Tuhile B do C Y : state \rightarrow State
Desidesto:
Tuher $B \underline{d o c} y(s)=f(\pi B y(s)$,
Twhice B do ci ($[C y s)$,
s)

Twhile \& docy

$$
=\lambda s \cdot \text { fl }(\llbracket B y(s), \pi \text { white } B \text { do } c y(\pi c \rrbracket s), s)
$$

Thule B do CH: State \rightarrow state is a state transformer w : state \rightarrow state satisfying

$$
\omega=\lambda s . i f(\pi B][(s), \omega(\pi C y s), s)
$$

In other words:
Thill is do cf

Fixed point property of【while B do $C \rrbracket$

\llbracket while B do $C \rrbracket=f_{\llbracket B \rrbracket, \llbracket C \rrbracket}(\llbracket$ while B do $C \rrbracket)$

where, for each $b:$ State $\rightarrow\{$ true, false $\}$ and
$c:$ State - State, we define

$$
\begin{aligned}
& \text { as } \quad f_{b, c}:(\text { State } \rightharpoonup \text { State }) \rightarrow(\text { State } \rightharpoonup \text { State }) \\
& f_{b, c}=\lambda w \in(\text { State } \rightharpoonup \text { State }) . \lambda s \in \text { State. if }(b(s), w(c(s)), s) .
\end{aligned}
$$

- Why does $w=f_{\llbracket B \rrbracket, \llbracket C \rrbracket}(w)$ have a solution?
- What if it has several solutions-which one do we take to be \llbracket while B do $C \rrbracket$?

NB: [White true do skep $Y=\frac{1}{c}:$ State \rightarrow state the empty Approximating [while B do $C \rrbracket$ The empty

$$
\begin{aligned}
& \left.\omega_{0}=1 E \llbracket \text { while } B \underline{d o c}\right] \\
& \omega_{1}=f_{[B]} \sqrt[\pi c y]{ }\left(\omega_{0}\right)=f_{\pi B y, a c y}\left(\frac{1}{1}\right) \\
& =\lambda s \text {. f }(r B y(s), \perp(\pi \varepsilon y s), s) \\
& =\lambda s . \begin{cases}\uparrow & \text { if } \pi B \square(s)=\text { the } \\
s & \text { if }[B \square(s)=\text { floe }\end{cases}
\end{aligned}
$$ function

$$
\begin{aligned}
& \omega_{2}=f_{\tilde{q} B y, \pi}, \pi\left(\omega_{1}\right) \\
& =\lambda s \text {. ff }\left(\pi B y(s), w_{1}(\pi c y s), s\right) \\
& =\lambda s \cdot \dot{f}(\pi B y(s), f(\pi B y(\pi c y s), \uparrow, \pi C y s) s)
\end{aligned}
$$

$$
\begin{aligned}
& \omega_{n+1} \text { def }=f_{\pi \beta y,(i c])}\left(\omega_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& f_{\underline{x}}\left(f _ { a B } y _ { 1 } \left([c \pi)=L_{\sum_{n \in N}} \omega_{n} \quad \omega_{0}=d l_{1}\right.\right.
\end{aligned}
$$

for state trons formers is given by the umon
of the graphs of ω_{n}

$$
f_{\pi B y, \pi c y}\left(U_{n} \omega_{n}\right)=L_{n} \omega_{n}
$$

Approximating 【while B do $C \rrbracket$

$$
\begin{aligned}
& f_{\llbracket B \rrbracket, \llbracket C \rrbracket^{n}}(\perp) \\
& \quad=\lambda s \in \text { State. } \\
& \qquad \begin{cases}\llbracket C \rrbracket^{k}(s) & \text { if } \exists 0 \leq k<n \cdot \llbracket B \rrbracket\left(\llbracket C \rrbracket^{k}(s)\right)=\text { false } \\
& \text { and } \forall 0 \leq i<k \cdot \llbracket B \rrbracket\left(\llbracket C \rrbracket^{i}(s)\right)=\text { true } \\
\uparrow & \text { if } \forall 0 \leq i<n \cdot \llbracket B \rrbracket\left(\llbracket C \rrbracket^{i}(s)\right)=\text { true }\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& \text { The domain of } \\
& \text { state transform ness. } \\
& D \stackrel{\text { def }}{=}(\text { State }- \text { State })
\end{aligned}
$$

- Partial order \sqsubseteq on D :
$w \sqsubseteq w^{\prime} \quad$ iff \quad for all $s \in$ State, if w is defined at s then so is w^{\prime} and moreover $w(s)=w^{\prime}(s)$.
iff the graph of w is included in the graph of w^{\prime}. \checkmark bottom element
- Least element $\perp \in D$ w.r.t. \sqsubseteq :
$\perp=$ totally undefined partial function
$=$ partial function with empty graph
(satisfies $\perp \sqsubseteq w$, for all $w \in D$).

