

Denotational Semantics

Lectures for Part II CST 2022/23

Prof Marcelo Fiore

Course web page:

<http://www.cl.cam.ac.uk/teaching/2223/DenotSem/>

Topic 1

Introduction

What is this course about?

- General area.

Formal methods: Mathematical techniques for the specification, development, and verification of software and hardware systems.

- Specific area.

Formal semantics: Mathematical theories for ascribing meanings to computer languages.

Why do we care?

Why do we care?

- Rigour.
 - ... specification of programming languages
 - ... justification of program transformations

Why do we care?

- Rigour.
 - ... specification of programming languages
 - ... justification of program transformations
- Insight.
 - ... generalisations of notions computability
 - ... higher-order functions
 - ... data structures

- Feedback into language design.
 - ... continuations
 - ... monads

- Feedback into language design.

- ... continuations

- ... monads

- Reasoning principles.

- ... Scott induction

- ... Logical relations

- ... Co-induction

Styles of formal semantics

Operational.

Axiomatic.

Denotational.

Styles of formal semantics

Operational.

Meanings for program phrases defined in terms of the *steps of computation* they can take during program execution.

Axiomatic.

Denotational.

Styles of formal semantics

Operational.

Meanings for program phrases defined in terms of the *steps of computation* they can take during program execution.

Axiomatic.

Meanings for program phrases defined indirectly via the *axioms and rules* of some logic of program properties.

Denotational.

Styles of formal semantics

Operational.

Meanings for program phrases defined in terms of the *steps of computation* they can take during program execution.

Axiomatic.

Meanings for program phrases defined indirectly via the *axioms and rules* of some logic of program properties.

Denotational.

Concerned with giving *mathematical models* of programming languages. Meanings for program phrases defined abstractly as elements of some suitable mathematical structure.

Basic idea of denotational semantics

Syntax $\xrightarrow{[\![\quad]\!]}$ Semantics

$P \mapsto [\![P]\!]$

Basic idea of denotational semantics

Syntax $\xrightarrow{[\![\quad]\!]}$ Semantics

Recursive program \mapsto Partial recursive function

$P \mapsto [\![P]\!]$

Basic idea of denotational semantics

Syntax $\xrightarrow{[\![\quad]\!]}$ Semantics

Recursive program \mapsto Partial recursive function

Boolean circuit \mapsto Boolean function

P \mapsto $[\![P]\!]$

Basic idea of denotational semantics

Syntax $\xrightarrow{[\![\cdot]\!]}$ Semantics

Recursive program \mapsto Partial recursive function

Boolean circuit \mapsto Boolean function

P \mapsto $[\![P]\!]$

Concerns:

- Abstract models (*i.e.* implementation/machine independent).
 \rightsquigarrow Lectures 2, 3 and 4.

Basic idea of denotational semantics

Syntax $\xrightarrow{[\![\cdot]\!]}$ Semantics

Recursive program \mapsto Partial recursive function

Boolean circuit \mapsto Boolean function

P \mapsto $[\![P]\!]$

Concerns:

- Abstract models (*i.e.* implementation/machine independent).
 \rightsquigarrow Lectures 2, 3 and 4.
- Compositionality.
 \rightsquigarrow Lectures 5 and 6.

Basic idea of denotational semantics

Syntax $\xrightarrow{[\![\cdot]\!]}$ Semantics

Recursive program \mapsto Partial recursive function

Boolean circuit \mapsto Boolean function

P \mapsto $[\![P]\!]$

Concerns:

- Abstract models (*i.e.* implementation/machine independent).
 \rightsquigarrow Lectures 2, 3 and 4.
- Compositionality.
 \rightsquigarrow Lectures 5 and 6.
- Relationship to computation (*e.g.* operational semantics).
 \rightsquigarrow Lectures 7 and 8.

Characteristic features of a denotational semantics

- Each phrase (= part of a program), P , is given a **denotation**, $\llbracket P \rrbracket$ — a mathematical object representing the contribution of P to the meaning of *any* complete program in which it occurs.
- The denotation of a phrase is determined just by the denotations of its subphrases (one says that the semantics is **compositional**).

Basic example of denotational semantics (I)

IMP[–] syntax

Arithmetic expressions

$A \in \mathbf{Aexp} ::= \underline{n} \mid L \mid A + A \mid \dots$

where \underline{n} ranges over *integers* and

L over a specified set of *locations* \mathbb{L}

Boolean expressions

$B \in \mathbf{Bexp} ::= \mathbf{true} \mid \mathbf{false} \mid A = A \mid \dots$
| $\neg B \mid \dots$

Commands

$C \in \mathbf{Comm} ::= \mathbf{skip} \mid L := A \mid C; C$
| $\mathbf{if } B \mathbf{ then } C \mathbf{ else } C$

Basic example of denotational semantics (II)

Semantic functions

$$\mathcal{A} : \mathbf{Aexp} \rightarrow (\text{State} \rightarrow \mathbb{Z})$$

where

$$\mathbb{Z} = \{\dots, -1, 0, 1, \dots\}$$

$$\text{State} = (\mathbb{L} \rightarrow \mathbb{Z})$$

Basic example of denotational semantics (II)

Semantic functions

$$\mathcal{A} : \mathbf{Aexp} \rightarrow (\text{State} \rightarrow \mathbb{Z})$$

$$\mathcal{B} : \mathbf{Bexp} \rightarrow (\text{State} \rightarrow \mathbb{B})$$

where

$$\mathbb{Z} = \{ \dots, -1, 0, 1, \dots \}$$

$$\mathbb{B} = \{ \text{true}, \text{false} \}$$

$$\text{State} = (\mathbb{L} \rightarrow \mathbb{Z})$$

Basic example of denotational semantics (II)

