Denotational Semantics

Lectures for Part II CST 2022/23

Prof Marcelo Fiore

Course web page:

http://www.cl.cam.ac.uk/teaching/2223/DenotSem/

Topic 1

Introduction

What is this course about?

• General area.

Formal methods: Mathematical techniques for the specification, development, and verification of software and hardware systems.

• Specific area.

Formal semantics: Mathematical theories for ascribing meanings to computer languages.

Why do we care?

Why do we care?

- Rigour.
 - ... specification of programming languages
 - ... justification of program transformations

Why do we care?

- Rigour.
 - ... specification of programming languages
 - ... justification of program transformations
- Insight.
 - ... generalisations of notions computability
 - ... higher-order functions
 - ... data structures

- Feedback into language design.
 - ... continuations
 - ... monads

- Feedback into language design.
 - ... continuations
 - ... monads
- Reasoning principles.
 - ... Scott induction
 - ... Logical relations
 - ... Co-induction

Styles of formal semantics

Operational.

Axiomatic.

Denotational.

Operational.

Meanings for program phrases defined in terms of the *steps of computation* they can take during program execution.

Axiomatic.

Denotational.

Operational.

Meanings for program phrases defined in terms of the *steps of computation* they can take during program execution.

Axiomatic.

Meanings for program phrases defined indirectly via the *axioms and rules* of some logic of program properties.

Denotational.

Operational.

Meanings for program phrases defined in terms of the *steps of computation* they can take during program execution.

Axiomatic.

Meanings for program phrases defined indirectly via the *axioms and rules* of some logic of program properties.

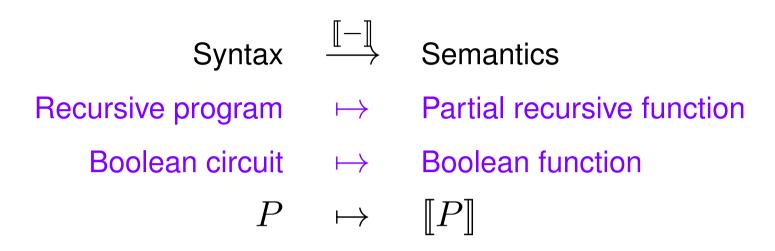
Denotational.

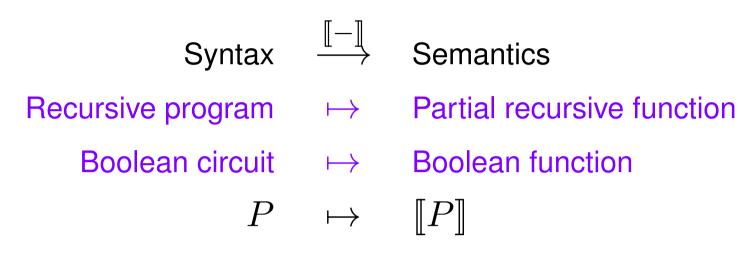
Concerned with giving *mathematical models* of programming languages. Meanings for program phrases defined abstractly as elements of some suitable mathematical structure.

Syntax $\xrightarrow{\mathbb{I}-\mathbb{I}}$ Semantics

$$P \quad \mapsto \quad \llbracket P \rrbracket$$

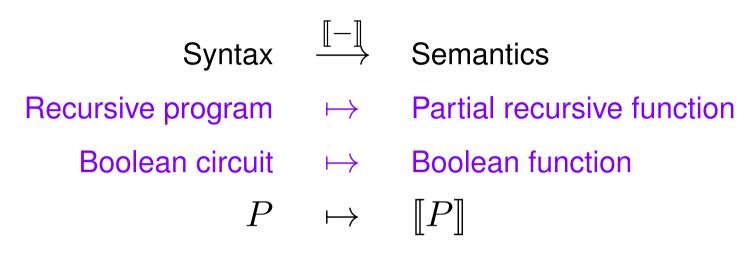
$$P \quad \mapsto \quad \llbracket P \rrbracket$$





Concerns:

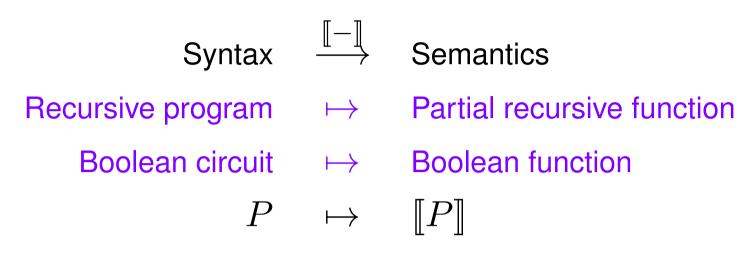
Abstract models (*i.e.* implementation/machine independent).
 ~> Lectures 2, 3 and 4.



Concerns:

- Abstract models (*i.e.* implementation/machine independent).
 ~> Lectures 2, 3 and 4.
- Compositionality.

 \rightsquigarrow Lectures 5 and 6.



Concerns:

- Abstract models (*i.e.* implementation/machine independent).
 ~> Lectures 2, 3 and 4.
- Compositionality.

 \rightsquigarrow Lectures 5 and 6.

Relationship to computation (*e.g.* operational semantics).
 ~> Lectures 7 and 8.

Characteristic features of a denotational semantics

- Each phrase (= part of a program), P, is given a denotation,
 [P] a mathematical object representing the contribution of P to the meaning of any complete program in which it occurs.
- The denotation of a phrase is determined just by the denotations of its subphrases (one says that the semantics is compositional).

IMP⁻ syntax

Arithmetic expressions

 $A \in \mathbf{Aexp} ::= \underline{n} \mid L \mid A + A \mid \dots$

where n ranges over *integers* and L over a specified set of *locations* L

Boolean expressions

 $B \in \mathbf{Bexp} \quad ::= \quad \mathbf{true} \mid \mathbf{false} \mid A = A \mid \dots \\ \mid \quad \neg B \mid \dots$

Commands

 $C \in \mathbf{Comm} \quad ::= \quad \mathbf{skip} \quad | \quad L := A \quad | \quad C; C$ $| \quad \mathbf{if} \ B \mathbf{then} \ C \mathbf{else} \ C$

Basic example of denotational semantics (II)

Semantic functions

$$\mathcal{A}: \mathbf{Aexp} \to (State \to \mathbb{Z})$$

where

$$\mathbb{Z} = \{\ldots, -1, 0, 1, \ldots\}$$

State = $(\mathbb{L} \to \mathbb{Z})$

Semantic functions

$$\mathcal{A}: \quad \mathbf{Aexp} \to (State \to \mathbb{Z})$$
$$\mathcal{B}: \quad \mathbf{Bexp} \to (State \to \mathbb{B})$$

where

$$\mathbb{Z} = \{\dots, -1, 0, 1, \dots\}$$
$$\mathbb{B} = \{true, false\}$$
$$State = (\mathbb{L} \to \mathbb{Z})$$

Semantic functions

$$\mathcal{A}: \quad \mathbf{Aexp} \to (State \to \mathbb{Z})$$
$$\mathcal{B}: \quad \mathbf{Bexp} \to (State \to \mathbb{B})$$
$$\mathcal{C}: \quad \mathbf{Comm} \to (State \to State)$$

where

$$\mathbb{Z} = \{ \dots, -1, 0, 1, \dots \}$$
$$\mathbb{B} = \{ true, false \}$$
$$State = (\mathbb{L} \to \mathbb{Z})$$

Basic example of denotational semantics (III)

Semantic function \mathcal{A}

 $\mathcal{A}[\![\underline{n}]\!] = \lambda s \in State. n$

 $\mathcal{A}\llbracket L \rrbracket = \lambda s \in State. \, s(L)$

 $\mathcal{A}\llbracket A_1 + A_2 \rrbracket = \lambda s \in State. \, \mathcal{A}\llbracket A_1 \rrbracket(s) + \mathcal{A}\llbracket A_2 \rrbracket(s)$

Semantic function \mathcal{B}

 $\mathcal{B}\llbracket \mathbf{true} \rrbracket = \lambda s \in State. true$ $\mathcal{B}\llbracket \mathbf{false} \rrbracket = \lambda s \in State. false$ $\mathcal{B}\llbracket A_1 = A_2 \rrbracket = \lambda s \in State. eq \left(\mathcal{A}\llbracket A_1 \rrbracket(s), \mathcal{A}\llbracket A_2 \rrbracket(s)\right)$ $\text{where } eq(a, a') = \begin{cases} true & \text{if } a = a' \\ false & \text{if } a \neq a' \end{cases}$

Basic example of denotational semantics (V)

Semantic function \mathcal{C}

 $\llbracket skip \rrbracket = \lambda s \in State. s$

NB: From now on the names of semantic functions are omitted!

A simple example of compositionality

Given partial functions $\llbracket C \rrbracket, \llbracket C' \rrbracket : State \rightarrow State$ and a function $\llbracket B \rrbracket : State \rightarrow \{true, false\}$, we can define

$$\llbracket \mathbf{if} \ B \ \mathbf{then} \ C \ \mathbf{else} \ C' \rrbracket = \\\lambda s \in State. \ if \left(\llbracket B \rrbracket(s), \llbracket C \rrbracket(s), \llbracket C' \rrbracket(s) \right)$$

where

$$if(b, x, x') = \begin{cases} x & \text{if } b = true \\ x' & \text{if } b = false \end{cases}$$

Basic example of denotational semantics (VI)

Semantic function \mathcal{C}

$\llbracket L := A \rrbracket = \lambda s \in State. \ \lambda \ell \in \mathbb{L}. \ if \left(\ell = L, \llbracket A \rrbracket(s), s(\ell) \right)$

Denotation of sequential composition C; C' of two commands

$$\llbracket C; C' \rrbracket = \llbracket C' \rrbracket \circ \llbracket C \rrbracket = \lambda s \in State. \llbracket C' \rrbracket \left(\llbracket C \rrbracket (s) \right)$$

given by composition of the partial functions from states to states $\llbracket C \rrbracket, \llbracket C' \rrbracket : State \longrightarrow State$ which are the denotations of the commands.

