Denotational Semantics

Lectures for Part Il CST 2022/23
Prof Marcelo Fiore

Course web page:
http://www.cl.cam.ac.uk/teaching/2223/DenotSem/

Topic 1

Introduction

What is this course about?

e (General area.

Formal methods: Mathematical techniques for the
specification, development, and verification of software
and hardware systems.

e Specific area.

Formal semantics: Mathematical theories for ascribing
meanings to computer languages.

Why do we care?

Why do we care?

e Rigour.

. specification of programming languages
... justification of program transformations

Why do we care?

e Rigour.
. specification of programming languages
... justification of program transformations

e Insight.

. generalisations of notions computability
... higher-order functions
... data structures

e Feedback into language design.

. continuations
. monads

e Feedback into language design.

. continuations
. monads

e Reasoning principles.

... Scott induction
... Logical relations
... Co-induction

Styles of formal semantics

Operational.

Axiomatic.

Denotational.

Styles of formal semantics

Operational.
Meanings for program phrases defined in terms of the steps
of computation they can take during program execution.

Axiomatic.

Denotational.

Styles of formal semantics

Operational.
Meanings for program phrases defined in terms of the steps
of computation they can take during program execution.

Axiomatic.
Meanings for program phrases defined indirectly via the ax-

ioms and rules of some logic of program properties.

Denotational.

Styles of formal semantics

Operational.
Meanings for program phrases defined in terms of the steps
of computation they can take during program execution.

Axiomatic.
Meanings for program phrases defined indirectly via the ax-

ioms and rules of some logic of program properties.

Denotational.
Concerned with giving mathematical models of programming
languages. Meanings for program phrases defined abstractly
as elements of some suitable mathematical structure.

Basic idea of denotational semantics

Syntax u Semantics

P — |P]

Basic idea of denotational semantics

Syntax u Semantics

Recursive program +— Partial recursive function

P — [P]

Basic idea of denotational semantics

Syntax u Semantics
Recursive program +— Partial recursive function

Boolean circuit —> Boolean function
P — [P]

Basic idea of denotational semantics

Syntax H Semantics
Recursive program +— Partial recursive function
Boolean circuit +— Boolean function
P — [P]
Concerns:

e Abstract models (i.e. implementation/machine independent).
~~ Lectures 2, 3 and 4.

Basic idea of denotational semantics

Syntax H Semantics
Recursive program +— Partial recursive function
Boolean circuit +— Boolean function
P — [P]

Concerns:

e Abstract models (i.e. implementation/machine independent).
~~ Lectures 2, 3 and 4.

e Compositionality.
~~ Lectures 5 and 6.

Basic idea of denotational semantics

Syntax H Semantics
Recursive program +— Partial recursive function
Boolean circuit +— Boolean function
P — [P]
Concerns:

e Abstract models (i.e. implementation/machine independent).
~~ Lectures 2, 3 and 4.

e Compositionality.
~~ Lectures 5 and 6.

e Relationship to computation (e.g. operational semantics).
~~ Lectures 7 and 8.

Characteristic features of a
denotational semantics

e Each phrase (= part of a program), P, is given a :
| P| — a mathematical object representing the contribution of
P to the meaning of any complete program in which it occurs.

e The denotation of a phrase is determined just by the
denotations of its subphrases (one says that the semantics is

).

Basic example of denotational semantics (l)

IMP — syntax

Arithmetic expressions
AcAexp = n | L | A+A |

where n ranges over integers and
L over a specified set of locations 1L

Boolean expressions

BeBexp 1= true | false | A=A4| ...
| =B ...
Commands
C € Comm := skip | L:=A | C;C

| if Bthen C else C

Basic example of denotational semantics (ll)

where

Semantic functions

A: Aexp — (State — 7Z)

7 = {...,-1,0,1,...}

State

(L — Z)

10

Basic example of denotational semantics (ll)

where

Semantic functions

A: Aexp — (State — 7Z)
B: Bexp — (State — B)

Z = {...,-1,0,1,...}
B = {true, false }
State = (L — Z)

10

Basic example of denotational semantics (ll)

Semantic functions

A: Aexp — (State — 7Z)
B: Bexp — (State — B)
C: Comm — (State — State)

where

Z = {...,—1,0,1,...}
B = {true,false}
State = (L — 7Z)

10

Basic example of denotational semantics (lil)

Semantic function A

A[n] = As € State.n

A
A

L] = As € State. s(L)

[A1 + As] = As € State. A[A1](s) + A[A2](s)

11

Basic example of denotational semantics (1V)

Btrue]

B|false]

B[A,

As]

| e—

[l
| S—

Semantic function B

As € State. true
As € State. false

As € State. eq(AJA1](s), A[A2](s))

4 _ /
true ifa=a

where eq(a,a’) = <
(@) | false ifa#d

12

Basic example of denotational semantics (V)

Semantic function C

[skip] = As € State.s

NB: From now on the names of semantic functions are omitted!

13

A simple example of compositionality

Given partial functions [C], [C'] : State — State and a
function | B] : State — {true, false}, we can define

[if B then C else C'] =
As € State.if ([B](s), [C](s), [C"](s))

where
)
r ifb= true

f(b,x,2') =4
(b2, 7) ' itb = false

\

14

Basic example of denotational semantics (VI)

L :

Al

Semantic function C

As € State. \l € L.if (¢ = L, [A](s), s(¢))

15

Denotational semantics of sequential composition

Denotation of sequential composition C'; C’ of two commands
[C;C'] = [C'] o [C] = As € State. [C']([C](s))

given by composition of the partial functions from states to states
[C], [C"] : State — State which are the denotations of the
commands.