Semantic functions

$$\mathcal{A} : \mathbf{Aexp} \rightarrow (\text{State} \rightarrow \mathbb{Z})$$

$$\mathcal{B} : \mathbf{Bexp} \rightarrow (\text{State} \rightarrow \mathbb{B})$$

$$\mathcal{C} : \mathbf{Comm} \rightarrow (\text{State} \multimap \text{State})$$

where

$$\mathbb{Z} = \{ \dots, -1, 0, 1, \dots \}$$

$$\mathbb{B} = \{ \text{true}, \text{false} \}$$

$$\text{State} = (\mathbb{L} \rightarrow \mathbb{Z})$$

Basic example of denotational semantics (III)

Semantic function \mathcal{A}

$$\mathcal{A}[\underline{n}] = \lambda s \in \text{State}. n$$

$$\mathcal{A}[L] = \lambda s \in \text{State}. s(L)$$

$$\mathcal{A}[A_1 + A_2] = \lambda s \in \text{State}. \mathcal{A}[A_1](s) + \mathcal{A}[A_2](s)$$

Basic example of denotational semantics (IV)

Semantic function \mathcal{B}

$$\mathcal{B}[\text{true}] = \lambda s \in \text{State}. \text{true}$$

$$\mathcal{B}[\text{false}] = \lambda s \in \text{State}. \text{false}$$

$$\mathcal{B}[A_1 = A_2] = \lambda s \in \text{State}. \text{eq}(\mathcal{A}[A_1](s), \mathcal{A}[A_2](s))$$

where $\text{eq}(a, a') = \begin{cases} \text{true} & \text{if } a = a' \\ \text{false} & \text{if } a \neq a' \end{cases}$

Basic example of denotational semantics (V)

Semantic function \mathcal{C}

$$\llbracket \text{skip} \rrbracket = \lambda s \in \text{State}. s$$

NB: From now on the names of semantic functions are omitted!

A simple example of compositionality

Given partial functions $\llbracket C \rrbracket, \llbracket C' \rrbracket : State \rightarrow State$ and a function $\llbracket B \rrbracket : State \rightarrow \{ \text{true}, \text{false} \}$, we can define

$$\begin{aligned}\llbracket \text{if } B \text{ then } C \text{ else } C' \rrbracket &= \\ \lambda s \in State. \, if(\llbracket B \rrbracket(s), \llbracket C \rrbracket(s), \llbracket C' \rrbracket(s))\end{aligned}$$

where

$$if(b, x, x') = \begin{cases} x & \text{if } b = \text{true} \\ x' & \text{if } b = \text{false} \end{cases}$$

Basic example of denotational semantics (VI)

Semantic function \mathcal{C}

$$[\![L := A]\!] = \lambda s \in \text{State}. \lambda \ell \in \mathbb{L}. \text{if}(\ell = L, [\![A]\!](s), s(\ell))$$

Denotational semantics of sequential composition

Denotation of sequential composition $C; C'$ of two commands

$$\llbracket C; C' \rrbracket = \llbracket C' \rrbracket \circ \llbracket C \rrbracket = \lambda s \in \text{State}. \llbracket C' \rrbracket(\llbracket C \rrbracket(s))$$

given by composition of the partial functions from states to states $\llbracket C \rrbracket, \llbracket C' \rrbracket : \text{State} \rightarrow \text{State}$ which are the denotations of the commands.

Denotational semantics of sequential composition

Denotation of sequential composition $C; C'$ of two commands

$$\llbracket C; C' \rrbracket = \llbracket C' \rrbracket \circ \llbracket C \rrbracket = \lambda s \in \text{State}. \llbracket C' \rrbracket(\llbracket C \rrbracket(s))$$

given by composition of the partial functions from states to states $\llbracket C \rrbracket, \llbracket C' \rrbracket : \text{State} \rightarrow \text{State}$ which are the denotations of the commands.

Cf. operational semantics of sequential composition:

$$\frac{C, s \Downarrow s' \quad C', s' \Downarrow s''}{C; C', s \Downarrow s''}.$$

[[while B do C]]

Fixed point property of [while B do C]

$$[\text{while } B \text{ do } C] = f_{[B], [C]}([\text{while } B \text{ do } C])$$

where, for each $b : \text{State} \rightarrow \{\text{true}, \text{false}\}$ and
 $c : \text{State} \rightarrow \text{State}$, we define

$$f_{b,c} : (\text{State} \rightarrow \text{State}) \rightarrow (\text{State} \rightarrow \text{State})$$

as

$$f_{b,c} = \lambda w \in (\text{State} \rightarrow \text{State}). \lambda s \in \text{State}. \text{if}(b(s), w(c(s)), s).$$

Fixed point property of [while B do C]

$$[\text{while } B \text{ do } C] = f_{[\![B]\!], [\![C]\!]}([\text{while } B \text{ do } C])$$

where, for each $b : \text{State} \rightarrow \{\text{true}, \text{false}\}$ and
 $c : \text{State} \rightarrow \text{State}$, we define

$$f_{b,c} : (\text{State} \rightarrow \text{State}) \rightarrow (\text{State} \rightarrow \text{State})$$

as

$$f_{b,c} = \lambda w \in (\text{State} \rightarrow \text{State}). \lambda s \in \text{State}. \text{if}(b(s), w(c(s)), s).$$

- Why does $w = f_{[\![B]\!], [\![C]\!]}(w)$ have a solution?
- What if it has several solutions—which one do we take to be
[while B do C]?