Denotation of sequential composition C; C' of two commands

$$\llbracket C; C' \rrbracket = \llbracket C' \rrbracket \circ \llbracket C \rrbracket = \lambda s \in State. \llbracket C' \rrbracket \left(\llbracket C \rrbracket (s) \right)$$

given by composition of the partial functions from states to states $\llbracket C \rrbracket, \llbracket C' \rrbracket : State \rightarrow State$ which are the denotations of the commands.

Cf. operational semantics of sequential composition:

$$\frac{C, s \Downarrow s' \quad C', s' \Downarrow s''}{C; C', s \Downarrow s''} \ \cdot$$

$\llbracket \mathbf{while} \ B \ \mathbf{do} \ C \rrbracket$

Fixed point property of $\llbracket \mathbf{while} \ B \ \mathbf{do} \ C \rrbracket$

 $\llbracket \mathbf{while} \ B \ \mathbf{do} \ C \rrbracket = f_{\llbracket B \rrbracket, \llbracket C \rrbracket}(\llbracket \mathbf{while} \ B \ \mathbf{do} \ C \rrbracket)$ where, for each $b : State \to \{true, false\}$ and $c : State \to State$, we define

 $f_{b,c}: (State \rightarrow State) \rightarrow (State \rightarrow State)$

as

 $f_{b,c} = \lambda w \in (State \rightarrow State). \ \lambda s \in State. \ if (b(s), w(c(s)), s).$

 $\llbracket \mathbf{while} \ B \ \mathbf{do} \ C \rrbracket = f_{\llbracket B \rrbracket, \llbracket C \rrbracket}(\llbracket \mathbf{while} \ B \ \mathbf{do} \ C \rrbracket)$ where, for each $b : State \to \{true, false\}$ and $c : State \to State$, we define

$$f_{b,c}: (State \rightarrow State) \rightarrow (State \rightarrow State)$$

as

 $f_{b,c} = \lambda w \in (State \rightarrow State). \ \lambda s \in State. \ if (b(s), w(c(s)), s).$

- Why does $w = f_{\llbracket B \rrbracket, \llbracket C \rrbracket}(w)$ have a solution?
- What if it has several solutions—which one do we take to be
 [while B do C]?

Approximating \llbracket while $B \operatorname{do} C \rrbracket$

Approximating $\llbracket while B \operatorname{do} C \rrbracket$

$$\begin{split} f_{\llbracket B \rrbracket, \llbracket C \rrbracket}^{n}(\bot) \\ &= \lambda s \in State. \\ & \left\{ \begin{array}{ll} \llbracket C \rrbracket^{k}(s) & \text{if } \exists \ 0 \leq k < n. \ \llbracket B \rrbracket(\llbracket C \rrbracket^{k}(s)) = false \\ & \text{and } \forall \ 0 \leq i < k. \ \llbracket B \rrbracket(\llbracket C \rrbracket^{i}(s)) = true \\ \uparrow & \text{if } \forall \ 0 \leq i < n. \ \llbracket B \rrbracket(\llbracket C \rrbracket^{i}(s)) = true \end{array} \right. \end{split}$$

$$D \stackrel{\mathrm{def}}{=} (State \rightharpoonup State)$$

• Partial order \sqsubseteq on D:

 $w \sqsubseteq w'$ iff for all $s \in State$, if w is defined at s then so is w' and moreover w(s) = w'(s).

iff the graph of w is included in the graph of w'.

- Least element $\perp \in D$ w.r.t. \sqsubseteq :
 - \perp = totally undefined partial function
 - = partial function with empty graph

(satisfies $\perp \sqsubseteq w$, for all $w \in D$).

Topic 2

Least Fixed Points

Thesis

All domains of computation are partial orders with a least element.

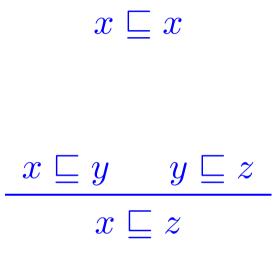
Thesis

All domains of computation are partial orders with a least element.

All computable functions are monotonic.

Partially ordered sets

A binary relation \sqsubseteq on a set D is a partial order iff it is reflexive: $\forall d \in D. \ d \sqsubseteq d$ transitive: $\forall d, d', d'' \in D. \ d \sqsubseteq d' \sqsubseteq d'' \Rightarrow d \sqsubseteq d''$ anti-symmetric: $\forall d, d' \in D. \ d \sqsubseteq d' \sqsubseteq d \Rightarrow d = d'.$ Such a pair (D, \sqsubseteq) is called a partially ordered set, or poset.



$$\begin{array}{c|c} x \sqsubseteq y & y \sqsubseteq x \\ \hline x = y \end{array}$$

Domain of partial functions, $X \rightharpoonup Y$

Domain of partial functions, $X \rightharpoonup Y$

Underlying set: all partial functions, f, with domain of definition $dom(f) \subseteq X$ and taking values in Y.

Domain of partial functions, $X \rightharpoonup Y$

Underlying set: all partial functions, f, with domain of definition $dom(f) \subseteq X$ and taking values in Y.

Partial order:

$$\begin{array}{ll} f\sqsubseteq g & \text{iff} & dom(f)\subseteq dom(g) \text{ and} \\ & \forall x\in dom(f). \ f(x)=g(x) \\ & \text{iff} & graph(f)\subseteq graph(g) \end{array}$$

• A function $f: D \to E$ between posets is monotone iff $\forall d, d' \in D. \ d \sqsubseteq d' \Rightarrow f(d) \sqsubseteq f(d').$

$$\frac{x \sqsubseteq y}{f(x) \sqsubseteq f(y)} \quad (f \text{ monotone})$$

Least Elements

Suppose that D is a poset and that S is a subset of D.

An element $d \in S$ is the *least* element of S if it satisfies

$$\forall x \in S. \ d \sqsubseteq x$$

- Note that because \sqsubseteq is anti-symmetric, S has at most one least element.
- Note also that a poset may not have least element.

Let D be a poset and $f: D \rightarrow D$ be a function.

An element $d \in D$ is a pre-fixed point of f if it satisfies $f(d) \sqsubseteq d$.

The *least pre-fixed point* of f, if it exists, will be written

fix(f)

It is thus (uniquely) specified by the two properties:

 $f(fix(f)) \sqsubseteq fix(f) \tag{Ifp1}$

 $\forall d \in D. \ f(d) \sqsubseteq d \implies fix(f) \sqsubseteq d.$ (lfp2)

2. Let D be a poset and let $f : D \to D$ be a function with a least pre-fixed point $fix(f) \in D$. For all $x \in D$, to prove that $fix(f) \sqsubseteq x$ it is enough to establish that $f(x) \sqsubseteq x$. 2. Let *D* be a poset and let *f* : *D* → *D* be a function with a least pre-fixed point *fix*(*f*) ∈ *D*.
For all *x* ∈ *D*, to prove that *fix*(*f*) ⊑ *x* it is enough to establish that *f*(*x*) ⊑ *x*.

$$\frac{f(x) \sqsubseteq x}{fix(f) \sqsubseteq x}$$

1.

 $f(fix(f)) \sqsubseteq fix(f)$

2. Let D be a poset and let $f : D \to D$ be a function with a least pre-fixed point $fix(f) \in D$. For all $x \in D$, to prove that $fix(f) \sqsubseteq x$ it is enough to establish that $f(x) \sqsubseteq x$.

$$\frac{f(x) \sqsubseteq x}{fix(f) \sqsubseteq x}$$

Least pre-fixed points are fixed points

If it exists, the least pre-fixed point of a mononote function on a partial order is necessarily a fixed point.

Thesis*

All domains of computation are

complete partial orders with a least element.

Thesis*

All domains of computation are

complete partial orders with a least element.

All computable functions are continuous.

A chain complete poset, or cpo for short, is a poset (D, \sqsubseteq) in which all countable increasing chains $d_0 \sqsubseteq d_1 \sqsubseteq d_2 \sqsubseteq \ldots$ have least upper bounds, $\bigsqcup_{n \ge 0} d_n$:

$$\forall m \ge 0 \, . \, d_m \sqsubseteq \bigsqcup_{n \ge 0} d_n$$
 (lub1)
$$\forall d \in D \, . \, (\forall m \ge 0 \, . \, d_m \sqsubseteq d) \implies \bigsqcup_{n \ge 0} d_n \sqsubseteq d.$$
 (lub2)

A domain is a cpo that possesses a least element, \perp :

$$\forall d \in D \, . \, \bot \sqsubseteq d.$$

$\bot \sqsubseteq x$

$$\overline{x_i \sqsubseteq \bigsqcup_{n \ge 0} x_n}$$
 $(i \ge 0 \text{ and } \langle x_n \rangle \text{ a chain})$

$$\frac{\forall n \ge 0 \, . \, x_n \sqsubseteq x}{\bigsqcup_{n \ge 0} x_n \sqsubseteq x} \quad (\langle x_i \rangle \text{ a chain})$$

Partial order:

$$\begin{array}{ll} f\sqsubseteq g & \text{iff} & dom(f)\subseteq dom(g) \text{ and} \\ & \forall x\in dom(f). \ f(x)=g(x) \\ & \text{iff} & graph(f)\subseteq graph(g) \end{array}$$

Partial order:

$$\begin{array}{ll} f\sqsubseteq g & \text{iff} & dom(f)\subseteq dom(g) \text{ and} \\ & \forall x\in dom(f). \ f(x)=g(x) \\ & \text{iff} & graph(f)\subseteq graph(g) \end{array}$$

Lub of chain $f_0 \sqsubseteq f_1 \sqsubseteq f_2 \sqsubseteq \dots$ is the partial function f with $dom(f) = \bigcup_{n \ge 0} dom(f_n)$ and

$$f(x) = \begin{cases} f_n(x) & \text{if } x \in dom(f_n), \text{ some } n \\ \text{undefined} & \text{otherwise} \end{cases}$$

Partial order:

$$\begin{array}{ll} f\sqsubseteq g & \text{iff} & dom(f)\subseteq dom(g) \text{ and} \\ & \forall x\in dom(f). \ f(x)=g(x) \\ & \text{iff} & graph(f)\subseteq graph(g) \end{array}$$

Lub of chain $f_0 \sqsubseteq f_1 \sqsubseteq f_2 \sqsubseteq \dots$ is the partial function f with $dom(f) = \bigcup_{n \ge 0} dom(f_n)$ and

$$f(x) = \begin{cases} f_n(x) & \text{if } x \in dom(f_n), \text{ some } n \\ \text{undefined} & \text{otherwise} \end{cases}$$

Least element \perp is the totally undefined partial function.