16

Denotational semantics of sequential composition

Denotation of sequential composition C'; C’ of two commands
[C;C'] = [C'] o [C] = As € State. [C']([C](s))

given by composition of the partial functions from states to states
[C], [C"] : State — State which are the denotations of the

commands.

Cf. operational semantics of sequential composition:
C,s{s C' s |s"
C:;C" s s"”

16

[while B do (]

17

Fixed point property of
[while B do C]

[while B do C] = fipy c1([while B do C])

where, for each b : State — {true, false} and
c: State — State, we define

fo.c: (State — State) — (State — State)
as

foe = Aw € (State—State). As € State. if (b(s), w(c(s)), s).

17

Fixed point property of
[while B do C]

[while B do C] = fipy c1([while B do C])

where, for each b : State — {true, false} and
c: State — State, we define

fo.c: (State — State) — (State — State)
as

foe = Aw € (State—State). As € State. if (b(s), w(c(s)), s).

e Why does w = f|py [c(w) have a solution?

e What if it has several solutions—which one do we take to be
[while B do C?

17

Approximating [while B do (]

18

Approximating [while B do (]

frere1” (L)

= \s € State.
C [C]%(s) 30 <k <n. [BJ([C]*(s)) = false
< andV 0 < i < k. [B]([C]*(s)) = true

LT it V0 <i<n.[B]([C](s)) = true

18

D« (State — State)

e Partial order L_on D:

wC w' iff forall s € State, if w is defined at s then
so is w’ and moreover w(s) = w'(s).

iff the graph of w is included in the graph of w'.

e Leastelement . € D w.r.t. C:
1 = totally undefined partial function

= partial function with empty graph

(satisfies L. w, forall w € D).

19

Topic 2

Least Fixed Points

20

Thesis

All domains of computation are
partial orders with a least element.

21

Thesis

All domains of computation are
partial orders with a least element.

All computable functions are
monotonic.

21

Partially ordered sets

A binary relation T on a set D is a partial order iff it is
reflexive: Vd € D. d C d
transitive: Vd, d',d" e D.dCd Cd'=dC d"
anti-symmetric: Vd,d' ¢ D.dCd CTd=d=4d"

Such a pair (D,) is called a partially ordered set, or poset.

22

23

Domain of partial functions, X — Y

24

Domain of partial functions, X — Y

Underlying set: all partial functions, f, with domain of definition
dom(f) C X and taking values in Y.

24

Domain of partial functions, X — Y

Underlying set: all partial functions, f, with domain of definition
dom(f) C X and taking values in Y.

Partial order:
fCg ifft dom(f)C dom(g)and

Ve € dom(f). f(x) = g(x)
ift graph(f) C graph(g)

24

Monotonicity

e A function f : D — FE between posets is
Vd,d € D.dC d = f(d) C f(d).

(f monotone)

flz) E f(y)

Iff

25

Least Elements

Suppose that D is a poset and that S is a subset of D.

An element d € S is the least element of S if it satisfies

Vre S.dC x .

e Note that because L is anti-symmetric, S has at most one
least element.

e Note also that a poset may not have least element.

26

Pre-fixed points

Let D be aposetand f : D — D be a function.

Anelementd € D isa f if it satisfies
fld) Ed

The least pre-fixed point of f, if it exists, will be written

fiz(f)

It is thus (uniquely) specified by the two properties:

f(fix(f)) E fix(f) (Ifp1)
vde D. f(d)CTd = fiz(f) Cd. (Ifp2)

27

Proof principle

2. Let D be aposetandlet f : D — D be a function with a
least pre-fixed point fiz(f) € D.
For all x € D, to prove that fiz(f) C x it is enough to
establish that f(z) C x.

28

Proof principle

2. Let D be aposetandlet f : D — D be a function with a
least pre-fixed point fiz(f) € D.
For all x € D, to prove that fiz(f) C x it is enough to
establish that f(z) C x.

28

Proof principle

flfiz(f)) E fix(f)

2. Let D be aposetandlet f : D — D be a function with a
least pre-fixed point fiz(f) € D.
For all x € D, to prove that fiz(f) C x it is enough to
establish that f(z) C x.

28

Least pre-fixed points are fixed points

If it exists, the least pre-fixed point of a mononote function on a
partial order is necessarily a fixed point.

29

Thesis™

All domains of computation are
complete partial orders with a least element.

30

Thesis™

All domains of computation are
complete partial orders with a least element.

All computable functions are
continuous.

30

Cpo’s and domains

A , or cpo for short, is a poset (D, C) in
which all countable increasing chains dg = di T dy T ... have
least upper bounds, | |~ dn:

Vm >0.d,, C I_Id” (lub1)
n>0
VdeD.(Vm>0.dp Cd) = | |d.Td. (ub2)
n>0
A is a cpo that possesses a least element, _L_:

Vvde D. 1l Cd.

31

(¢ > 0 and (x,) achain)

]

n>0 4n

Vn>0.x2, Cx

I—anO rn LT

({x;) a chain)

32

Domain of partial functions, X — Y

33

Domain of partial functions, X — Y

Underlying set: all partial functions, f, with domain of definition
dom(f) C X and taking values in Y.