Approximating $\llbracket \text{while } B \text{ do } C \rrbracket$

Approximating $\llbracket \text{while } B \text{ do } C \rrbracket$

$$f_{\llbracket B \rrbracket, \llbracket C \rrbracket}^n(\perp)$$

$$= \lambda s \in \text{State.}$$

$$\begin{cases} \llbracket C \rrbracket^k(s) & \text{if } \exists 0 \leq k < n. \llbracket B \rrbracket(\llbracket C \rrbracket^k(s)) = \text{false} \\ & \text{and } \forall 0 \leq i < k. \llbracket B \rrbracket(\llbracket C \rrbracket^i(s)) = \text{true} \\ \uparrow & \text{if } \forall 0 \leq i < n. \llbracket B \rrbracket(\llbracket C \rrbracket^i(s)) = \text{true} \end{cases}$$

$$D \stackrel{\text{def}}{=} (\text{State} \multimap \text{State})$$

- **Partial order \sqsubseteq on D :**

$w \sqsubseteq w'$ iff for all $s \in \text{State}$, if w is defined at s then so is w' and moreover $w(s) = w'(s)$.
iff the graph of w is included in the graph of w' .

- **Least element $\perp \in D$ w.r.t. \sqsubseteq :**

\perp = totally undefined partial function
= partial function with empty graph

(satisfies $\perp \sqsubseteq w$, for all $w \in D$).

Topic 2

Least Fixed Points

Thesis

All domains of computation are
partial orders with a least element.

Thesis

All domains of computation are
partial orders with a least element.

All computable functions are
monotonic.

Partially ordered sets

A binary relation \sqsubseteq on a set D is a **partial order** iff it is

reflexive: $\forall d \in D. d \sqsubseteq d$

transitive: $\forall d, d', d'' \in D. d \sqsubseteq d' \sqsubseteq d'' \Rightarrow d \sqsubseteq d''$

anti-symmetric: $\forall d, d' \in D. d \sqsubseteq d' \sqsubseteq d \Rightarrow d = d'$.

Such a pair (D, \sqsubseteq) is called a **partially ordered set**, or **poset**.

$$\overline{x \sqsubseteq x}$$

$$\frac{x \sqsubseteq y \quad y \sqsubseteq z}{x \sqsubseteq z}$$

$$\frac{x \sqsubseteq y \quad y \sqsubseteq x}{x = y}$$

Domain of partial functions, $X \rightharpoonup Y$

Domain of partial functions, $X \rightharpoonup Y$

Underlying set: all partial functions, f , with domain of definition $dom(f) \subseteq X$ and taking values in Y .

Domain of partial functions, $X \rightharpoonup Y$

Underlying set: all partial functions, f , with domain of definition $dom(f) \subseteq X$ and taking values in Y .

Partial order:

$$\begin{aligned} f \sqsubseteq g \quad \text{iff} \quad & dom(f) \subseteq dom(g) \text{ and} \\ & \forall x \in dom(f). f(x) = g(x) \\ \text{iff} \quad & graph(f) \subseteq graph(g) \end{aligned}$$

Monotonicity

- A function $f : D \rightarrow E$ between posets is **monotone** iff

$$\forall d, d' \in D. d \sqsubseteq d' \Rightarrow f(d) \sqsubseteq f(d').$$

$$\frac{x \sqsubseteq y}{f(x) \sqsubseteq f(y)} \quad (f \text{ monotone})$$

Least Elements

Suppose that D is a poset and that S is a subset of D .

An element $d \in S$ is the *least* element of S if it satisfies

$$\forall x \in S. d \sqsubseteq x .$$

- Note that because \sqsubseteq is anti-symmetric, S has at most one least element.
- Note also that a poset may not have least element.

Pre-fixed points

Let D be a poset and $f : D \rightarrow D$ be a function.

An element $d \in D$ is a **pre-fixed point of f** if it satisfies $f(d) \sqsubseteq d$.

The *least pre-fixed point* of f , if it exists, will be written

$$\boxed{fix(f)}$$

It is thus (uniquely) specified by the two properties:

$$f(fix(f)) \sqsubseteq fix(f) \tag{Ifp1}$$

$$\forall d \in D. f(d) \sqsubseteq d \Rightarrow fix(f) \sqsubseteq d. \tag{Ifp2}$$

Proof principle

2. Let D be a poset and let $f : D \rightarrow D$ be a function with a least pre-fixed point $\text{fix}(f) \in D$.

For all $x \in D$, to prove that $\text{fix}(f) \sqsubseteq x$ it is enough to establish that $f(x) \sqsubseteq x$.

Proof principle

2. Let D be a poset and let $f : D \rightarrow D$ be a function with a least pre-fixed point $\text{fix}(f) \in D$.

For all $x \in D$, to prove that $\text{fix}(f) \sqsubseteq x$ it is enough to establish that $f(x) \sqsubseteq x$.

$$\frac{f(x) \sqsubseteq x}{\text{fix}(f) \sqsubseteq x}$$

Proof principle

1.

$$\frac{}{f(fix(f)) \sqsubseteq fix(f)}$$

2. Let D be a poset and let $f : D \rightarrow D$ be a function with a least pre-fixed point $fix(f) \in D$.

For all $x \in D$, to prove that $fix(f) \sqsubseteq x$ it is enough to establish that $f(x) \sqsubseteq x$.

$$\frac{f(x) \sqsubseteq x}{fix(f) \sqsubseteq x}$$

Least pre-fixed points are fixed points

If it exists, the least pre-fixed point of a monotone function on a partial order is necessarily a fixed point.