Some properties of lubs of chains

Let D be a cpo.

- 1. For $d \in D$, $\bigsqcup_n d = d$.
- 2. For every chain $d_0 \sqsubseteq d_1 \sqsubseteq \ldots \sqsubseteq d_n \sqsubseteq \ldots$ in D,

$$\bigsqcup_{n} d_n = \bigsqcup_{n} d_{N+n}$$

for all $N \in \mathbb{N}$.

3. For every pair of chains $d_0 \sqsubseteq d_1 \sqsubseteq \ldots \sqsubseteq d_n \sqsubseteq \ldots$ and $e_0 \sqsubseteq e_1 \sqsubseteq \ldots \sqsubseteq e_n \sqsubseteq \ldots$ in D, if $d_n \sqsubseteq e_n$ for all $n \in \mathbb{N}$ then $\bigsqcup_n d_n \sqsubseteq \bigsqcup_n e_n$. 3. For every pair of chains $d_0 \sqsubseteq d_1 \sqsubseteq \ldots \sqsubseteq d_n \sqsubseteq \ldots$ and $e_0 \sqsubseteq e_1 \sqsubseteq \ldots \sqsubseteq e_n \sqsubseteq \ldots$ in D, if $d_n \sqsubseteq e_n$ for all $n \in \mathbb{N}$ then $\bigsqcup_n d_n \sqsubseteq \bigsqcup_n e_n$.

$$\frac{\forall n \ge 0 \, . \, x_n \sqsubseteq y_n}{\bigsqcup_n x_n \bigsqcup \bigsqcup_n y_n} \quad (\langle x_n \rangle \text{ and } \langle y_n \rangle \text{ chains})$$

Diagonalising a double chain

Lemma. Let D be a cpo. Suppose that the doubly-indexed family of elements $d_{m,n} \in D$ $(m, n \ge 0)$ satisfies

$$m \le m' \& n \le n' \Rightarrow d_{m,n} \sqsubseteq d_{m',n'}.$$
 (†)

Then

$$\bigsqcup_{n\geq 0} d_{0,n} \sqsubseteq \bigsqcup_{n\geq 0} d_{1,n} \sqsubseteq \bigsqcup_{n\geq 0} d_{2,n} \sqsubseteq \ldots$$

and

$$\bigsqcup_{m \ge 0} d_{m,0} \sqsubseteq \bigsqcup_{m \ge 0} d_{m,1} \sqsubseteq \bigsqcup_{m \ge 0} d_{m,3} \sqsubseteq \dots$$

Diagonalising a double chain

Lemma. Let D be a cpo. Suppose that the doubly-indexed family of elements $d_{m,n} \in D$ $(m, n \ge 0)$ satisfies

$$m \le m' \& n \le n' \Rightarrow d_{m,n} \sqsubseteq d_{m',n'}.$$
 (†)

Then

$$\bigsqcup_{n\geq 0} d_{0,n} \sqsubseteq \bigsqcup_{n\geq 0} d_{1,n} \sqsubseteq \bigsqcup_{n\geq 0} d_{2,n} \sqsubseteq \ldots$$

and

$$\bigsqcup_{m\geq 0} d_{m,0} \sqsubseteq \bigsqcup_{m\geq 0} d_{m,1} \sqsubseteq \bigsqcup_{m\geq 0} d_{m,3} \sqsubseteq \ldots$$

Moreover

$$\bigsqcup_{m \ge 0} \left(\bigsqcup_{n \ge 0} d_{m,n} \right) = \bigsqcup_{k \ge 0} d_{k,k} = \bigsqcup_{n \ge 0} \left(\bigsqcup_{m \ge 0} d_{m,n} \right)$$

- If D and E are cpo's, the function f is continuous iff
 - 1. it is monotone, and
 - 2. it preserves lubs of chains, *i.e.* for all chains $d_0 \sqsubseteq d_1 \sqsubseteq \ldots$ in D, it is the case that

$$f(\bigsqcup_{n\geq 0} d_n) = \bigsqcup_{n\geq 0} f(d_n) \quad \text{in } E.$$

- If D and E are cpo's, the function f is continuous iff
 - 1. it is monotone, and

2. it preserves lubs of chains, *i.e.* for all chains $d_0 \sqsubseteq d_1 \sqsubseteq \ldots$ in D, it is the case that

$$f(\bigsqcup_{n\geq 0} d_n) = \bigsqcup_{n\geq 0} f(d_n) \quad \text{in } E.$$

• If D and E have least elements, then the function f is strict iff $f(\perp) = \perp$.

Tarski's Fixed Point Theorem

Let $f: D \rightarrow D$ be a continuous function on a domain D. Then

• f possesses a least pre-fixed point, given by

$$fix(f) = \bigsqcup_{n \ge 0} f^n(\bot).$$

• Moreover, fix(f) is a fixed point of f, *i.e.* satisfies f(fix(f)) = fix(f), and hence is the least fixed point of f.

$\llbracket \mathbf{while} \ B \ \mathbf{do} \ C \rrbracket$

- $\llbracket \mathbf{while} \ B \ \mathbf{do} \ C \rrbracket$
- $= f\!i\!x(f_{[\![B]\!],[\![C]\!]})$
- $= \bigsqcup_{n \geq 0} f_{\llbracket B \rrbracket, \llbracket C \rrbracket}^n(\bot)$
- $= \lambda s \in State.$

 $\begin{bmatrix} \mathbb{C} \end{bmatrix}^k (s) & \text{if } k \ge 0 \text{ is such that } \llbracket B \rrbracket (\llbracket C \rrbracket^k (s)) = false \\ \text{and } \llbracket B \rrbracket (\llbracket C \rrbracket^i (s)) = true \text{ for all } 0 \le i < k \\ \text{undefined} & \text{if } \llbracket B \rrbracket (\llbracket C \rrbracket^i (s)) = true \text{ for all } i \ge 0 \\ \end{bmatrix}$

Topic 3

Constructions on Domains

For any set X, the relation of equality

$$x \sqsubseteq x' \stackrel{\text{def}}{\Leftrightarrow} x = x' \qquad (x, x' \in X)$$

makes (X, \sqsubseteq) into a cpo, called the discrete cpo with underlying set X.

For any set X, the relation of equality

$$x \sqsubseteq x' \stackrel{\text{def}}{\Leftrightarrow} x = x' \qquad (x, x' \in X)$$

makes (X, \sqsubseteq) into a cpo, called the discrete cpo with underlying set X.

Let $X_{\perp} \stackrel{\text{def}}{=} X \cup \{\perp\}$, where \perp is some element not in X. Then

$$d \sqsubseteq d' \stackrel{\text{def}}{\Leftrightarrow} (d = d') \lor (d = \bot) \qquad (d, d' \in X_{\bot})$$

makes (X_{\perp}, \sqsubseteq) into a domain (with least element \perp), called the flat domain determined by X.

The product of two cpo's (D_1, \sqsubseteq_1) and (D_2, \sqsubseteq_2) has underlying set

$$D_1 \times D_2 = \{ (d_1, d_2) \mid d_1 \in D_1 \& d_2 \in D_2 \}$$

and partial order \Box defined by

$$(d_1, d_2) \sqsubseteq (d'_1, d'_2) \stackrel{\text{def}}{\Leftrightarrow} d_1 \sqsubseteq_1 d'_1 \& d_2 \sqsubseteq_2 d'_2$$
.

$$\frac{(x_1, x_2) \sqsubseteq (y_1, y_2)}{x_1 \sqsubseteq_1 y_1 \qquad x_2 \sqsubseteq_2 y_2}$$

Lubs of chains are calculated componentwise:

$$\bigsqcup_{n \ge 0} (d_{1,n}, d_{2,n}) = (\bigsqcup_{i \ge 0} d_{1,i}, \bigsqcup_{j \ge 0} d_{2,j}) .$$

If (D_1, \sqsubseteq_1) and (D_2, \sqsubseteq_2) are domains so is $(D_1 \times D_2, \sqsubseteq)$ and $\perp_{D_1 \times D_2} = (\perp_{D_1}, \perp_{D_2})$. **Proposition.** Let D, E, F be cpo's. A function $f: (D \times E) \rightarrow F$ is monotone if and only if it is monotone in each argument separately:

 $\forall d, d' \in D, e \in E. d \sqsubseteq d' \Rightarrow f(d, e) \sqsubseteq f(d', e)$ $\forall d \in D, e, e' \in E. e \sqsubseteq e' \Rightarrow f(d, e) \sqsubseteq f(d, e').$

Moreover, it is continuous if and only if it preserves lubs of chains in each argument separately:

$$f(\bigsqcup_{m \ge 0} d_m, e) = \bigsqcup_{m \ge 0} f(d_m, e)$$
$$f(d, \bigsqcup_{n \ge 0} e_n) = \bigsqcup_{n \ge 0} f(d, e_n).$$

• A couple of derived rules:

$$\frac{x \sqsubseteq x' \quad y \sqsubseteq y'}{f(x,y) \sqsubseteq f(x',y')} \quad (f \text{ monotone})$$

$$f(\bigsqcup_m x_m, \bigsqcup_n y_n) = \bigsqcup_k f(x_k, y_k)$$

Given cpo's (D, \sqsubseteq_D) and (E, \sqsubseteq_E) , the function cpo $(D \to E, \sqsubseteq)$ has underlying set

 $(D \to E) \stackrel{\text{def}}{=} \{ f \mid f : D \to E \text{ is a$ *continuous* $function} \}$

and partial order: $f \sqsubseteq f' \stackrel{\text{def}}{\Leftrightarrow} \forall d \in D \, . \, f(d) \sqsubseteq_E f'(d)$.