NB: $f[B y, \pi c]:(85 t c+8 t a) \rightarrow(8 t a t+8 t a t)$
Hos the property: (monotonicity)

$$
\begin{aligned}
& \omega \Sigma \omega^{\prime} \Rightarrow f_{[B y, \pi c y}(\omega) \leq f_{\pi B y, \pi c c^{\prime} y}\left(\omega^{\prime}\right) \\
& \lambda s . y([B](s), \omega([C D s), s) \quad \lambda s \dot{f}(\pi B y(s), \\
& \omega^{\prime}(\pi c y s) \text {, } \\
& \text { s) }
\end{aligned}
$$

Topic 2

Least Fixed Points

Thesis

All domains of computation are partial orders with a least element.

All computable functions are monotonic.

Partially ordered sets

A binary relation \sqsubseteq on a set D is a partial order iff it is
reflexive: $\forall d \in D . d \sqsubseteq d$
transitive: $\forall d, d^{\prime}, d^{\prime \prime} \in D . d \sqsubseteq d^{\prime} \sqsubseteq d^{\prime \prime} \Rightarrow d \sqsubseteq d^{\prime \prime}$
anti-symmetric: $\forall d, d^{\prime} \in D . d \sqsubseteq d^{\prime} \sqsubseteq d \Rightarrow d=d^{\prime}$.
Such a pair (D, \sqsubseteq) is called a partially ordered set, or poset.

$$
x \sqsubseteq x
$$

partial functions

$$
\{\operatorname{from} X \text { to } Y
$$

Domain of partial functions, $X \rightharpoonup Y$

$$
\begin{gathered}
f \sqsubseteq g \Leftrightarrow g r a p h(f) \leq g r a p h \\
\Leftrightarrow \forall x \in \operatorname{dom}(f) \\
x \in \operatorname{dom}(g) \\
\wedge f(x)=g(x)
\end{gathered}
$$

Domain of partial functions, $X \rightharpoonup Y$

Underlying set: all partial functions, f, with domain of definition $\operatorname{dom}(f) \subseteq X$ and taking values in Y.

Partial order:

$$
\begin{array}{rll}
f \sqsubseteq g & \text { iff } & \operatorname{dom}(f) \subseteq \operatorname{dom}(g) \text { and } \\
& \forall x \in \operatorname{dom}(f) \cdot f(x)=g(x) \\
& \text { iff } & g r a p h(f) \subseteq \operatorname{graph}(g)
\end{array}
$$

Monotonicity

- A function $f: D \rightarrow E$ between posets is monotone iff

$$
\forall d, d^{\prime} \in D . d \sqsubseteq d^{\prime} \Rightarrow f(d) \sqsubseteq f\left(d^{\prime}\right)
$$

$$
\frac{x \sqsubseteq y}{f(x) \sqsubseteq f(y)} \quad(f \text { monotone })
$$

Suppose that D is a poses and that S is a subset of D.
An element $d \in S$ is the least element of S if it satisfies

$$
\forall x \in S . d \sqsubseteq x
$$

Suppose d_{1} is least is S suppose d_{2} is lest $i s \Rightarrow d_{1}=d_{2}$

- Note that because \sqsubseteq is anti-symmetric, S has at most one least element.
- Note also that a pose may not have least element.

Pre-fixed points

Let D be a poset and $f: D \rightarrow D$ be a function.
An element $d \in D$ is a pre-fixed point of f if it satisfies
$f(d) \sqsubseteq d$. .
The least pre-fixed point of f, if it exists, will be written

$$
\text { fix }(f)
$$

It is thus (uniquely) specified by the two properties:

$$
\begin{align*}
& f(f i x(f)) \sqsubseteq f i x(f) \tag{lfp1}\\
& \forall d \in D . f(d) \sqsubseteq d \Rightarrow f i x(f) \sqsubseteq d . \tag{lfp2}
\end{align*}
$$

$$
\frac{\left(L_{p 1}\right) \quad \frac{?}{f(f i x f f)=\operatorname{fin}(f)} \quad \frac{f x}{f(f) E f(f i x(f))}}{f(f)=f\left(f_{\underline{x}}(f)\right) \quad \text { finowtine }}
$$