33

Domain of partial functions, X — Y

Underlying set: all partial functions, f, with domain of definition
dom(f) C X and taking values in Y.

Partial order:
fCg iff dom(f)C dom(g)and

Ve € dom(f). f(x) = g(x)
ittt graph(f) C graph(g)

33

Domain of partial functions, X — Y

Underlying set: all partial functions, f, with domain of definition
dom(f) C X and taking values in Y.

Partial order:
fCg iff dom(f)C dom(g)and

Vo € dom(f). f(x) = g(x)
it graph(f) C graph(g)
Lub of chain fy C fi C fo C ... is the partial function f with
dom(f) = UnZO dom(fy) and

(fn(a:) if v € dom(f,), somen

fz) =

\ undefined otherwise

33

Domain of partial functions, X — Y

Underlying set: all partial functions, f, with domain of definition
dom(f) C X and taking values in Y.

Partial order:
fCg iff dom(f)C dom(g)and

Vo € dom(f). f(x) = g(x)
it graph(f) C graph(g)
Lub of chain fy C fi C fo C ... is the partial function f with
dom(f) = UnZO dom(fy) and

(fn(az) if v € dom(f,), somen

fz) =

\ undefined otherwise

Least element _| is the totally undefined partial function.

33

Some properties of lubs of chains

Let D be a cpo.
1. Forde D,| | d=d

2. Foreverychaindg T di C...Cd, C...inD,
udn — leN—l—n
mn mn

forall N € N.

34

3. Forevery pairofchainsdg T di C ... Cd, C ...

eoLegtC...Ce, L ...InD,
if d,, C e, foralln € N then

n

d

n

L

and

35

3. Forevery pairofchainsdg T di C ... Cd, C ...

eolertC...Ce, C...inD,
if d,, C e, foralln € N then

n

d

n

L

and

({(x,,) and (y,) chains)

Diagonalising a double chain

Lemma. Let D be a cpo. Suppose that the doubly-indexed family
of elements d,, , € D (m,n > 0) satisfies

m<m &n<n = Amn & dpy - (T)
Then
| |dow © | |din & | |dom T ...
n>0 n>0 n>0
and

LI dm,O L LI dm,l L LI dm,;g L ...

m>0 m>0 m>0

36

Diagonalising a double chain

Lemma. Let D be a cpo. Suppose that the doubly-indexed family
of elements d,, , € D (m,n > 0) satisfies

m<m &n<n = Amn & dpy - (T)
Then
| | dow T | |din T | |d2n £ ...
n>0 n>0 n>0
and
| | dmo ©T | | dmg & | | dms T ...
m=>0 m=>0 m=>0
Moreover

L { L dmn) = [der =[] | L] dma

m>0 \n>0 k>0 n=>0 \m=>0

36

Continuity and strictness

e If D and E are cpo’s, the function f is
1. it is monotone, and

2. it preserves lubs of chains, i.e. for all chains
do C di E ... inD,itis the case that

ef(L_Idn):: LJ f(dp) inE.

n>0 n>0

Iff

37

Continuity and strictness

e If D and E are cpo’s, the function f is iff
1. it is monotone, and

2. it preserves lubs of chains, i.e. for all chains
do C di E ... inD,itis the case that

ef(L_Idn):: LJ f(dn) in L.

n>0 n>0

e If D and E have least elements, then the function f is
iff (L) = L.

37

Tarski’s Fixed Point Theorem

Let f : D — D be a continuous function on a domain). Then

e f possesses a least pre-fixed point, given by

fiz(f)=| | fM(L).

n>0

e Moreover, fix(f) is a fixed point of f, i.e. satisfies

f(ﬁa?(f)) = fix(f), and hence is the of f.

38

[while B do C]

[while B do (]

= fix(fipy,1c7)

= Uh>o fimp101™ (L)

= \s € State.
 [C]*(s) itk > 0issuchthat [B]([C]*(s)) = false
< and [B]([C]*(s)) = trueforall 0 < i < k

_ undefined if [B]([C]*(s)) = true foralli > 0

39

Topic 3

Constructions on Domains

40

Discrete cpo’s and flat domains

For any set X, the relation of equality

def
rCo & =2

makes (X, C) into a cpo, called the
set X.

(z,2" € X)

cpo with underlying

41

Discrete cpo’s and flat domains

For any set X, the relation of equality

def
rCo & rv=2 (r,2/ €X)
makes (X, C) into a cpo, called the cpo with underlying
set X.

def
Let X | = X U{L}, where L is some element notin X . Then

iCd ¥ (d=d)v(d=1) (d,decX))

makes (XL, E) into a domain (with least element _L), called the
domain determined by X .

41

Binary product of cpo’s and domains

The of two cpo’s (D1, 1) and (D2, E2) has underlying
set
D1 x Dy = {(dl,dg) ‘ di1 € Dy & dy € DQ}

and partial order L defined by

(d1,do) C (dy,dy) & dy Ty dy & dy Co dfy -

(1, 22) C (y1,92)

r1 L1 T2 Lo Yo

42

Lubs of chains are calculated componentwise:
LI (d1nsdopn) = (u d1i, |_| da,j) -
n>0 i>0 7>0

If (D1,E1) and (D3, Co) are domains sois (D1 X Dsy, C)
and L p, «xp, = (J_Dl, J_DQ).