Given cpo's (D, \sqsubseteq_D) and (E, \sqsubseteq_E) , the function cpo $(D \to E, \sqsubseteq)$ has underlying set

 $(D \to E) \stackrel{\text{def}}{=} \{ f \mid f : D \to E \text{ is a$ *continuous* $function} \}$

and partial order: $f \sqsubseteq f' \stackrel{\text{def}}{\Leftrightarrow} \forall d \in D \, . \, f(d) \sqsubseteq_E f'(d)$.

• A derived rule:

$$\begin{array}{ccc} f \sqsubseteq_{(D \to E)} g & x \sqsubseteq_D y \\ \\ f(x) \sqsubseteq g(y) \end{array}$$

Lubs of chains are calculated 'argumentwise' (using lubs in E):

$$\bigsqcup_{n\geq 0} f_n = \lambda d \in D. \bigsqcup_{n\geq 0} f_n(d) .$$

If E is a domain, then so is $D \to E$ and $\perp_{D \to E} (d) = \perp_E$, all $d \in D$.

Lubs of chains are calculated 'argumentwise' (using lubs in E):

$$\bigsqcup_{n\geq 0} f_n = \lambda d \in D. \bigsqcup_{n\geq 0} f_n(d) .$$

• A derived rule:

$$\left(\bigsqcup_{n} f_{n}\right)\left(\bigsqcup_{m} x_{m}\right) = \bigsqcup_{k} f_{k}(x_{k})$$

If E is a domain, then so is $D \to E$ and $\perp_{D \to E} (d) = \perp_E$, all $d \in D$.

Continuity of composition

For cpo's D, E, F, the composition function

$$\circ: \left((E \to F) \times (D \to E) \right) \longrightarrow (D \to F)$$

defined by setting, for all $f \in (D \to E)$ and $g \in (E \to F)$,

$$g \circ f = \lambda d \in D.g(f(d))$$

is continuous.

Continuity of the fixpoint operator

Let D be a domain.

By Tarski's Fixed Point Theorem we know that each continuous function $f \in (D \rightarrow D)$ possesses a least fixed point, $fix(f) \in D$.

Proposition. The function

 $fix: (D \to D) \to D$

is continuous.

Topic 4

Scott Induction

Scott's Fixed Point Induction Principle

Let $f: D \to D$ be a continuous function on a domain D. For any <u>admissible</u> subset $S \subseteq D$, to prove that the least fixed point of f is in S, *i.e.* that

 $fix(f) \in S$,

it suffices to prove

 $\forall d \in D \ (d \in S \ \Rightarrow \ f(d) \in S) \ .$

Let D be a cpo. A subset $S \subseteq D$ is called chain-closed iff for all chains $d_0 \sqsubseteq d_1 \sqsubseteq d_2 \sqsubseteq \dots$ in D

$$(\forall n \ge 0 \, . \, d_n \in S) \implies \left(\bigsqcup_{n\ge 0} d_n\right) \in S$$

If D is a domain, $S \subseteq D$ is called admissible iff it is a chain-closed subset of D and $\bot \in S$.

Let D be a cpo. A subset $S \subseteq D$ is called chain-closed iff for all chains $d_0 \sqsubseteq d_1 \sqsubseteq d_2 \sqsubseteq \dots$ in D

$$(\forall n \ge 0 \, . \, d_n \in S) \implies \left(\bigsqcup_{n\ge 0} d_n\right) \in S$$

If D is a domain, $S \subseteq D$ is called admissible iff it is a chain-closed subset of D and $\bot \in S$.

A property $\Phi(d)$ of elements $d \in D$ is called *chain-closed* (resp. *admissible*) iff $\{d \in D \mid \Phi(d)\}$ is a *chain-closed* (resp. *admissible*) subset of D. Let D, E be cpos.

Basic relations:

• For every $d \in D$, the subset

$$\downarrow(d) \stackrel{\mathrm{def}}{=} \{ x \in D \mid x \sqsubseteq d \}$$

of D is chain-closed.

Let D, E be cpos.

Basic relations:

• For every $d \in D$, the subset

$$\downarrow(d) \stackrel{\mathrm{def}}{=} \{ x \in D \mid x \sqsubseteq d \}$$

of D is chain-closed.

• The subsets

and $\begin{cases} (x,y) \in D \times D \mid x \sqsubseteq y \\ \\ \{(x,y) \in D \times D \mid x = y \} \end{cases}$

of $D \times D$ are chain-closed.

Example (I): Least pre-fixed point property

Let D be a domain and let $f: D \to D$ be a continuous function. $\forall d \in D. f(d) \sqsubseteq d \implies fix(f) \sqsubseteq d$ Let D be a domain and let $f: D \to D$ be a continuous function. $\forall d \in D. f(d) \sqsubseteq d \implies fix(f) \sqsubseteq d$

Proof by Scott induction.

Let $d \in D$ be a pre-fixed point of f. Then,

$$\begin{array}{rcl} x \in \downarrow(d) & \Longrightarrow & x \sqsubseteq d \\ & \Longrightarrow & f(x) \sqsubseteq f(d) \\ & \Longrightarrow & f(x) \sqsubseteq d \\ & \implies & f(x) \in \downarrow(d) \end{array}$$

Hence,

 $fix(f) \in {\downarrow}(d)$.

Building chain-closed subsets (II)

Inverse image:

Let $f: D \to E$ be a continuous function.

If S is a chain-closed subset of E then the inverse image

 $f^{-1}S = \{x \in D \mid f(x) \in S\}$

is an chain-closed subset of D.

Let D be a domain and let $f, g : D \to D$ be continuous functions such that $f \circ g \sqsubseteq g \circ f$. Then,

 $f(\perp) \sqsubseteq g(\perp) \implies fix(f) \sqsubseteq fix(g)$.

Let D be a domain and let $f, g : D \to D$ be continuous functions such that $f \circ g \sqsubseteq g \circ f$. Then,

$$f(\perp) \sqsubseteq g(\perp) \implies fix(f) \sqsubseteq fix(g)$$
.

Proof by Scott induction.

Consider the admissible property $\Phi(x) \equiv (f(x) \sqsubseteq g(x))$ of D.

Since

 $f(x)\sqsubseteq g(x) \Rightarrow g(f(x))\sqsubseteq g(g(x)) \Rightarrow f(g(x))\sqsubseteq g(g(x))$

we have that

$$f(fix(g)) \sqsubseteq g(fix(g))$$
.

Logical operations:

• If $S, T \subseteq D$ are chain-closed subsets of D then $S \cup T$ and $S \cap T$ are chain-closed subsets of D.

• If $\{S_i\}_{i \in I}$ is a family of chain-closed subsets of D indexed by a set I, then $\bigcap_{i \in I} S_i$ is a chain-closed subset of D.

• If a property P(x, y) determines a chain-closed subset of $D \times E$, then the property $\forall x \in D$. P(x, y) determines a chain-closed subset of E.

Example (III): Partial correctness

Let $\mathcal{F}: State
ightarrow State$ be the denotation of

while
$$X > 0$$
 do $(Y := X * Y; X := X - 1)$.

For all $x, y \ge 0$, $\mathcal{F}[X \mapsto x, Y \mapsto y] \downarrow$ $\implies \mathcal{F}[X \mapsto x, Y \mapsto y] = [X \mapsto 0, Y \mapsto x! \cdot y].$ Recall that

$$\mathcal{F} = fix(f)$$

where $f: (State \rightarrow State) \rightarrow (State \rightarrow State)$ is given by
$$f(w) = \lambda(x, y) \in State. \begin{cases} (x, y) & \text{if } x \leq 0\\ w(x - 1, x \cdot y) & \text{if } x > 0 \end{cases}$$

Proof by Scott induction.

We consider the admissible subset of $(State \rightarrow State)$ given by

$$S = \begin{cases} w & \forall x, y \ge 0. \\ & w[X \mapsto x, Y \mapsto y] \downarrow \\ & \Rightarrow w[X \mapsto x, Y \mapsto y] = [X \mapsto 0, Y \mapsto x! \cdot y] \end{cases}$$

and show that

 $w \in S \implies f(w) \in S$.

Topic 5

PCF

$$\tau ::= nat \mid bool \mid \tau \to \tau$$

$$\tau ::= nat \mid bool \mid \tau \to \tau$$

Expressions

$$M ::= \mathbf{0} \mid \mathbf{succ}(M) \mid \mathbf{pred}(M)$$

$$\tau ::= nat \mid bool \mid \tau \to \tau$$

Expressions

$$M ::= \mathbf{0} \mid \mathbf{succ}(M) \mid \mathbf{pred}(M)$$
$$\mid \mathbf{true} \mid \mathbf{false} \mid \mathbf{zero}(M)$$

$$\tau ::= nat \mid bool \mid \tau \to \tau$$

Expressions

$$M ::= \mathbf{0} \mid \mathbf{succ}(M) \mid \mathbf{pred}(M)$$
$$\mid \mathbf{true} \mid \mathbf{false} \mid \mathbf{zero}(M)$$
$$\mid x \mid \mathbf{if} \ M \ \mathbf{then} \ M \ \mathbf{else} \ M$$

$$\tau ::= nat \mid bool \mid \tau \to \tau$$

Expressions

$$M ::= \mathbf{0} \mid \mathbf{succ}(M) \mid \mathbf{pred}(M)$$
$$\mid \mathbf{true} \mid \mathbf{false} \mid \mathbf{zero}(M)$$
$$\mid x \mid \mathbf{if} \ M \ \mathbf{then} \ M \ \mathbf{else} \ M$$
$$\mid \mathbf{fn} \ x : \tau \cdot M \mid M \ M \ \mid \mathbf{fix}(M)$$

where $x \in \mathbb{V}$, an infinite set of variables.

$$\tau ::= nat \mid bool \mid \tau \to \tau$$

Expressions

$$M ::= \mathbf{0} \mid \mathbf{succ}(M) \mid \mathbf{pred}(M)$$
$$\mid \mathbf{true} \mid \mathbf{false} \mid \mathbf{zero}(M)$$
$$\mid x \mid \mathbf{if} \ M \ \mathbf{then} \ M \ \mathbf{else} \ M$$
$$\mid \mathbf{fn} \ x : \tau \cdot M \mid MM \mid \mathbf{fix}(M)$$

where $x \in \mathbb{V}$, an infinite set of variables.