Thesis^{*}

All domains of computation are
complete partial orders with a least element.

Thesis*

All domains of computation are complete partial orders with a least element.

All computable functions are continuous.

Cpo's and domains

A **chain complete poset**, or **cpo** for short, is a poset (D, \sqsubseteq) in which all countable increasing chains $d_0 \sqsubseteq d_1 \sqsubseteq d_2 \sqsubseteq \dots$ have least upper bounds, $\bigsqcup_{n \geq 0} d_n$:

$$\forall m \geq 0 . d_m \sqsubseteq \bigsqcup_{n \geq 0} d_n \tag{lub1}$$

$$\forall d \in D . (\forall m \geq 0 . d_m \sqsubseteq d) \Rightarrow \bigsqcup_{n \geq 0} d_n \sqsubseteq d. \tag{lub2}$$

A **domain** is a cpo that possesses a least element, \perp :

$$\forall d \in D . \perp \sqsubseteq d.$$

$$\overline{\perp \sqsubseteq x}$$

$$\frac{}{x_i \sqsubseteq \bigsqcup_{n \geq 0} x_n} \quad (i \geq 0 \text{ and } \langle x_n \rangle \text{ a chain})$$

$$\frac{\forall n \geq 0 . x_n \sqsubseteq x}{\bigsqcup_{n \geq 0} x_n \sqsubseteq x} \quad (\langle x_i \rangle \text{ a chain})$$

Domain of partial functions, $X \rightharpoonup Y$

Domain of partial functions, $X \rightharpoonup Y$

Underlying set: all partial functions, f , with domain of definition $dom(f) \subseteq X$ and taking values in Y .

Domain of partial functions, $X \rightharpoonup Y$

Underlying set: all partial functions, f , with domain of definition $dom(f) \subseteq X$ and taking values in Y .

Partial order:

$f \sqsubseteq g$ iff $dom(f) \subseteq dom(g)$ and
 $\forall x \in dom(f). f(x) = g(x)$
iff $graph(f) \subseteq graph(g)$

Domain of partial functions, $X \rightharpoonup Y$

Underlying set: all partial functions, f , with domain of definition $dom(f) \subseteq X$ and taking values in Y .

Partial order:

$$\begin{aligned} f \sqsubseteq g \quad \text{iff} \quad & dom(f) \subseteq dom(g) \text{ and} \\ & \forall x \in dom(f). f(x) = g(x) \\ \text{iff} \quad & graph(f) \subseteq graph(g) \end{aligned}$$

Lub of chain $f_0 \sqsubseteq f_1 \sqsubseteq f_2 \sqsubseteq \dots$ is the partial function f with $dom(f) = \bigcup_{n \geq 0} dom(f_n)$ and

$$f(x) = \begin{cases} f_n(x) & \text{if } x \in dom(f_n), \text{ some } n \\ \text{undefined} & \text{otherwise} \end{cases}$$

Domain of partial functions, $X \rightharpoonup Y$

Underlying set: all partial functions, f , with domain of definition $dom(f) \subseteq X$ and taking values in Y .

Partial order:

$$\begin{aligned} f \sqsubseteq g \quad \text{iff} \quad & dom(f) \subseteq dom(g) \text{ and} \\ & \forall x \in dom(f). f(x) = g(x) \\ \text{iff} \quad & graph(f) \subseteq graph(g) \end{aligned}$$

Lub of chain $f_0 \sqsubseteq f_1 \sqsubseteq f_2 \sqsubseteq \dots$ is the partial function f with $dom(f) = \bigcup_{n \geq 0} dom(f_n)$ and

$$f(x) = \begin{cases} f_n(x) & \text{if } x \in dom(f_n), \text{ some } n \\ \text{undefined} & \text{otherwise} \end{cases}$$

Least element \perp is the totally undefined partial function.

Some properties of lubs of chains

Let D be a cpo.

1. For $d \in D$, $\bigsqcup_n d = d$.
2. For every chain $d_0 \sqsubseteq d_1 \sqsubseteq \dots \sqsubseteq d_n \sqsubseteq \dots$ in D ,

$$\bigsqcup_n d_n = \bigsqcup_n d_{N+n}$$

for all $N \in \mathbb{N}$.

3. For every pair of chains $d_0 \sqsubseteq d_1 \sqsubseteq \dots \sqsubseteq d_n \sqsubseteq \dots$ and $e_0 \sqsubseteq e_1 \sqsubseteq \dots \sqsubseteq e_n \sqsubseteq \dots$ in D ,

if $d_n \sqsubseteq e_n$ for all $n \in \mathbb{N}$ then $\bigsqcup_n d_n \sqsubseteq \bigsqcup_n e_n$.