43

Continuous functions of two arguments

Proposition. Let D, E, I be cpo’s. A function
f: (D x E) — F is monotone if and only if it is monotone in

each argument separately:

Vd,d € D,ec E.dCd = f(d,e) C f(d,e)
Vd € D,e,e' € E.eCe = f(d,e) C f(d,é).

Moreover, it is continuous if and only if it preserves lubs of chains

in each argument separately:

f(dmve):

m>0

m>0

f(dm,e)

fd, | |en)=| | f(d en).

n>0

n>0

44

e A couple of derived rules:

(f monotone)

fU,, zms L, yn) = Uy f(2k, yk)

45

Function cpo’s and domains

Given cpo's (D,Cp)and (E,Cg), the
(D — F, C) has underlying set

(D— F) © {f|f:D— FEisa continuous function }

and partial order: f C f’ K vd ¢ D. f(d) Cg f'(d).

46

Function cpo’s and domains

Given cpo's (D,Cp)and (E,Cg), the
(D — F, C) has underlying set

(D— F) © {f|f:D— FEisa continuous function }

and partial order: f C f’ K vd ¢ D. f(d) Cg f'(d).

e A derived rule:

fEosm 9 TEDY

f(z) T g(y)

46

Lubs of chains are calculated ‘argumentwise’ (using lubs in F/):

| | fo = MdeD. | | fuld) .

n>0 n>0

If E/ is adomain, thensois D — Fand L p ,p(d) = Lg,all
deD.

47

Lubs of chains are calculated ‘argumentwise’ (using lubs in F/):

| | fo = MdeD. | | fuld) .

n>0 n>0

e A derived rule:

(L fn) U 2m) = Ui fr(ar)

If E/ is adomain, thensois D — Fand L p ,p(d) = Lg,all
deD.

47

Continuity of composition

For cpo’s D, E/, F', the composition function

o: ((E—=F)x(D—FE)— (D—F)

defined by setting, forall f € (D — E)andg € (F — F)),

gof = Ad € Dg(f(d))

IS continuous.

48

Continuity of the fixpoint operator

Let D be a domain.

By Tarski's Fixed Point Theorem we know that each
continuous function f € (D — D) possesses a least
fixed point, fiz(f) € D.

Proposition. The function
fir : (D—D)— D

IS continuous.

49

Topic 4

Scott Induction

50

Scott’s Fixed Point Induction Principle

Let f : D — D be a continuous function on a domain D.

For any admissible subset S C D, to prove that the least
fixed point of f isin S, i.e. that

fix(f) e s,

it suffices to prove

Vde D (deS = f(d)eSs).

51

Chain-closed and admissible subsets

Let D be a cpo. A subset S C D is called iff
forallchainsdy " di Edo T ... inD

(¥n>0.d, € S) (Ud)

n>0

If D is adomain, S C D is called iff it is a
chain-closed subset of D and 1. € S.

52

Chain-closed and admissible subsets

Let D be a cpo. A subset S C D is called iff
forallchainsdy " di Edo T ... inD

(¥n>0.d, € S) (Ud)

n>0

If D is adomain, S C D is called iff it is a
chain-closed subset of D and 1. € S.

A property ®(d) of elements d € D is called chain-closed
(resp. admissible) iff {d € D | ®(d)} is a chain-closed
(resp. admissible) subset of .

52

Building chain-closed subsets ()

Let D, E be cpos.

Basic relations:

e Foreveryd € D, the subset

W) E({reD|rCd)

of I is chain-closed.

53

Building chain-closed subsets ()

Let D, E be cpos.

Basic relations:

e Foreveryd € D, the subset

W) E({reD|rCd)

of I is chain-closed.

® [he subsets

{(z,y) e Dx D |z Cy}
{(z,y) € D x D |z =y}

and

of D X D are chain-closed.

53

Example (I): Least pre-fixed point property

Let D be adomainandlet f : D — D be a continuous function.

Vde D. f(d)Cd = fiz(f)Cd

54

Example (I): Least pre-fixed point property

Let D be adomainandlet f : D — D be a continuous function.

Vde D. f(d)Cd = fiz(f)Cd

Proof by Scott induction.

Let d € D be a pre-fixed point of f. Then,
z € [(d)

xr C d
f(z) E f(d)
flz)Ed

flz) €l

I

VR

d)

Hence,

fiz(f) € Ud) .

54

Building chain-closed subsets (ll)

Inverse image:
Let f : D — E be a continuous function.

If S is a chain-closed subset of £ then the inverse image
f71s ={xeD| f(z) € S}

is an chain-closed subset of D).

55

Example (ll)

Let D be a domain andlet f, g : D — D be continuous
functions such that f o g C g o f. Then,

fL) Eg(dL) = fiz(f) E fix(g) -

56

Example (ll)

Let D be a domain andlet f, g : D — D be continuous
functions such that f o g C g o f. Then,

fL) Eg(dL) = fiz(f) E fix(g) -

Proof by Scott induction.

Consider the admissible property ®(z) = (f(z) C g(z))
of D.

Since

f(x) Egz) = g(f(z)) C g(g(x)) = f(g(x)) C g(g(x))
we have that

f(fiz(g)) C g(fix(g)) .

56

Building chain-closed subsets (lll)

Logical operations:
o If S,I" C D are chain-closed subsets of) then
SuUT and SNT
are chain-closed subsets of D).
o If {S; }icr is afamily of chain-closed subsets of D

indexed by a set I, then ()., S; is a chain-closed
subset of D).

el

e If a property P(x,) determines a chain-closed subset of
D x E, then the property Vo € D. P(x,y) determines
a chain-closed subset of F.