Technicality: We identify expressions up to α -conversion of bound variables (created by the **fn** expression-former): by definition a PCF term is an α -equivalence class of expressions.

- Γ is a type environment, *i.e.* a finite partial function mapping variables to types (whose domain of definition is denoted $dom(\Gamma)$)
- M is a term
- au is a type.

- Γ is a type environment, *i.e.* a finite partial function mapping variables to types (whose domain of definition is denoted $dom(\Gamma)$)
- M is a term
- au is a type.

Notation:

 $M: \tau \text{ means } M \text{ is closed and } \emptyset \vdash M: \tau \text{ holds.}$ $\operatorname{PCF}_{\tau} \stackrel{\operatorname{def}}{=} \{M \mid M: \tau\}.$

$$(:_{\mathrm{fn}}) \quad \frac{\Gamma[x \mapsto \tau] \vdash M : \tau'}{\Gamma \vdash \operatorname{fn} x : \tau \cdot M : \tau \to \tau'} \quad \text{if } x \notin \operatorname{dom}(\Gamma)$$

$$(:_{\mathrm{fn}}) \quad \frac{\Gamma[x \mapsto \tau] \vdash M : \tau'}{\Gamma \vdash \mathrm{fn}\, x : \tau \cdot M : \tau \to \tau'} \quad \text{if } x \notin dom(\Gamma)$$

(:app)
$$\frac{\Gamma \vdash M_1 : \tau \to \tau' \quad \Gamma \vdash M_2 : \tau}{\Gamma \vdash M_1 M_2 : \tau'}$$

$$(:_{\mathrm{fn}}) \quad \frac{\Gamma[x \mapsto \tau] \vdash M : \tau'}{\Gamma \vdash \mathrm{fn} \, x : \tau \, . \, M : \tau \to \tau'} \quad \text{if} \; x \notin dom(\Gamma)$$

(:app)
$$\frac{\Gamma \vdash M_1 : \tau \to \tau' \quad \Gamma \vdash M_2 : \tau}{\Gamma \vdash M_1 M_2 : \tau'}$$

(:_{fix})
$$\frac{\Gamma \vdash M : \tau \to \tau}{\Gamma \vdash \mathbf{fix}(M) : \tau}$$

Partial recursive functions in PCF

• Primitive recursion.

$$\begin{cases} h(x,0) = f(x) \\ h(x,y+1) = g(x,y,h(x,y)) \end{cases}$$

Partial recursive functions in PCF

• Primitive recursion.

$$\begin{cases} h(x,0) = f(x) \\ h(x,y+1) = g(x,y,h(x,y)) \end{cases}$$

• Minimisation.

$$m(x) \ = \ {
m the \ least} \ y \ge 0 \ {
m such \ that} \ k(x,y) = 0$$

PCF evaluation relation

takes the form

$$M \Downarrow_{\tau} V$$

where

- au is a PCF type
- $M,V \in \mathrm{PCF}_{ au}$ are closed PCF terms of type au
- V is a value,

 $V ::= \mathbf{0} \mid \mathbf{succ}(V) \mid \mathbf{true} \mid \mathbf{false} \mid \mathbf{fn} \, x : \tau \, . \, M.$

$$(\Downarrow_{\mathrm{val}}) \quad V \Downarrow_{\tau} V \qquad (V \text{ a value of type } \tau)$$

$$(\Downarrow_{\mathrm{val}}) \quad V \Downarrow_{\tau} V \qquad (V \text{ a value of type } \tau)$$

$$(\Downarrow_{\text{cbn}}) \quad \frac{M_1 \Downarrow_{\tau \to \tau'} \mathbf{fn} \, x : \tau \, . \, M_1' \qquad M_1' [M_2/x] \Downarrow_{\tau'} V}{M_1 \, M_2 \Downarrow_{\tau'} V}$$

$$(\Downarrow_{\mathrm{val}}) \quad V \Downarrow_{\tau} V \qquad (V \text{ a value of type } \tau)$$

$$(\Downarrow_{\text{cbn}}) \quad \frac{M_1 \Downarrow_{\tau \to \tau'} \mathbf{fn} \, x : \tau \, . \, M_1' \qquad M_1' [M_2/x] \Downarrow_{\tau'} V}{M_1 \, M_2 \Downarrow_{\tau'} V}$$

$$(\Downarrow_{\text{fix}}) \quad \frac{M \operatorname{fix}(M) \Downarrow_{\tau} V}{\operatorname{fix}(M) \Downarrow_{\tau} V}$$

Contextual equivalence

Two phrases of a programming language are contextually equivalent if any occurrences of the first phrase in a complete program can be replaced by the second phrase without affecting the <u>observable results</u> of executing the program. Given PCF terms M_1, M_2 , PCF type τ , and a type environment Γ , the relation $\Gamma \vdash M_1 \cong_{\mathrm{ctx}} M_2 : \tau$ is defined to hold iff

- Both the typings $\Gamma \vdash M_1 : \tau$ and $\Gamma \vdash M_2 : \tau$ hold.
- For all PCF contexts C for which $C[M_1]$ and $C[M_2]$ are closed terms of type γ , where $\gamma = nat \text{ or } \gamma = bool$, and for all values $V : \gamma$,

 $\mathcal{C}[M_1] \Downarrow_{\gamma} V \Leftrightarrow \mathcal{C}[M_2] \Downarrow_{\gamma} V.$

PCF denotational semantics — aims

• PCF types $\tau \mapsto$ domains $[\tau]$.

- PCF types $\tau \mapsto$ domains $[\tau]$.
- Closed PCF terms $M : \tau \mapsto$ elements $[M] \in [\tau]$.

Denotations of open terms will be continuous functions.

- PCF types $\tau \mapsto$ domains $[\tau]$.
- Closed PCF terms $M : \tau \mapsto$ elements $\llbracket M \rrbracket \in \llbracket \tau \rrbracket$. Denotations of open terms will be continuous functions.
- Compositionality. In particular: $\llbracket M \rrbracket = \llbracket M' \rrbracket \Rightarrow \llbracket \mathcal{C}[M] \rrbracket = \llbracket \mathcal{C}[M'] \rrbracket$.

- PCF types $\tau \mapsto$ domains $[\tau]$.
- Closed PCF terms $M : \tau \mapsto$ elements $\llbracket M \rrbracket \in \llbracket \tau \rrbracket$. Denotations of open terms will be continuous functions.
- Compositionality. In particular: $\llbracket M \rrbracket = \llbracket M' \rrbracket \Rightarrow \llbracket \mathcal{C}[M] \rrbracket = \llbracket \mathcal{C}[M'] \rrbracket$.
- Soundness.

For any type τ , $M \Downarrow_{\tau} V \Rightarrow \llbracket M \rrbracket = \llbracket V \rrbracket$.

- PCF types $\tau \mapsto$ domains $[\tau]$.
- Closed PCF terms $M : \tau \mapsto$ elements $\llbracket M \rrbracket \in \llbracket \tau \rrbracket$. Denotations of open terms will be continuous functions.
- Compositionality. In particular: $\llbracket M \rrbracket = \llbracket M' \rrbracket \Rightarrow \llbracket \mathcal{C}[M] \rrbracket = \llbracket \mathcal{C}[M'] \rrbracket$.
- Soundness.

For any type τ , $M \Downarrow_{\tau} V \Rightarrow \llbracket M \rrbracket = \llbracket V \rrbracket$.

• Adequacy.

For $\tau = bool \text{ or } nat$, $\llbracket M \rrbracket = \llbracket V \rrbracket \in \llbracket \tau \rrbracket \implies M \Downarrow_{\tau} V$.

Theorem. For all types τ and closed terms $M_1, M_2 \in \mathrm{PCF}_{\tau}$, if $\llbracket M_1 \rrbracket$ and $\llbracket M_2 \rrbracket$ are equal elements of the domain $\llbracket \tau \rrbracket$, then $M_1 \cong_{\mathrm{ctx}} M_2 : \tau$. **Theorem.** For all types τ and closed terms $M_1, M_2 \in \mathrm{PCF}_{\tau}$, if $\llbracket M_1 \rrbracket$ and $\llbracket M_2 \rrbracket$ are equal elements of the domain $\llbracket \tau \rrbracket$, then $M_1 \cong_{\mathrm{ctx}} M_2 : \tau$.

Proof.

 $\mathcal{C}[M_1] \Downarrow_{nat} V \Rightarrow \llbracket \mathcal{C}[M_1] \rrbracket = \llbracket V \rrbracket \quad \text{(soundness)}$

 $\Rightarrow \llbracket \mathcal{C}[M_2] \rrbracket = \llbracket V \rrbracket \quad \text{(compositionality} \\ \text{on } \llbracket M_1 \rrbracket = \llbracket M_2 \rrbracket)$

 $\Rightarrow \mathcal{C}[M_2] \Downarrow_{nat} V \qquad \text{(adequacy)}$

and symmetrically.

Proof principle

To prove

$$M_1 \cong_{\mathrm{ctx}} M_2 : \tau$$

it suffices to establish

 $\llbracket M_1 \rrbracket = \llbracket M_2 \rrbracket \text{ in } \llbracket \tau \rrbracket$

Proof principle

To prove

$$M_1 \cong_{\mathrm{ctx}} M_2 : \tau$$

it suffices to establish

 $\llbracket M_1 \rrbracket = \llbracket M_2 \rrbracket \text{ in } \llbracket \tau \rrbracket$

The proof principle is sound, but is it complete? That is, is equality in the denotational model also a necessary condition for contextual equivalence?