3. For every pair of chains $d_0 \sqsubseteq d_1 \sqsubseteq \dots \sqsubseteq d_n \sqsubseteq \dots$ and $e_0 \sqsubseteq e_1 \sqsubseteq \dots \sqsubseteq e_n \sqsubseteq \dots$ in D ,

if $d_n \sqsubseteq e_n$ for all $n \in \mathbb{N}$ then $\bigsqcup_n d_n \sqsubseteq \bigsqcup_n e_n$.

$$\frac{\forall n \geq 0. x_n \sqsubseteq y_n}{\bigsqcup_n x_n \sqsubseteq \bigsqcup_n y_n} \quad (\langle x_n \rangle \text{ and } \langle y_n \rangle \text{ chains})$$

Diagonalising a double chain

Lemma. Let D be a cpo. Suppose that the doubly-indexed family of elements $d_{m,n} \in D$ ($m, n \geq 0$) satisfies

$$m \leq m' \ \& \ n \leq n' \Rightarrow d_{m,n} \sqsubseteq d_{m',n'}. \quad (\dagger)$$

Then

$$\bigsqcup_{n \geq 0} d_{0,n} \sqsubseteq \bigsqcup_{n \geq 0} d_{1,n} \sqsubseteq \bigsqcup_{n \geq 0} d_{2,n} \sqsubseteq \dots$$

and

$$\bigsqcup_{m \geq 0} d_{m,0} \sqsubseteq \bigsqcup_{m \geq 0} d_{m,1} \sqsubseteq \bigsqcup_{m \geq 0} d_{m,3} \sqsubseteq \dots$$

Diagonalising a double chain

Lemma. Let D be a cpo. Suppose that the doubly-indexed family of elements $d_{m,n} \in D$ ($m, n \geq 0$) satisfies

$$m \leq m' \ \& \ n \leq n' \Rightarrow d_{m,n} \sqsubseteq d_{m',n'}. \quad (\dagger)$$

Then

$$\bigsqcup_{n \geq 0} d_{0,n} \sqsubseteq \bigsqcup_{n \geq 0} d_{1,n} \sqsubseteq \bigsqcup_{n \geq 0} d_{2,n} \sqsubseteq \dots$$

and

$$\bigsqcup_{m \geq 0} d_{m,0} \sqsubseteq \bigsqcup_{m \geq 0} d_{m,1} \sqsubseteq \bigsqcup_{m \geq 0} d_{m,3} \sqsubseteq \dots$$

Moreover

$$\bigsqcup_{m \geq 0} \left(\bigsqcup_{n \geq 0} d_{m,n} \right) = \bigsqcup_{k \geq 0} d_{k,k} = \bigsqcup_{n \geq 0} \left(\bigsqcup_{m \geq 0} d_{m,n} \right).$$

Continuity and strictness

- If D and E are cpo's, the function f is **continuous** iff
 1. it is monotone, and
 2. it preserves lubs of chains, *i.e.* for all chains $d_0 \sqsubseteq d_1 \sqsubseteq \dots$ in D , it is the case that

$$f\left(\bigsqcup_{n \geq 0} d_n\right) = \bigsqcup_{n \geq 0} f(d_n) \quad \text{in } E.$$

Continuity and strictness

- If D and E are cpo's, the function f is **continuous** iff
 1. it is monotone, and
 2. it preserves lubs of chains, *i.e.* for all chains $d_0 \sqsubseteq d_1 \sqsubseteq \dots$ in D , it is the case that

$$f\left(\bigsqcup_{n \geq 0} d_n\right) = \bigsqcup_{n \geq 0} f(d_n) \quad \text{in } E.$$

- If D and E have least elements, then the function f is **strict** iff $f(\perp) = \perp$.

Tarski's Fixed Point Theorem

Let $f : D \rightarrow D$ be a continuous function on a domain D . Then

- f possesses a least pre-fixed point, given by

$$\text{fix}(f) = \bigsqcup_{n \geq 0} f^n(\perp).$$

- Moreover, $\text{fix}(f)$ is a fixed point of f , i.e. satisfies $f(\text{fix}(f)) = \text{fix}(f)$, and hence is the **least fixed point** of f .

$\llbracket \text{while } B \text{ do } C \rrbracket$

$\llbracket \text{while } B \text{ do } C \rrbracket$

$= \text{fix}(f_{\llbracket B \rrbracket, \llbracket C \rrbracket})$

$= \bigsqcup_{n \geq 0} f_{\llbracket B \rrbracket, \llbracket C \rrbracket}^n(\perp)$

$= \lambda s \in \text{State.}$

$$\left\{ \begin{array}{ll} \llbracket C \rrbracket^k(s) & \text{if } k \geq 0 \text{ is such that } \llbracket B \rrbracket(\llbracket C \rrbracket^k(s)) = \text{false} \\ & \text{and } \llbracket B \rrbracket(\llbracket C \rrbracket^i(s)) = \text{true} \text{ for all } 0 \leq i < k \\ \text{undefined} & \text{if } \llbracket B \rrbracket(\llbracket C \rrbracket^i(s)) = \text{true} \text{ for all } i \geq 0 \end{array} \right.$$

Topic 3

Constructions on Domains

Discrete cpo's and flat domains

For any set X , the relation of equality

$$x \sqsubseteq x' \stackrel{\text{def}}{\Leftrightarrow} x = x' \quad (x, x' \in X)$$

makes (X, \sqsubseteq) into a cpo, called the **discrete** cpo with underlying set X .

Discrete cpo's and flat domains

For any set X , the relation of equality

$$x \sqsubseteq x' \stackrel{\text{def}}{\Leftrightarrow} x = x' \quad (x, x' \in X)$$

makes (X, \sqsubseteq) into a cpo, called the **discrete** cpo with underlying set X .