57

Example (lll): Partial correctness

Let F : State — State be the denotation of
while X >0do (Y =X *xY; X =X —-1) .
Forall z,y > 0,

FIX—x,Y —yl |
— Fl X —z2,Y—y=[X—0,Y—al gy

58

Recall that
F = fiz(f)
where f : (State — State) — (State — State) is given by

(

(x,y) if z <0

= MNx,y) € State. <
fw) (9) e w(r —1,x-y) ifx >0

\

59

Proof by Scott induction.

We consider the admissible subset of (State — State) given by

Va,y > 0.
S=<w w|X — x,Y — gyl
= wX—z,Y—yl=X—0Y 2zl vy

and show that

weS = f(w)es.

60

Topic 5

PCF

PCF syntax

Types

T :=nat | bool | T — T

62

PCF syntax

Types

Expressions

M

T :=nat | bool | T — T

0 | succ(M) | pred(M)

62

PCF syntax

Types

Expressions

M

T :=nat | bool | T — T

0 | succ(M) | pred(M)

true | false | zero(M)

62

PCF syntax

Types

Expressions

M

T :=nat | bool | T — T

2= 0 | succ(M) | pred(M)

| true | false | zero(M)
| x| if M then M else M

62

PCF syntax

Types
T :=nat | bool | T — T

Expressions
M == 0 | succ(M) | pred(M)
true | false | zero(M)

x | if M then M else M
thx:7.M | MM | fix(M)

where € V, an infinite set of variables.

62

PCF syntax

T :=nat | bool | T — T

M == 0 | succ(M) | pred(M)
true | false | zero(M)
x | if M then M else M
ftnx:7.M | MM | fix(M)

where € V, an infinite set of

Technicality: We identify expressions up to «x-conversion of
bound variables (created by the fn expression-former): by
definition a PCF IS an «-equivalence class of expressions.

62

PCF typing relation, I' = M : 7

o ['isa , i.e. a finite partial function mapping
variables to types (whose domain of definition is denoted

dom(T"))
e)\ isaterm

® 7TisSa

63

PCF typing relation, I' = M : 7

o ['isa , i.e. a finite partial function mapping
variables to types (whose domain of definition is denoted

dom(T"))
e)\ isaterm
® Tisa

Notation:

M : 7 means M isclosedand) - M : 7 holds.

PCF, ¥ {M | M : 7).

63

PCF typing relation (sample rules)

(*fn)

Cle—7]FM: 71’

I'Ffnz:7.M:7— 71/ & dom(T)

64

PCF typing relation (sample rules)

(*fn)

Cle—7]FM: 71’

I'Ffnz:7.M:7— 71/ & dom(T)

'-My:7—=7 T'FMy:71
Fl_MlMQIT/

(:app)

64

PCF typing relation (sample rules)

Clx—7|FM:7
(‘fn) itz & dom(T")
Cbfnx:7. M:7— 17

FI—MliT%T/ FI—MQ:T
Fl_MlMQIT/

(:app)

I'=M:7—T1

(ax) I'Ffix(M): 7

64

Partial recursive functions in PCF

e Primitive recursion.

h(z,0) = f(x)
h(z,y+1) =g(x,y,h(z,y))

A

\

65

Partial recursive functions in PCF

e Primitive recursion.

h(z,0) = f(x)
h(z,y+1) =g(x,y,h(z,y))

A

\

e Minimisation.

m(x) = theleasty > 0 suchthat k(x,y) =0

65

PCF evaluation relation

takes the form

M.V

T

where
e 7 is a PCF type
o VM,V € PCF. are closed PCF terms of type 7
o Visa ,

V =0 |succ(V) | true| false | fnx: 7. M.

66

PCF evaluation (sample rules)

(Uval) |4 U’T 4

(V' a value of type T)

67

PCF evaluation (sample rules)

(Ucbn)

(Uva1) V-V (V avalue of type 7T)

MlUT_w fnilj‘:T.M{ M{[MQ/QZ‘] UT/V

My Mo § V

67

PCF evaluation (sample rules)

(Uva1) V-V (V avalue of type 7T)

(l}) MlUT_w fnilj‘:T.M{ M{[MQ/QZ‘] UT/V
cbn

My Mo § V

M fix(M) .V

(uﬁx) ﬁX(M) UT v

67

Contextual equivalence

Two phrases of a programming language are
If any occurrences of the first phrase in a

complete program can be replaced by the second phrase

without affecting the observable results of executing the

program.

68

Contextual equivalence of PCF terms

Given PCF terms M, M5, PCF type 7, and a type

environment I, the relation | I' = My S Mo = T

Is defined to hold iff

e Both the typings I' = M7 : 7 and |

e For all PCF contexts C for which C
closed terms of type v, where v =
and for all values V' : ~,

'+ M5 : 7 hold.

M| and C|Ms] are
nat ory = bool,

C[Ml] U,,y V & C[MQ] U,y V.

69

PCF denotational semantics — aims

70

PCF denotational semantics — aims

e PCFtypes 7 — domains [T].

70

PCF denotational semantics — aims

e PCFtypes 7 +> domains |7].

e Closed PCFterms M : 7 — elements [M] € [7].