Topic 6

Denotational Semantics of PCF

Denotational semantics of PCF

To every typing judgement

 $\Gamma \vdash M : \tau$

we associate a continuous function

 $\llbracket \Gamma \vdash M \rrbracket : \llbracket \Gamma \rrbracket \to \llbracket \tau \rrbracket$

between domains.

$$\llbracket nat \rrbracket \stackrel{\text{def}}{=} \mathbb{N}_{\perp}$$
 (flat domain)
$$\llbracket bool \rrbracket \stackrel{\text{def}}{=} \mathbb{B}_{\perp}$$
 (flat domain)

where $\mathbb{N} = \{0, 1, 2, \dots\}$ and $\mathbb{B} = \{true, false\}$.

$$\begin{bmatrix} nat \end{bmatrix} \stackrel{\text{def}}{=} \mathbb{N}_{\perp} \qquad (\text{flat domain})$$
$$\begin{bmatrix} bool \end{bmatrix} \stackrel{\text{def}}{=} \mathbb{B}_{\perp} \qquad (\text{flat domain})$$
$$\begin{bmatrix} \tau \to \tau' \end{bmatrix} \stackrel{\text{def}}{=} \llbracket \tau \rrbracket \to \llbracket \tau' \rrbracket \qquad (\text{function domain}).$$
where $\mathbb{N} = \{0, 1, 2, \dots\}$ and $\mathbb{B} = \{true, false\}.$

75

 $\llbracket \Gamma \rrbracket \stackrel{\text{def}}{=} \prod_{x \in dom(\Gamma)} \llbracket \Gamma(x) \rrbracket \quad (\Gamma \text{-environments})$

- $\llbracket \Gamma \rrbracket \stackrel{\text{def}}{=} \prod_{x \in dom(\Gamma)} \llbracket \Gamma(x) \rrbracket \quad (\Gamma \text{-environments})$
 - $= \quad \text{the domain of partial functions } \rho \text{ from variables} \\ \text{to domains such that } \frac{dom(\rho) = dom(\Gamma)}{\rho(x) \in [\![\Gamma(x)]\!]} \text{ for all } x \in dom(\Gamma) \\ \end{array}$

 $\llbracket \Gamma \rrbracket \stackrel{\text{def}}{=} \prod_{x \in dom(\Gamma)} \llbracket \Gamma(x) \rrbracket \quad (\Gamma \text{-environments})$

 $= \quad \text{the domain of partial functions } \rho \text{ from variables} \\ \text{to domains such that } \frac{dom(\rho) = dom(\Gamma)}{\rho(x) \in [\![\Gamma(x)]\!]} \text{ for all } x \in dom(\Gamma) \\ \end{cases}$

Example:

1. For the empty type environment \emptyset ,

 $\llbracket \emptyset \rrbracket = \{ \bot \}$

where \perp denotes the unique partial function with $dom(\perp) = \emptyset$.

2. $[\![\langle x \mapsto \tau \rangle]\!] = (\{x\} \to [\![\tau]\!])$

2. $[\![\langle x \mapsto \tau \rangle]\!] = (\{x\} \to [\![\tau]\!]) \cong [\![\tau]\!]$

2. $[\![\langle x \mapsto \tau \rangle]\!] = (\{x\} \to [\![\tau]\!]) \cong [\![\tau]\!]$ 3.

$$\begin{bmatrix} \langle x_1 \mapsto \tau_1, \dots, x_n \mapsto \tau_n \rangle \end{bmatrix}$$

$$\cong (\{x_1\} \to \llbracket \tau_1 \rrbracket) \times \dots \times (\{x_n\} \to \llbracket \tau_n \rrbracket)$$

$$\cong \llbracket \tau_1 \rrbracket \times \dots \times \llbracket \tau_n \rrbracket$$

$$\llbracket \Gamma \vdash \mathbf{0} \rrbracket(\rho) \stackrel{\text{def}}{=} 0 \in \llbracket nat \rrbracket$$
$$\llbracket \Gamma \vdash \mathbf{true} \rrbracket(\rho) \stackrel{\text{def}}{=} true \in \llbracket bool \rrbracket$$
$$\llbracket \Gamma \vdash \mathbf{false} \rrbracket(\rho) \stackrel{\text{def}}{=} false \in \llbracket bool \rrbracket$$

$$\llbracket \Gamma \vdash \mathbf{0} \rrbracket(\rho) \stackrel{\text{def}}{=} 0 \in \llbracket nat \rrbracket$$
$$\llbracket \Gamma \vdash \mathbf{true} \rrbracket(\rho) \stackrel{\text{def}}{=} true \in \llbracket bool \rrbracket$$
$$\llbracket \Gamma \vdash \mathbf{false} \rrbracket(\rho) \stackrel{\text{def}}{=} false \in \llbracket bool \rrbracket$$
$$\llbracket \Gamma \vdash x \rrbracket(\rho) \stackrel{\text{def}}{=} \rho(x) \in \llbracket \Gamma(x) \rrbracket \qquad (x \in dom(\Gamma))$$

$$\begin{split} \llbracket \Gamma \vdash \mathbf{succ}(M) \rrbracket(\rho) \\ & \underset{\perp}{\overset{\text{def}}{=}} \begin{cases} \llbracket \Gamma \vdash M \rrbracket(\rho) + 1 & \text{if } \llbracket \Gamma \vdash M \rrbracket(\rho) \neq \bot \\ \bot & \text{if } \llbracket \Gamma \vdash M \rrbracket(\rho) = \bot \end{cases} \end{split}$$

$$\begin{split} & \begin{bmatrix} \Gamma \vdash \mathbf{succ}(M) \end{bmatrix} (\rho) \\ & \underset{=}{\operatorname{def}} \begin{cases} \llbracket \Gamma \vdash M \rrbracket (\rho) + 1 & \text{if } \llbracket \Gamma \vdash M \rrbracket (\rho) \neq \bot \\ \bot & \text{if } \llbracket \Gamma \vdash M \rrbracket (\rho) = \bot \end{cases} \\ & \\ & \\ & \\ \begin{bmatrix} \Gamma \vdash \mathbf{pred}(M) \rrbracket (\rho) \\ & \underset{=}{\operatorname{def}} \begin{cases} \llbracket \Gamma \vdash M \rrbracket (\rho) - 1 & \text{if } \llbracket \Gamma \vdash M \rrbracket (\rho) > 0 \\ \bot & \text{if } \llbracket \Gamma \vdash M \rrbracket (\rho) = 0, \bot \end{cases} \end{split}$$

 $\llbracket \Gamma \vdash \mathbf{succ}(M) \rrbracket(\rho)$ $\stackrel{\text{def}}{=} \begin{cases} \llbracket \Gamma \vdash M \rrbracket(\rho) + 1 & \text{if } \llbracket \Gamma \vdash M \rrbracket(\rho) \neq \bot \\ \bot & \text{if } \llbracket \Gamma \vdash M \rrbracket(\rho) = \bot \end{cases}$ $\llbracket \Gamma \vdash \mathbf{pred}(M) \rrbracket(\rho)$ $\stackrel{\text{def}}{=} \begin{cases} \llbracket \Gamma \vdash M \rrbracket(\rho) - 1 & \text{if } \llbracket \Gamma \vdash M \rrbracket(\rho) > 0 \\ \bot & \text{if } \llbracket \Gamma \vdash M \rrbracket(\rho) = 0, \bot \end{cases}$ $\llbracket \Gamma \vdash \mathbf{zero}(M) \rrbracket(\rho) \stackrel{\text{def}}{=} \begin{cases} true & \text{if } \llbracket \Gamma \vdash M \rrbracket(\rho) = 0\\ false & \text{if } \llbracket \Gamma \vdash M \rrbracket(\rho) > 0\\ \bot & \text{if } \llbracket \Gamma \vdash M \rrbracket(\rho) = \bot \end{cases}$

```
\begin{bmatrix} \Gamma \vdash \mathbf{if} \ M_1 \ \mathbf{then} \ M_2 \ \mathbf{else} \ M_3 \end{bmatrix} (\rho)\stackrel{\text{def}}{=} \begin{cases} \begin{bmatrix} \Gamma \vdash M_2 \end{bmatrix} (\rho) & \text{if} \ \llbracket \Gamma \vdash M_1 \end{bmatrix} (\rho) = true \\ \begin{bmatrix} \Gamma \vdash M_3 \end{bmatrix} (\rho) & \text{if} \ \llbracket \Gamma \vdash M_1 \end{bmatrix} (\rho) = false \\ \bot & \text{if} \ \llbracket \Gamma \vdash M_1 \end{bmatrix} (\rho) = \bot \end{cases}
```

```
\begin{bmatrix} \Gamma \vdash \mathbf{if} \ M_1 \ \mathbf{then} \ M_2 \ \mathbf{else} \ M_3 \end{bmatrix} (\rho)
\stackrel{\text{def}}{=} \begin{cases} \begin{bmatrix} \Gamma \vdash M_2 \end{bmatrix} (\rho) & \text{if} \ \llbracket \Gamma \vdash M_1 \end{bmatrix} (\rho) = true \\ \begin{bmatrix} \Gamma \vdash M_3 \end{bmatrix} (\rho) & \text{if} \ \llbracket \Gamma \vdash M_1 \end{bmatrix} (\rho) = false \\ \bot & \text{if} \ \llbracket \Gamma \vdash M_1 \end{bmatrix} (\rho) = \bot \end{cases}
```

 $\llbracket \Gamma \vdash M_1 M_2 \rrbracket(\rho) \stackrel{\text{def}}{=} \left(\llbracket \Gamma \vdash M_1 \rrbracket(\rho) \right) \left(\llbracket \Gamma \vdash M_2 \rrbracket(\rho) \right)$

Denotational semantics of PCF terms, IV

$$\begin{bmatrix} \Gamma \vdash \mathbf{fn} \, x : \tau \, . \, M \end{bmatrix} (\rho) \\ \stackrel{\text{def}}{=} \lambda d \in \llbracket \tau \rrbracket \, . \, \llbracket \Gamma[x \mapsto \tau] \vdash M \rrbracket (\rho[x \mapsto d]) \qquad (x \notin dom(\Gamma))$$

NB: $\rho[x \mapsto d] \in \llbracket \Gamma[x \mapsto \tau] \rrbracket$ is the function mapping x to $d \in \llbracket \tau \rrbracket$ and otherwise acting like ρ .

