Denotational Semantics

Lectures for Part II CST 2022/23

Prof Marcelo Fiore

Course web page:

http://www.cl.cam.ac.uk/teaching/2223/DenotSem/

Topic 1

Introduction

What is this course about?

General area.

Formal methods: Mathematical techniques for the specification, development, and verification of software and hardware systems.

Specific area.

Formal semantics: Mathematical theories for ascribing meanings to computer languages.

Why do we care?

- Rigour.
 - ... specification of programming languages
 - ... justification of program transformations
- Insight.
 - ... generalisations of notions computability
 - ... higher-order functions
 - ... data structures

- Feedback into language design.
 - ... continuations
 - ... monads
- Reasoning principles.
 - ... Scott induction
 - ... Logical relations
 - ... Co-induction

Styles of formal semantics

Operational.

Meanings for program phrases defined in terms of the *steps* of computation they can take during program execution.

Axiomatic.

Meanings for program phrases defined indirectly via the *ax-ioms and rules* of some logic of program properties.

Denotational.

Concerned with giving *mathematical models* of programming languages. Meanings for program phrases defined abstractly as elements of some suitable mathematical structure.

Basic idea of denotational semantics

Concerns:

- Abstract models (i.e. implementation/machine independent).
 - \sim Lectures 2, 3 and 4.
- Compositionality.
- Relationship to computation (e.g. operational semantics).

Characteristic features of a denotational semantics

- Each phrase (= part of a program), P, is given a denotation,
 [P] a mathematical object representing the contribution of P to the meaning of any complete program in which it occurs.
- The denotation of a phrase is determined just by the denotations of its subphrases (one says that the semantics is compositional).

Basic example of denotational semantics (I)

Arithmetic expressions

$$A \in \mathbf{Aexp} ::= \underline{n} \mid L \mid A+A \mid \dots$$
 where n ranges over *integers* and L over a specified set of *locations* L

Boolean expressions

$$B \in \mathbf{Bexp} ::= \mathbf{true} \mid \mathbf{false} \mid A = A \mid \dots$$

Commands

$$C \in \mathbf{Comm}$$
 ::= $\mathbf{skip} \mid L := A \mid C; C$
 $\mid \mathbf{if} \ B \ \mathbf{then} \ C \ \mathbf{else} \ C$

Basic example of denotational semantics (II)

Semantic functions

$$\mathcal{A}: \mathbf{Aexp} \to (State \to \mathbb{Z})$$

where

$$\mathbb{Z} = \{\ldots, -1, 0, 1, \ldots\}$$

$$State = (\mathbb{L} \to \mathbb{Z})$$

Basic example of denotational semantics (II)

Semantic functions

$$\mathcal{A}: \mathbf{Aexp} \to (State \to \mathbb{Z})$$
 $\mathcal{B}: \mathbf{Bexp} \to (State \to \mathbb{B})$
 $\mathcal{C}: \mathcal{Comm} \to (State \to \mathbb{B})$
 $\mathbb{Z} = \{..., -1, 0, 1, ...\}$
 $\mathbb{B} = \{true, false\}$

 $State = (\mathbb{L} \to \mathbb{Z})$

where

Basic example of denotational semantics (II)

Semantic functions

Basic example of denotational semantics (III)

Syntex Semantic function $A[A]: STate \rightarrow Z$ Semantic function $A[A]: STate \rightarrow Z$ Semantic function $A[A]: STate \rightarrow Z$ $A[n] = \lambda s \in State. n$ $A[n](s) = n \forall s$ $\mathcal{A}[\![L]\!] = \lambda s \in State.s(L)$ $A[A_1 + A_2] = \lambda s \in State. A[A_1](s) + A[A_2](s)$

Basic example of denotational semantics (IV)

Semantic function \mathcal{B}

$$\mathcal{B}[\![\mathbf{true}]\!] = \lambda s \in State.\ true$$
 $\mathcal{B}[\![\mathbf{false}]\!] = \lambda s \in State.\ false$
 $\mathcal{B}[\![A_1 = A_2]\!] = \lambda s \in State.\ eq(\mathcal{A}[\![A_1]\!](s), \mathcal{A}[\![A_2]\!](s))$
where $eq(a, a') = \begin{cases} true & \text{if } a = a' \\ false & \text{if } a \neq a' \end{cases}$

7 transformers.

Basic example of denotational semantics (V)

Semantic function $C[C]:(State \rightarrow State)$

$$[skip] = \lambda s \in State.s = 10$$

NB: From now on the names of semantic functions are omitted!

A simple example of compositionality

Given partial functions $\llbracket C \rrbracket$, $\llbracket C' \rrbracket$: $State \rightarrow State$ and a function $\llbracket B \rrbracket$: $State \rightarrow \{true, false\}$, we can define

[if B then C else
$$C'$$
] =
$$\lambda s \in State. if([B](s), [C](s), [C'](s))$$

where

$$if(b, x, x') = \begin{cases} x & \text{if } b = true \\ x' & \text{if } b = false \end{cases}$$

Basic example of denotational semantics (VI)

Semantic function \mathcal{C}

$$\llbracket L := A
rbracket{ = \lambda s \in State. \lambda \ell \in \mathbb{L}. if (\ell = L, \llbracket A
rbracket{ (s), s(\ell) }}{in State}$$

Denotational semantics of sequential composition

Denotation of sequential composition C; C' of two commands

$$\llbracket C; C' \rrbracket = \llbracket C' \rrbracket \circ \llbracket C \rrbracket = \lambda s \in State. \llbracket C' \rrbracket (\llbracket C \rrbracket (s))$$

given by composition of the partial functions from states to states $[\![C]\!], [\![C']\!]: State \longrightarrow State$ which are the denotations of the commands.

$$(C_1; C_2); C_3 \approx C_1; (C_2; C_3)$$

Denotational semantics of sequential composition

Denotation of sequential composition C; C' of two commands

$$\llbracket C; C' \rrbracket = \llbracket C' \rrbracket \circ \llbracket C \rrbracket = \lambda s \in State. \llbracket C' \rrbracket (\llbracket C \rrbracket (s))$$

given by composition of the partial functions from states to states $[\![C]\!], [\![C']\!]: State \longrightarrow State$ which are the denotations of the commands.

Cf. operational semantics of sequential composition:

$$\frac{C, s \Downarrow s' \quad C', s' \Downarrow s''}{C; C', s \Downarrow s''} .$$

[while $B \operatorname{\mathbf{do}} C$]

[[while B do C] (s) = --- [B](s)--- [C](s)---Tuble true do 8kp y (s) = 1 modefined. House the do 8kp y (s) = 1 House to the selection of the selection o Tulile true do 8kp 71: State - 1 815te is the unde fred partial fuction; i.e, onth empty graph denoted of or I

Inhile polse do skop I(s) = s Ruhle Polse do 8kp y = rd 87ste NB: while Blse do 8 km 2 5 kmp Mulile B de CM while B do c ~ If B Then (c; nhile B doc)

operations by

operations by

[unite B do C](S) = [f B Then (C; while B do C) else exp Ms) = 4(1787(s), [[c; while B & C](s), s) = 4 (TBYO), [[while B do c] ([[c]]s), s) NB: Tuhile B de C 7 is a state bransformer //w:State > State sahrfying