Denotations of open terms will be continuous functions.

70

PCF denotational semantics — aims

e PCFtypes 7 +> domains |7].

e Closed PCFterms M : 7 — elements [M] € [7].

Denotations of open terms will be continuous functions.

In particular: [M] = [M'] = [C[M]] = [C[M]].

70

PCF denotational semantics — aims

PCF types 7 +— domains [T].

Closed PCF terms M : 7 +— elements [M] € [7].

Denotations of open terms will be continuous functions.
In particular: [M] = [M'] = [C[M]] = [C|M]].

Foranytype 7, M ||V = [M] = [V].

70

PCF denotational semantics — aims

PCF types 7 +— domains [T].

Closed PCF terms M : 7 +— elements [M] € [7].

Denotations of open terms will be continuous functions.
In particular: [M] = [M'] = [C[M]] = [C[M]].
Foranytype 7, M ||V = [M] = [V].

For 7 = bool or nat, [M]| =[V]e|r] = M|, V.

70

Theorem. For all types T and closed terms My, My € PCFE',,

if [M1] and | Ms] are equal elements of the domain 7], then
M 1 gctx MQ - T.

71

Theorem. For all types T and closed terms My, My € PCFE',,

if [M1] and | Ms] are equal elements of the domain 7], then
M 1 gctx MQ - T.

Proof.

CIMi]),V = [C[Mi]] = [V] (soundness)

= [C|Ms]] = [V] (compositionality
on [[Ml]] — [[MQ]])

= C|Ms| |,V (adequacy)

and symmetrically.]

71

Proof principle

To prove

it suffices to establish

M1 %JCtX M2 . T

[M;] = [Mz] in [7]

72

Proof principle

To prove
M1 gctx M2 . T

It suffices to establish

[M;] = [Mz] in [7]

?| The proof principle is sound, but is it complete? That is,
Is equality in the denotational model also a necessary
condition for contextual equivalence?

72

Topic 6

Denotational Semantics of PCF

73

Denotational semantics of PCF

To every typing judgement
I'EM:T1
we associate a continuous function
II'= M| : [T — 7]

between domains.

74

Denotational semantics of PCF types

[nat] = N (flat domain)

[bool] 'y, (flat domain)

where N = {0,1,2,...} and B = {true, false}.

75

Denotational semantics of PCF types

[nat] = N (flat domain)
[bool] 'y, (flat domain)
[T — T’]]déf [7] — [7] (function domain).

where N = {0,1,2,...} and B = {true, false}.

75

Denotational semantics of PCF type environments

] © [ecaomm [T'(z)] (I-environments)

76

Denotational semantics of PCF type environments

] © [ecaomm [T'(z)] (I-environments)

— the domain of partial functions p from variables
to domains such that dom(p) = dom(I") and
p(x) € [['(x)] forall x € dom(I")

76

Denotational semantics of PCF type environments

] © [ecaomm [T'(z)] (I-environments)
— the domain of partial functions p from variables
to domains such that dom(p) = dom(I") and
p(x) € [['(x)] forall x € dom(I")

Example:

1. For the empty type environment (),

0] ={ L}

where L denotes the unique partial function with
dom(L) = 0.

76

2. [(x — 7)]

{z} = Ir])

77

2. [(x — 7)]

{z} = Ir])

12

7]

77

00000

X ({zn} = [m])

77

Denotational semantics of PCF terms, |

[T+ 0](p) & 0 € [nat]

[- true](p) L true € [bool]

[I" - false](p) © false € [bool]

78

Denotational semantics of PCF terms, |

[T+ 0](p) & 0 € [nat]

[- true](p) L true € [bool]

[I" - false](p) © false € [bool]

[T+ 2](p)= p(x) € [T(2)]

(z € dom(T))

78

Denotational semantics of PCF terms, Il

[I" = succ(M)](p)

(

[T+ M](p)+1 if [l + M](
1 it [T - M](

=

)

=

£

79

Denotational semantics of PCF terms, Il

[T+ suce(M)](p)

(

def II'E M(p)+1 it [I' = M](

<)
1 if [T+ M]|(

S
L

=

\

[I' - pred(M)](p)

dof <’[[r - M](p) — 1 if [T+ M](p) >0
L it [[' - M](p) =0, L

\

79

Denotational semantics of PCF terms, Il

[+ suce(M)] (p)

(

def II'E M(p)+1 it [I' = M](

)
L [0 - M](p) = L

S
L

\

[I' - pred(M)](p)

dof <’[[r - M](p) — 1 if [T+ M](p) >0
L it [[' - M](p) =0, L

{true if [= MJ[(p)=0

\

def

II' = zero(M)|(p) = < false it [I'F M](p) >0

LT M](p) = L

79

Denotational semantics of PCF terms, lli

" = if My then M, else Ms|(p)

T F M) (p) if [T+ M](p) = true
L LM M](p) [T F Mi](p) = false
L [T F M]

|
|_

S

80

Denotational semantics of PCF terms, lli

" = if My then M, else Ms|(p)

<FFFMﬂ@)”ﬂﬂﬁuﬁﬁw
def

("= Ms|(p) i [I'F Mi](p) = false
1 it [I' = Mi](p) = L

[T+ My My](p) % ([0 + Mi](p)) (IT + Ma](p))

80

Denotational semantics of PCF terms, IV

I'Ffax:7.M|(p)

L\ e [7]. D]z — 7] F M](p|z — d)) (¢ domi(D)

NB: p|x — d| € [I'|x — 7] is the function mapping z to d € 7]
and otherwise acting like p.