Let $X_\perp \stackrel{\text{def}}{=} X \cup \{\perp\}$, where \perp is some element not in X . Then

$$d \sqsubseteq d' \stackrel{\text{def}}{\Leftrightarrow} (d = d') \vee (d = \perp) \quad (d, d' \in X_\perp)$$

makes (X_\perp, \sqsubseteq) into a domain (with least element \perp), called the **flat** domain determined by X .

Binary product of cpo's and domains

The **product** of two cpo's (D_1, \sqsubseteq_1) and (D_2, \sqsubseteq_2) has underlying set

$$D_1 \times D_2 = \{(d_1, d_2) \mid d_1 \in D_1 \ \& \ d_2 \in D_2\}$$

and partial order \sqsubseteq defined by

$$(d_1, d_2) \sqsubseteq (d'_1, d'_2) \stackrel{\text{def}}{\Leftrightarrow} d_1 \sqsubseteq_1 d'_1 \ \& \ d_2 \sqsubseteq_2 d'_2 .$$

$$\frac{(x_1, x_2) \sqsubseteq (y_1, y_2)}{x_1 \sqsubseteq_1 y_1 \quad x_2 \sqsubseteq_2 y_2}$$

Lubs of chains are calculated componentwise:

$$\bigsqcup_{n \geq 0} (d_{1,n}, d_{2,n}) = \left(\bigsqcup_{i \geq 0} d_{1,i}, \bigsqcup_{j \geq 0} d_{2,j} \right) .$$

If (D_1, \sqsubseteq_1) and (D_2, \sqsubseteq_2) are domains so is $(D_1 \times D_2, \sqsubseteq)$ and $\perp_{D_1 \times D_2} = (\perp_{D_1}, \perp_{D_2})$.

Continuous functions of two arguments

Proposition. *Let D, E, F be cpo's. A function*

$f : (D \times E) \rightarrow F$ is monotone if and only if it is monotone in each argument separately:

$$\forall d, d' \in D, e \in E. d \sqsubseteq d' \Rightarrow f(d, e) \sqsubseteq f(d', e)$$

$$\forall d \in D, e, e' \in E. e \sqsubseteq e' \Rightarrow f(d, e) \sqsubseteq f(d, e').$$

Moreover, it is continuous if and only if it preserves lubs of chains in each argument separately:

$$f\left(\bigsqcup_{m \geq 0} d_m, e\right) = \bigsqcup_{m \geq 0} f(d_m, e)$$

$$f(d, \bigsqcup_{n \geq 0} e_n) = \bigsqcup_{n \geq 0} f(d, e_n).$$

- A couple of derived rules:

$$\frac{x \sqsubseteq x' \quad y \sqsubseteq y'}{f(x, y) \sqsubseteq f(x', y')} \quad (f \text{ monotone})$$

$$f(\bigsqcup_m x_m, \bigsqcup_n y_n) = \bigsqcup_k f(x_k, y_k)$$

Function cpo's and domains

Given cpo's (D, \sqsubseteq_D) and (E, \sqsubseteq_E) , the **function cpo** $(D \rightarrow E, \sqsubseteq)$ has underlying set

$$(D \rightarrow E) \stackrel{\text{def}}{=} \{f \mid f : D \rightarrow E \text{ is a } \textit{continuous} \text{ function}\}$$

and partial order: $f \sqsubseteq f' \stackrel{\text{def}}{\Leftrightarrow} \forall d \in D. f(d) \sqsubseteq_E f'(d)$.

Function cpo's and domains

Given cpo's (D, \sqsubseteq_D) and (E, \sqsubseteq_E) , the **function cpo** $(D \rightarrow E, \sqsubseteq)$ has underlying set

$$(D \rightarrow E) \stackrel{\text{def}}{=} \{f \mid f : D \rightarrow E \text{ is a } \textit{continuous} \text{ function}\}$$

and partial order: $f \sqsubseteq f' \stackrel{\text{def}}{\Leftrightarrow} \forall d \in D. f(d) \sqsubseteq_E f'(d)$.

- A derived rule:

$$\frac{f \sqsubseteq_{(D \rightarrow E)} g \quad x \sqsubseteq_D y}{f(x) \sqsubseteq g(y)}$$

Lubs of chains are calculated ‘argumentwise’ (using lubs in E):

$$\bigsqcup_{n \geq 0} f_n = \lambda d \in D. \bigsqcup_{n \geq 0} f_n(d) .$$

If E is a domain, then so is $D \rightarrow E$ and $\perp_{D \rightarrow E}(d) = \perp_E$, all $d \in D$.

Lubs of chains are calculated ‘argumentwise’ (using lubs in E):

$$\bigsqcup_{n \geq 0} f_n = \lambda d \in D. \bigsqcup_{n \geq 0} f_n(d) .$$

- A derived rule:

$$(\bigsqcup_n f_n)(\bigsqcup_m x_m) = \bigsqcup_k f_k(x_k)$$

If E is a domain, then so is $D \rightarrow E$ and $\perp_{D \rightarrow E}(d) = \perp_E$, all $d \in D$.

Continuity of composition

For cpo's D, E, F , the composition function

$$\circ : ((E \rightarrow F) \times (D \rightarrow E)) \rightarrow (D \rightarrow F)$$

defined by setting, for all $f \in (D \rightarrow E)$ and $g \in (E \rightarrow F)$,

$$g \circ f = \lambda d \in D. g(f(d))$$

is continuous.

Continuity of the fixpoint operator

Let D be a domain.

By Tarski's Fixed Point Theorem we know that each continuous function $f \in (D \rightarrow D)$ possesses a least fixed point, $\text{fix}(f) \in D$.

