

$$
\bigsqcup_{m \geq 0} d_{m, 0} \sqsubseteq \bigsqcup_{m \geq 0} d_{m, 1} \sqsubseteq \bigsqcup_{m \geq 0} d_{m, 3} \sqsubseteq \ldots
$$

Moreover

$$
\bigsqcup_{m \geq 0}\left(\bigsqcup_{n \geq 0} d_{m, n}\right)=\bigsqcup_{k \geq 0} d_{k, k}=\bigsqcup_{n \geq 0}\left(\bigsqcup_{m \geq 0} d_{m, n}\right)
$$

Continuity and strictness

- If D and E are cpo's, the function f is continuous iff

1. it is monotone, and
2. it preserves lubs of chains, i.e. for all chains $d_{0} \sqsubseteq d_{1} \sqsubseteq \ldots$ in D, it is the case that

$$
f\left(\bigsqcup_{n \geq 0} d_{n}\right)=\bigsqcup_{n \geq 0} f\left(d_{n}\right) \quad \text { in } E .
$$

- If D and E have least elements, then the function f is strict iff $f(\perp)=\perp$.

$$
\perp \sqsubseteq f(1) \subseteq f(f \perp) \subseteq \cdots \subseteq f^{n}(1) ธ \cdots \subseteq L_{n} f^{n}(\perp)
$$

Let $f: D \rightarrow D$ be a continuous function on a domain D. Then

- f possesses a least pre-fixed point, given by

$$
f i x(f)=\bigsqcup_{n \geq 0} f^{n}(\perp)
$$

- Moreover, $f i x(f)$ is a fixed point of f, ie. satisfies $f(f i x(f))=f i x(f)$, and hence is the least fixed point of f.

$$
\begin{aligned}
& \text { while } B \text { do } C \rrbracket \\
& =f i x\left(f_{\llbracket B \rrbracket, \llbracket C \rrbracket}\right) \\
& f_{i B} y_{1} \pi C y:(\delta \mid c t e s \rightarrow \text { states }) \\
& =\bigsqcup_{n \geq 0} f_{\llbracket B \rrbracket, \llbracket C \rrbracket}{ }^{n}(\perp) \\
& =\lambda s \in \text { State } . \\
& \{\rightarrow(8 \sqrt{2} t+s t a t e) \\
& \text { continoms. } \\
& \begin{cases}\llbracket C \rrbracket^{k}(s) & \text { if } k \geq 0 \text { is such that } \llbracket B \rrbracket\left(\llbracket C \rrbracket^{k}(s)\right)=\text { false } \\
& \text { and } \llbracket B \rrbracket\left(\llbracket C \rrbracket^{i}(s)\right)=\text { true for all } 0 \leq i<k \\
\text { undefined } & \text { if } \llbracket B \rrbracket\left(\llbracket C \rrbracket^{i}(s)\right)=\text { true for all } i \geq 0\end{cases}
\end{aligned}
$$