81

Denotational semantics of PCF terms, V

def

[I' - fix(M)](p) = fix([I' = M](p))

Recall that fix is the function assigning least fixed points to continuous
functions.

82

Denotational semantics of PCF

Proposition. For all typing judgements ' = M : T, the
denotation

II'E M]:[T] — [7]

is a well-defined continous function.

83

Denotations of closed terms

For a closed term M € PCF -, we get

[0 M] : [0] — [7]

and, since [0] = { L }, we have

[M] = [0F M](L) € [7]

(M € PCF,)

84

Compositionality

Proposition. For all typing judgements ' = M : T and
'+ M’ : 7, and all contexts C[—| such thatT" = C[M] : 7’
andl" = C[M'] : 7/,

if [[=M]=[CFMY]:[]— [7]

then [I" +C[M]] = [I"+C[M]] : [I'] — [']

Soundness

Proposition. For all closed terms M,V € PCEF .,

if M |).V then [M] =1[V] € [r] .

86

Substitution property

Proposition. Suppose that1' = M : 7 and that

Clz— 7] M'": 7/, sothat we also have I' = M'[M /x| : /.

Then,

[T+ MM /)] (p)

F[aj — 7] F M’]] (p[CE — [M]](p)])

forall p € [I].

87

Substitution property

Proposition. Suppose that1' = M : 7 and that
Clz— 7] M'": 7/, sothat we also have I' = M'[M /x| : /.

Then,
[T F M'[M/x]] (p)
= [Tz — 7] = M']| (p|z — [T+ M](p)])

forall p € [I].

In particular when I' = (), [{(x — 7) & M"] : [r] — [7'] and
|M'[M/z]| = [(z— 1) = M]([M])

87

Topic 7

Relating Denotational and Operational Semantics

88

Adequacy

For any closed PCF terms M and V' of ground type
v € {nat, bool} with V" a value

Ml =[V]el] = My, V.

89

Adequacy

For any closed PCF terms M and V' of ground type
v € {nat, bool} with V" a value

Ml =[V]el] = My, V.

NB. Adequacy does not hold at function types

89

Adequacy

For any closed PCF terms M and V' of ground type
v € {nat, bool} with V" a value

M} =1V]el] =— M, V.

NB. Adequacy does not hold at function types:

fnz:7.(fny:7.y)x] = [fnx:7. 2]

7] = 17l

89

Adequacy

For any closed PCF terms M and V' of ground type
v € {nat, bool} with V" a value

M} =1V]el] =— M, V.

NB. Adequacy does not hold at function types:
fnz:7.(hy:7.y)x] = [Mma:7.2] :|7]—|7]

but
fnx:7.(hy:7y)x §._. a7

89

Adequacy proof idea

90

Adequacy proof idea

1. We cannot proceed to prove the adequacy statement by a
straightforward induction on the structure of terms.

» Consider M tobe My Mo, fix(M').

90

Adequacy proof idea

1. We cannot proceed to prove the adequacy statement by a
straightforward induction on the structure of terms.

» Consider M tobe My Mo, fix(M').

2. S0 we proceed to prove a stronger statement that applies to
terms of arbitrary types and implies adequacy.

90

Adequacy proof idea

1. We cannot proceed to prove the adequacy statement by a
straightforward induction on the structure of terms.

» Consider M tobe My Mo, fix(M').

2. S0 we proceed to prove a stronger statement that applies to
terms of arbitrary types and implies adequacy.

This statement roughly takes the form:

[M] <1 M for all types T and all M € PCF;

where the formal approximation relations

<r C [7] x PCF-

are logically chosen to allow a proof by induction.

90

Requirements on the formal approximation relations, |

We want that, for v € {nat, bool },

[M] <, M implies YV (M]=[V] = M|, V)

_J/

N

adequacy

91

Definition of d <, M (d € [y], M € PCF,)
for v € {nat, bool}

def

n<pa M & (neN = MJ|,, succ”(0))
def

b <poot M & (b= true = M |};,,; true)

& (b= false = M |,;,,; false)

92

Proof of: [M/| <1, M implies adequacy

Case v = nat.

[M] = [V]
—> [M] = [succ”(0)] forsomen € N
— n=|M] <\ M

— M |} succ”(0) by definition of <1,,4¢

Case v = bool is similar.

93

Requirements on the formal approximation relations, Il

We want to be able to proceed by induction.
» Consider the case M = M M.

~~ logical definition

94

Definition of
f<omr M (f€([7] = [7]),M € PCF,_,)

95

Definition of
f<omr M (f€([7] = [7]),M € PCF,_,)

f ;7 M

© vz e[r],N € PCF,

(x < N = f(z) < M N)

95

Requirements on the formal approximation relations, lli

We want to be able to proceed by induction.
» Consider the case M = fix(M’).

~~ admissibility property

96

Admissibility property

Lemma. For all types 7 and M € PCF ., the set
{de|r]|d< M}

is an admissible subset of |T].

97

Further properties

Lemma. For all types T, elements d,d’ € [7], and terms
M,N.V € PCF,,

1.1f dCd and d <, M then d <, M.

2.If d<s Mand YV (M| _ V = N|_ V)
then d <1 N .