Proposition. *The function*

$$\text{fix} : (D \rightarrow D) \rightarrow D$$

is continuous.

Topic 4

Scott Induction

Scott's Fixed Point Induction Principle

Let $f : D \rightarrow D$ be a continuous function on a domain D .

For any admissible subset $S \subseteq D$, to prove that the least fixed point of f is in S , i.e. that

$$\text{fix}(f) \in S ,$$

it suffices to prove

$$\forall d \in D (d \in S \Rightarrow f(d) \in S) .$$

Chain-closed and admissible subsets

Let D be a cpo. A subset $S \subseteq D$ is called **chain-closed** iff for all chains $d_0 \sqsubseteq d_1 \sqsubseteq d_2 \sqsubseteq \dots$ in D

$$(\forall n \geq 0 . d_n \in S) \Rightarrow \left(\bigsqcup_{n \geq 0} d_n \right) \in S$$

If D is a domain, $S \subseteq D$ is called **admissible** iff it is a chain-closed subset of D and $\perp \in S$.

Chain-closed and admissible subsets

Let D be a cpo. A subset $S \subseteq D$ is called **chain-closed** iff for all chains $d_0 \sqsubseteq d_1 \sqsubseteq d_2 \sqsubseteq \dots$ in D

$$(\forall n \geq 0 . d_n \in S) \Rightarrow \left(\bigsqcup_{n \geq 0} d_n \right) \in S$$

If D is a domain, $S \subseteq D$ is called **admissible** iff it is a chain-closed subset of D and $\perp \in S$.

A property $\Phi(d)$ of elements $d \in D$ is called *chain-closed* (resp. *admissible*) iff $\{d \in D \mid \Phi(d)\}$ is a *chain-closed* (resp. *admissible*) subset of D .

Building chain-closed subsets (I)

Let D, E be cpos.

Basic relations:

- For every $d \in D$, the subset

$$\downarrow(d) \stackrel{\text{def}}{=} \{ x \in D \mid x \sqsubseteq d \}$$

of D is chain-closed.

Building chain-closed subsets (I)

Let D, E be cpos.

Basic relations:

- For every $d \in D$, the subset

$$\downarrow(d) \stackrel{\text{def}}{=} \{x \in D \mid x \sqsubseteq d\}$$

of D is chain-closed.

- The subsets

$$\{(x, y) \in D \times D \mid x \sqsubseteq y\}$$

and

$$\{(x, y) \in D \times D \mid x = y\}$$

of $D \times D$ are chain-closed.

Example (I): Least pre-fixed point property

Let D be a domain and let $f : D \rightarrow D$ be a continuous function.

$$\forall d \in D. f(d) \sqsubseteq d \implies \text{fix}(f) \sqsubseteq d$$

Example (I): Least pre-fixed point property

Let D be a domain and let $f : D \rightarrow D$ be a continuous function.

$$\forall d \in D. f(d) \sqsubseteq d \implies \text{fix}(f) \sqsubseteq d$$

Proof by Scott induction.

Let $d \in D$ be a pre-fixed point of f . Then,

$$\begin{aligned} x \in \downarrow(d) &\implies x \sqsubseteq d \\ &\implies f(x) \sqsubseteq f(d) \\ &\implies f(x) \sqsubseteq d \\ &\implies f(x) \in \downarrow(d) \end{aligned}$$

Hence,

$$\text{fix}(f) \in \downarrow(d) .$$

Building chain-closed subsets (II)

Inverse image:

Let $f : D \rightarrow E$ be a continuous function.

If S is a chain-closed subset of E then the inverse image

$$f^{-1}S = \{x \in D \mid f(x) \in S\}$$

is an chain-closed subset of D .

Example (II)

Let D be a domain and let $f, g : D \rightarrow D$ be continuous functions such that $f \circ g \sqsubseteq g \circ f$. Then,

$$f(\perp) \sqsubseteq g(\perp) \implies \text{fix}(f) \sqsubseteq \text{fix}(g) .$$

Example (II)

Let D be a domain and let $f, g : D \rightarrow D$ be continuous functions such that $f \circ g \sqsubseteq g \circ f$. Then,

$$f(\perp) \sqsubseteq g(\perp) \implies \text{fix}(f) \sqsubseteq \text{fix}(g) .$$

Proof by Scott induction.

Consider the admissible property $\Phi(x) \equiv (f(x) \sqsubseteq g(x))$ of D .

Since

$$f(x) \sqsubseteq g(x) \Rightarrow g(f(x)) \sqsubseteq g(g(x)) \Rightarrow f(g(x)) \sqsubseteq g(g(x))$$

we have that

$$f(\text{fix}(g)) \sqsubseteq g(\text{fix}(g)) .$$

Building chain-closed subsets (III)

Logical operations:

- If $S, T \subseteq D$ are chain-closed subsets of D then

$$S \cup T \quad \text{and} \quad S \cap T$$

are chain-closed subsets of D .

- If $\{S_i\}_{i \in I}$ is a family of chain-closed subsets of D indexed by a set I , then $\bigcap_{i \in I} S_i$ is a chain-closed subset of D .
- If a property $P(x, y)$ determines a chain-closed subset of $D \times E$, then the property $\forall x \in D. P(x, y)$ determines a chain-closed subset of E .

Example (III): Partial correctness

Let $\mathcal{F} : State \rightarrow State$ be the denotation of

while $X > 0$ **do** $(Y := X * Y; X := X - 1)$.