Denotational semantics of PCF terms, V

$$\llbracket \Gamma \vdash \mathbf{fix}(M) \rrbracket(\rho) \stackrel{\text{def}}{=} fix(\llbracket \Gamma \vdash M \rrbracket(\rho))$$

Recall that fix is the function assigning least fixed points to continuous functions.

Denotational semantics of PCF

Proposition. For all typing judgements $\Gamma \vdash M : \tau$, the denotation

$\llbracket \Gamma \vdash M \rrbracket : \llbracket \Gamma \rrbracket \to \llbracket \tau \rrbracket$

is a well-defined continous function.

Denotations of closed terms

For a closed term $M \in \mathrm{PCF}_{\tau}$, we get

 $\llbracket \emptyset \vdash M \rrbracket : \llbracket \emptyset \rrbracket \to \llbracket \tau \rrbracket$

and, since $\llbracket \emptyset \rrbracket = \{ \bot \}$, we have

$$\llbracket M \rrbracket \stackrel{\text{def}}{=} \llbracket \emptyset \vdash M \rrbracket (\bot) \in \llbracket \tau \rrbracket \qquad (M \in \mathrm{PCF}_{\tau})$$

Compositionality

Proposition. For all typing judgements $\Gamma \vdash M : \tau$ and $\Gamma \vdash M' : \tau$, and all contexts $\mathcal{C}[-]$ such that $\Gamma' \vdash \mathcal{C}[M] : \tau'$ and $\Gamma' \vdash \mathcal{C}[M'] : \tau'$, if $[\Gamma \vdash M] = [\Gamma \vdash M'] : [\Gamma] \rightarrow [\tau]$

then $\llbracket \Gamma' \vdash \mathcal{C}[M] \rrbracket = \llbracket \Gamma' \vdash \mathcal{C}[M] \rrbracket : \llbracket \Gamma' \rrbracket \to \llbracket \tau' \rrbracket$

Soundness

Proposition. For all closed terms $M, V \in \mathrm{PCF}_{\tau}$,

if $M \Downarrow_{\tau} V$ then $\llbracket M \rrbracket = \llbracket V \rrbracket \in \llbracket \tau \rrbracket$.

Proposition. Suppose that $\Gamma \vdash M : \tau$ and that $\Gamma[x \mapsto \tau] \vdash M' : \tau'$, so that we also have $\Gamma \vdash M'[M/x] : \tau'$. *Then,*

 $\begin{bmatrix} \Gamma \vdash M'[M/x] \end{bmatrix} (\rho)$ = $\begin{bmatrix} \Gamma[x \mapsto \tau] \vdash M' \end{bmatrix} (\rho [x \mapsto \llbracket \Gamma \vdash M] (\rho)])$ for all $\rho \in \llbracket \Gamma \rrbracket$. **Proposition.** Suppose that $\Gamma \vdash M : \tau$ and that $\Gamma[x \mapsto \tau] \vdash M' : \tau'$, so that we also have $\Gamma \vdash M'[M/x] : \tau'$. *Then,*

$$\begin{split} \left[\!\left[\Gamma \vdash M'[M/x]\right]\!\right](\rho) \\ &= \left[\!\left[\Gamma[x \mapsto \tau] \vdash M'\right]\!\right] \left(\rho[x \mapsto \left[\!\left[\Gamma \vdash M\right]\!\right](\rho)\right]\right) \end{split}$$
for all $\rho \in \left[\!\left[\Gamma\right]\!\right].$

In particular when $\Gamma = \emptyset$, $[\![\langle x \mapsto \tau \rangle \vdash M']\!] : [\![\tau]\!] \to [\![\tau']\!]$ and $[\![M'[M/x]]\!] = [\![\langle x \mapsto \tau \rangle \vdash M']\!] ([\![M]\!])$

Topic 7

Relating Denotational and Operational Semantics

$$\llbracket M \rrbracket = \llbracket V \rrbracket \in \llbracket \gamma \rrbracket \implies M \Downarrow_{\gamma} V .$$

$$\llbracket M \rrbracket = \llbracket V \rrbracket \in \llbracket \gamma \rrbracket \implies M \Downarrow_{\gamma} V .$$

NB. Adequacy does not hold at function types

$$\llbracket M \rrbracket = \llbracket V \rrbracket \in \llbracket \gamma \rrbracket \implies M \Downarrow_{\gamma} V .$$

NB. Adequacy does not hold at function types:

$$\llbracket \mathbf{fn} \ x : \tau. \ (\mathbf{fn} \ y : \tau. \ y) \ x \rrbracket = \llbracket \mathbf{fn} \ x : \tau. \ x \rrbracket \quad : \llbracket \tau \rrbracket \to \llbracket \tau \rrbracket$$

$$\llbracket M \rrbracket = \llbracket V \rrbracket \in \llbracket \gamma \rrbracket \implies M \Downarrow_{\gamma} V.$$

NB. Adequacy does not hold at function types:

$$\llbracket \mathbf{fn} \ x : \tau. \ (\mathbf{fn} \ y : \tau. \ y) \ x \rrbracket = \llbracket \mathbf{fn} \ x : \tau. \ x \rrbracket \quad : \llbracket \tau \rrbracket \to \llbracket \tau \rrbracket$$

but

 $\mathbf{fn} \ x:\tau. \left(\mathbf{fn} \ y:\tau. \ y\right) x \not \downarrow_{\tau \to \tau} \mathbf{fn} \ x:\tau. \ x$

Adequacy proof idea

- 1. We cannot proceed to prove the adequacy statement by a straightforward induction on the structure of terms.
 - Consider M to be $M_1 M_2$, $\mathbf{fix}(M')$.

1. We cannot proceed to prove the adequacy statement by a straightforward induction on the structure of terms.

• Consider M to be $M_1 M_2$, $\mathbf{fix}(M')$.

2. So we proceed to prove a stronger statement that applies to terms of arbitrary types and implies adequacy.

1. We cannot proceed to prove the adequacy statement by a straightforward induction on the structure of terms.

► Consider M to be $M_1 M_2$, $\mathbf{fix}(M')$.

2. So we proceed to prove a stronger statement that applies to terms of arbitrary types and implies adequacy.

This statement roughly takes the form:

 $\llbracket M \rrbracket \lhd_{\tau} M$ for all types τ and all $M \in \mathrm{PCF}_{\tau}$

where the *formal approximation relations*

 $\triangleleft_{\tau} \subseteq \llbracket \tau \rrbracket \times \mathrm{PCF}_{\tau}$

are *logically* chosen to allow a proof by induction.

Requirements on the formal approximation relations, I

We want that, for $\gamma \in \{nat, bool\}$,

$$\llbracket M \rrbracket \lhd_{\gamma} M \text{ implies } \underbrace{\forall V \left(\llbracket M \rrbracket = \llbracket V \rrbracket \implies M \Downarrow_{\gamma} V \right)}_{\text{adequacy}}$$

Definition of $d \triangleleft_{\gamma} M$ $(d \in [\![\gamma]\!], M \in \mathrm{PCF}_{\gamma})$ for $\gamma \in \{nat, bool\}$

$$n \triangleleft_{nat} M \quad \stackrel{\text{def}}{\Leftrightarrow} \quad \left(n \in \mathbb{N} \Rightarrow M \Downarrow_{nat} \operatorname{succ}^{n}(\mathbf{0}) \right)$$

$$b \triangleleft_{bool} M \stackrel{\text{def}}{\Leftrightarrow} (b = true \Rightarrow M \Downarrow_{bool} \mathbf{true})$$
$$\& (b = false \Rightarrow M \Downarrow_{bool} \mathbf{false})$$

Proof of: $\llbracket M \rrbracket \lhd_{\gamma} M$ implies adequacy

```
\begin{split} \mathbf{Case} \ \gamma &= nat. \\ \llbracket M \rrbracket = \llbracket V \rrbracket \\ &\implies \llbracket M \rrbracket = \llbracket \mathbf{succ}^n(\mathbf{0}) \rrbracket & \text{ for some } n \in \mathbb{N} \\ &\implies n = \llbracket M \rrbracket \triangleleft_{\gamma} M \\ &\implies M \Downarrow \mathbf{succ}^n(\mathbf{0}) & \text{ by definition of } \triangleleft_{nat} \end{split}
```

Case $\gamma = bool$ is similar.

Requirements on the formal approximation relations, II

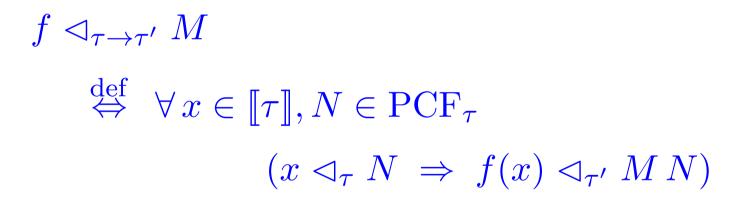
We want to be able to proceed by induction.

• Consider the case $M = M_1 M_2$.

 \rightarrow *logical* definition

Definition of $f \triangleleft_{\tau \to \tau'} M \ (f \in (\llbracket \tau \rrbracket \to \llbracket \tau' \rrbracket), M \in \mathrm{PCF}_{\tau \to \tau'})$

Definition of $f \triangleleft_{\tau \to \tau'} M \ (f \in (\llbracket \tau \rrbracket \to \llbracket \tau' \rrbracket), M \in \operatorname{PCF}_{\tau \to \tau'})$



Requirements on the formal approximation relations, III

We want to be able to proceed by induction.

• Consider the case $M = \mathbf{fix}(M')$.

→ *admissibility* property

Admissibility property

Lemma. For all types τ and $M \in \mathrm{PCF}_{\tau}$, the set $\{ d \in \llbracket \tau \rrbracket \mid d \triangleleft_{\tau} M \}$

is an admissible subset of $\llbracket \tau \rrbracket$.

Further properties

Lemma. For all types τ , elements $d, d' \in \llbracket \tau \rrbracket$, and terms $M, N, V \in \text{PCF}_{\tau}$,

1. If $d \sqsubseteq d'$ and $d' \triangleleft_{\tau} M$ then $d \triangleleft_{\tau} M$.

2. If $d \triangleleft_{\tau} M$ and $\forall V (M \Downarrow_{\tau} V \implies N \Downarrow_{\tau} V)$ then $d \triangleleft_{\tau} N$.