98

Requirements on the formal approximation relations, IV

We want to be able to proceed by induction.
» Considerthecase M =fnax : 7. M’ .

~~ substitutivity property for open terms

99

Fundamental property

Theorem. Foralll' = (x1 — T1,...,2, — T,,) and all
I'=M:7,if di < My, ..., d, <, M, then
[[F"M]HZCllﬁdl,,fnl—)dn] = M[Ml/ZCl,,Mn/ZCn]

100

Fundamental property

Theorem. Foralll' = (x1 — T1,..., %y, > Ty) and all
I'=M:7,if di < My, ..., d, <, M, then
[[Fl_M]][ZCll%dl,,mnf%dn] = M[Ml/ZCl,,Mn/ZEn]

NB. Thecase ' = () reduces to

M| < M
forall M € PCF'.,.

100

Fundamental property of the relations <;

Proposition. IfI' = M : 7 is a valid PCF typing, then for all
['-environments p and all 1'-substitutions o

p<ro = [I'kM](p) 2 M|o]

e p <Ir 0 means that p() <Ir(y) o(x) holds for each
x € dom(T).

e M o] is the PCF term resulting from the simultaneous substitution
of o(x) for x in M, each x € dom(T").

101

Contextual preorder between PCF terms

Given PCF terms M, M», PCF type 7, and a type environment

I', therelation | I' = My <gix Mo : T

is defined to hold iff

e Both the typings I' = M7 : 7 and |

'+ M5 : 7 hold.

e For all PCF contexts C for which C| M| and C|M>]| are

closed terms of type 7y, where v =
and for all values V' € PCF,,

nat orvy = bool,

C[Ml] UWV — C[MQ] U’WV .

102

Extensionality properties of <.

At a ground type v € {bool, nat},
My <ctx Mo : 7y holds if and only if

VVEPCny (Ml U,WV — MQU,VV) :

At a function type 7 — 7/,
My <.x M5 : 7 — 7/ holds if and only if

VM € PCF., (MlMéctx MQM!T/) :

103

Topic 8

Full Abstraction

104

Proof principle

For all types 7 and closed terms M7, My € PCF .,

[[Ml]] — [[MQ]] In [[T]] — M = Mo i 7 .

Hence, to prove
M1 gctx M2 . T

It suffices to establish

[M1] = [Ma] in|7] .

105

Full abstraction

A denotational model is said to be fully abstract whenever denota-
tional equality characterises contextual equivalence.

106

Full abstraction

A denotational model is said to be fully abstract whenever denota-
tional equality characterises contextual equivalence.

» The domain model of PCEF is not fully abstract.

In other words, there are contextually equivalent PCF terms
with different denotations.

106

Failure of full abstraction, idea

We will construct two closed terms

11,15 € PCF(bool—>(bool—>bool))—>bool

such that
11 =cex 1o

and

[T1] # [12]

107

» We achieve 1] =.tx 1> by making sure that

VM € PCF poo1— (boot—boot) (11 M Wyoor & To M Yy)

108

» We achieve 1] =.tx 1> by making sure that

VM € PCF poo1— (boot—boot) (11 M Wyoor & To M Yy)

Hence,
[T ([M]) = L = [T2] ([M])
forall M € PCFbool—)(bool—)bool)-

108

» We achieve 1] =.tx 1> by making sure that

VM € PCF poo1— (boot—boot) (11 M Wyoor & To M Yy)

Hence,
[T ([M]) = L = [T2] ([M])
forall M € PCFbool—)(bool—)bool)-

» We achieve |T1] # [15] by making sure that

[T1] (por) # [T2](por)

for some non-definable continuous function

pOTE(BJ_—)(BJ_—)BJ_)) :

108

function

is the unique continuous function por : B | — (B, — B |) such
that
por true _L = true

por L true = true

por false false = false

109

function

is the unique continuous function por : B | — (B, — B |) such
that
por true _L = true

por L true = true

false

por false false

In which case, it necessarily follows by monotonicity that

por true true = true por false 1L = L
por true false = true por L false = L
por false true = true por L L = 1

109

Undefinability of parallel-or

Proposition. There is no closed PCF term
P : bool — (bool — bool)

satisfying

[Pl =por:B;, — (B, —-B,) .

110

Parallel-or test functions

111

Parallel-or test functions

Fori = 1, 2 define

T, © fn f : bool — (bool — bool) .

if (f true) then
if (f Q true) then
if (f false false) then (2 else B;
else ()
else ()

def def
where B1 =~ true, Bs = false,

and O fix(fnx : bool . x).

111

Failure of full abstraction

Proposition.

Th Zctx 15 : (bool — (bool — bool)) — bool

[[Tl]]#[[TQ]] E(BL%(BL%BL))%BL

112

PCF+por

M ::=---|por(M,M)
' My :bool T+ Ms : bool
[' - por(M;i, Ms) : bool

Ml U’bool true MQ UbOOl true

pOI‘(Ml, MQ) Ubool true por(Ml, MQ) U’bool true
My {4, false Ms |, false
por(My, Ms) |,,,; false

113

Plotkin’s full abstraction result

The denotational semantics of PCF+por is given by extending that
of PCF with the clause

[T - por(M;, My)](p) == por ([T F Mi](p)) ([T F Ma](p))

This denotational semantics is fully abstract for contextual
equivalence of PCF+por terms:

I'-M Zux Mo : 7 & [[Fl—Ml]]:[[Fl_MQ]]

114