Requirements on the formal approximation relations, IV

We want to be able to proceed by induction.

• Consider the case $M = \operatorname{fn} x : \tau \cdot M'$.

 \rightsquigarrow substitutivity property for open terms

Fundamental property

Theorem. For all $\Gamma = \langle x_1 \mapsto \tau_1, \dots, x_n \mapsto \tau_n \rangle$ and all $\Gamma \vdash M : \tau$, if $d_1 \triangleleft_{\tau_1} M_1, \dots, d_n \triangleleft_{\tau_n} M_n$ then $[\![\Gamma \vdash M]\!] [x_1 \mapsto d_1, \dots, x_n \mapsto d_n] \triangleleft_{\tau} M[M_1/x_1, \dots, M_n/x_n]$.

Fundamental property

Theorem. For all $\Gamma = \langle x_1 \mapsto \tau_1, \dots, x_n \mapsto \tau_n \rangle$ and all $\Gamma \vdash M : \tau$, if $d_1 \triangleleft_{\tau_1} M_1, \dots, d_n \triangleleft_{\tau_n} M_n$ then $\llbracket \Gamma \vdash M \rrbracket [x_1 \mapsto d_1, \dots, x_n \mapsto d_n] \triangleleft_{\tau} M [M_1/x_1, \dots, M_n/x_n]$.

NB. The case $\Gamma = \emptyset$ reduces to

 $\llbracket M \rrbracket \lhd_{\tau} M$

for all $M \in \mathrm{PCF}_{\tau}$.

Fundamental property of the relations \triangleleft_{τ}

Proposition. If $\Gamma \vdash M : \tau$ is a valid PCF typing, then for all Γ -environments ρ and all Γ -substitutions σ

 $\rho \triangleleft_{\Gamma} \sigma \Rightarrow \llbracket \Gamma \vdash M \rrbracket(\rho) \triangleleft_{\tau} M[\sigma]$

- $\rho \triangleleft_{\Gamma} \sigma$ means that $\rho(x) \triangleleft_{\Gamma(x)} \sigma(x)$ holds for each $x \in dom(\Gamma)$.
- $M[\sigma]$ is the PCF term resulting from the simultaneous substitution of $\sigma(x)$ for x in M, each $x \in dom(\Gamma)$.

Given PCF terms M_1, M_2 , PCF type τ , and a type environment Γ , the relation $\Gamma \vdash M_1 \leq_{\text{ctx}} M_2 : \tau$ is defined to hold iff

- Both the typings $\Gamma \vdash M_1 : \tau$ and $\Gamma \vdash M_2 : \tau$ hold.
- For all PCF contexts C for which $C[M_1]$ and $C[M_2]$ are closed terms of type γ , where $\gamma = nat \text{ or } \gamma = bool$, and for all values $V \in PCF_{\gamma}$,

$$\mathcal{C}[M_1] \Downarrow_{\gamma} V \implies \mathcal{C}[M_2] \Downarrow_{\gamma} V$$
.

At a ground type $\gamma \in \{bool, nat\},\$ $M_1 \leq_{ctx} M_2 : \gamma$ holds if and only if $\forall V \in PCF_{\gamma} (M_1 \Downarrow_{\gamma} V \implies M_2 \Downarrow_{\gamma} V) .$

At a function type $\tau \to \tau'$, $M_1 \leq_{\text{ctx}} M_2 : \tau \to \tau'$ holds if and only if

 $\forall M \in \mathrm{PCF}_{\tau} (M_1 M \leq_{\mathrm{ctx}} M_2 M : \tau') .$

Topic 8

Full Abstraction

For all types τ and closed terms $M_1, M_2 \in \mathrm{PCF}_{\tau}$,

$$\llbracket M_1 \rrbracket = \llbracket M_2 \rrbracket$$
 in $\llbracket \tau \rrbracket \implies M_1 \cong_{\operatorname{ctx}} M_2 : \tau$.

Hence, to prove

 $M_1 \cong_{\mathrm{ctx}} M_2 : \tau$

it suffices to establish

 $\llbracket M_1 \rrbracket = \llbracket M_2 \rrbracket \text{ in } \llbracket \tau \rrbracket \ .$

Full abstraction

A denotational model is said to be *fully abstract* whenever denotational equality characterises contextual equivalence.

Full abstraction

A denotational model is said to be *fully abstract* whenever denotational equality characterises contextual equivalence.

> The domain model of PCF is *not* fully abstract.

In other words, there are contextually equivalent PCF terms with different denotations.

Failure of full abstraction, idea

We will construct two closed terms

$$T_1, T_2 \in \mathrm{PCF}_{(bool \to (bool \to bool)) \to bool}$$

such that

$$T_1 \cong_{\mathrm{ctx}} T_2$$

and

 $\llbracket T_1 \rrbracket \neq \llbracket T_2 \rrbracket$

 $\forall M \in \mathrm{PCF}_{bool \to (bool \to bool)} (T_1 M \not \downarrow_{bool} \& T_2 M \not \downarrow_{bool})$

• We achieve $T_1 \cong_{\text{ctx}} T_2$ by making sure that

 $\forall M \in \mathrm{PCF}_{bool \to (bool \to bool)} (T_1 M \not \downarrow_{bool} \& T_2 M \not \downarrow_{bool})$

Hence,

 $[T_1]([M]) = \bot = [T_2]([M])$

for all $M \in \operatorname{PCF}_{bool \to (bool \to bool)}$.

• We achieve $T_1 \cong_{\text{ctx}} T_2$ by making sure that

 $\forall M \in \mathrm{PCF}_{bool \to (bool \to bool)} (T_1 M \not \downarrow_{bool} \& T_2 M \not \downarrow_{bool})$

Hence,

$$[T_1]([M]) = \bot = [T_2]([M])$$

for all $M \in \mathrm{PCF}_{bool \to (bool \to bool)}$.

• We achieve $\llbracket T_1 \rrbracket \neq \llbracket T_2 \rrbracket$ by making sure that

 $\llbracket T_1 \rrbracket(por) \neq \llbracket T_2 \rrbracket(por)$

for some *non-definable* continuous function

 $por \in (\mathbb{B}_{\perp} \to (\mathbb{B}_{\perp} \to \mathbb{B}_{\perp}))$.

Parallel-or function

is the unique continuous function $por: \mathbb{B}_\perp \to (\mathbb{B}_\perp \to \mathbb{B}_\perp)$ such that

por	$true \perp$	=	true
por	$\perp true$	=	true
por	false false	=	false

Parallel-or function

is the unique continuous function $por: \mathbb{B}_{\perp} \to (\mathbb{B}_{\perp} \to \mathbb{B}_{\perp})$ such that

$por \ true \ ot$	—	true
$por \perp true$	=	true
por false false	=	false

In which case, it necessarily follows by monotonicity that

por t	true	true	=	true	por false \perp	=	\bot
por t	true	false	=	true	$por \perp false$	=	\bot
por f	false	true	=	true	$por \perp \perp$	=	\bot

Undefinability of parallel-or

Proposition. There is no closed PCF term

 $P: bool \rightarrow (bool \rightarrow bool)$

satisfying

$$\llbracket P \rrbracket = por : \mathbb{B}_{\perp} \to (\mathbb{B}_{\perp} \to \mathbb{B}_{\perp}) .$$

Parallel-or test functions

For i = 1, 2 define $T_i \stackrel{\text{def}}{=} \mathbf{fn} f : bool \to (bool \to bool) .$ if $(f \operatorname{\mathbf{true}} \Omega)$ then if $(f \Omega \operatorname{\mathbf{true}})$ then if $(f \Omega \operatorname{\mathbf{true}})$ then if $(f \operatorname{\mathbf{false}} \operatorname{\mathbf{false}})$ then Ω else B_i else Ω else Ω

where $B_1 \stackrel{\text{def}}{=} \mathbf{true}, B_2 \stackrel{\text{def}}{=} \mathbf{false},$ and $\Omega \stackrel{\text{def}}{=} \mathbf{fix}(\mathbf{fn} \ x : bool \ x).$

Failure of full abstraction

Proposition.

 $T_1 \cong_{\mathrm{ctx}} T_2 : (bool \to (bool \to bool)) \to bool$ $\llbracket T_1 \rrbracket \neq \llbracket T_2 \rrbracket \in (\mathbb{B}_{\perp} \to (\mathbb{B}_{\perp} \to \mathbb{B}_{\perp})) \to \mathbb{B}_{\perp}$

Expressions $M := \cdots | \mathbf{por}(M, M)$ $\Gamma \vdash M_1 : bool \quad \Gamma \vdash M_2 : bool$ Typing $\Gamma \vdash \mathbf{por}(M_1, M_2) : bool$ **Evaluation** $M_1 \Downarrow_{bool} \mathbf{true}$ $M_2 \Downarrow_{bool} \mathbf{true}$ $\mathbf{por}(M_1, M_2) \Downarrow_{bool} \mathbf{true} = \mathbf{por}(M_1, M_2) \Downarrow_{bool} \mathbf{true}$ $M_1 \Downarrow_{bool}$ false $M_2 \Downarrow_{bool}$ false $\mathbf{por}(M_1, M_2) \Downarrow_{bool} \mathbf{false}$

The denotational semantics of PCF+por is given by extending that of PCF with the clause

 $\llbracket \Gamma \vdash \mathbf{por}(M_1, M_2) \rrbracket(\rho) \stackrel{\text{def}}{=} por(\llbracket \Gamma \vdash M_1 \rrbracket(\rho)) (\llbracket \Gamma \vdash M_2 \rrbracket(\rho))$

This denotational semantics is fully abstract for contextual equivalence of PCF+por terms:

 $\Gamma \vdash M_1 \cong_{\mathrm{ctx}} M_2 : \tau \iff \llbracket \Gamma \vdash M_1 \rrbracket = \llbracket \Gamma \vdash M_2 \rrbracket.$