For all $x, y \geq 0$,

$$\mathcal{F}[X \mapsto x, Y \mapsto y] \downarrow$$

$$\implies \mathcal{F}[X \mapsto x, Y \mapsto y] = [X \mapsto 0, Y \mapsto x! \cdot y].$$

Recall that

$$\mathcal{F} = \text{fix}(f)$$

where $f : (\text{State} \rightarrow \text{State}) \rightarrow (\text{State} \rightarrow \text{State})$ is given by

$$f(w) = \lambda(x, y) \in \text{State}. \begin{cases} (x, y) & \text{if } x \leq 0 \\ w(x - 1, x \cdot y) & \text{if } x > 0 \end{cases}$$

Proof by Scott induction.

We consider the admissible subset of $(State \rightarrow State)$ given by

$$S = \left\{ w \left| \begin{array}{l} \forall x, y \geq 0. \\ w[X \mapsto x, Y \mapsto y] \downarrow \\ \Rightarrow w[X \mapsto x, Y \mapsto y] = [X \mapsto 0, Y \mapsto x! \cdot y] \end{array} \right. \right\}$$

and show that

$$w \in S \implies f(w) \in S .$$

Topic 5

PCF

PCF syntax

Types

$$\tau ::= \textit{nat} \mid \textit{bool} \mid \tau \rightarrow \tau$$

PCF syntax

Types

$$\tau ::= \text{nat} \mid \text{bool} \mid \tau \rightarrow \tau$$

Expressions

$$M ::= 0 \mid \text{succ}(M) \mid \text{pred}(M)$$

PCF syntax

Types

$$\tau ::= \text{nat} \mid \text{bool} \mid \tau \rightarrow \tau$$

Expressions

$$\begin{aligned} M ::= & \text{ 0 } \mid \text{succ}(M) \mid \text{pred}(M) \\ & \mid \text{true} \mid \text{false} \mid \text{zero}(M) \end{aligned}$$

PCF syntax

Types

$$\tau ::= \text{nat} \mid \text{bool} \mid \tau \rightarrow \tau$$

Expressions

$$\begin{aligned} M ::= & \text{ 0 } \mid \text{succ}(M) \mid \text{pred}(M) \\ & \mid \text{true} \mid \text{false} \mid \text{zero}(M) \\ & \mid x \mid \text{if } M \text{ then } M \text{ else } M \end{aligned}$$

PCF syntax

Types

$$\tau ::= \text{nat} \mid \text{bool} \mid \tau \rightarrow \tau$$

Expressions

$$\begin{aligned} M ::= & \quad 0 \mid \text{succ}(M) \mid \text{pred}(M) \\ & \mid \text{true} \mid \text{false} \mid \text{zero}(M) \\ & \mid x \mid \text{if } M \text{ then } M \text{ else } M \\ & \mid \text{fn } x : \tau . M \mid M M \mid \text{fix}(M) \end{aligned}$$

where $x \in \mathbb{V}$, an infinite set of variables.

PCF syntax

Types

$$\tau ::= \text{nat} \mid \text{bool} \mid \tau \rightarrow \tau$$

Expressions

$$\begin{aligned} M ::= & \quad \mathbf{0} \mid \mathbf{succ}(M) \mid \mathbf{pred}(M) \\ & \mid \mathbf{true} \mid \mathbf{false} \mid \mathbf{zero}(M) \\ & \mid x \mid \mathbf{if } M \mathbf{ then } M \mathbf{ else } M \\ & \mid \mathbf{fn } x : \tau . M \mid M M \mid \mathbf{fix}(M) \end{aligned}$$

where $x \in \mathbb{V}$, an infinite set of **variables**.

Technicality: We identify expressions up to α -conversion of bound variables (created by the **fn** expression-former): by definition a PCF **term** is an α -equivalence class of expressions.

PCF typing relation, $\Gamma \vdash M : \tau$

- Γ is a **type environment**, i.e. a finite partial function mapping variables to types (whose domain of definition is denoted $dom(\Gamma)$)
- M is a term
- τ is a **type**.

PCF typing relation, $\Gamma \vdash M : \tau$

- Γ is a **type environment**, i.e. a finite partial function mapping variables to types (whose domain of definition is denoted $dom(\Gamma)$)
- M is a term
- τ is a **type**.

Notation:

$M : \tau$ means M is closed and $\emptyset \vdash M : \tau$ holds.

$PCF_\tau \stackrel{\text{def}}{=} \{M \mid M : \tau\}.$

PCF typing relation (sample rules)

$$(:_{\text{fn}}) \quad \frac{\Gamma[x \mapsto \tau] \vdash M : \tau'}{\Gamma \vdash \mathbf{fn} \, x : \tau . \, M : \tau \rightarrow \tau'} \quad \text{if } x \notin \text{dom}(\Gamma)$$

PCF typing relation (sample rules)

$$(:\text{fn}) \quad \frac{\Gamma[x \mapsto \tau] \vdash M : \tau'}{\Gamma \vdash \mathbf{fn} \, x : \tau . \, M : \tau \rightarrow \tau'} \quad \text{if } x \notin \text{dom}(\Gamma)$$

$$(:\text{app}) \quad \frac{\Gamma \vdash M_1 : \tau \rightarrow \tau' \quad \Gamma \vdash M_2 : \tau}{\Gamma \vdash M_1 \, M_2 : \tau'}$$

PCF typing relation (sample rules)

$$(:\text{fn}) \quad \frac{\Gamma[x \mapsto \tau] \vdash M : \tau'}{\Gamma \vdash \mathbf{fn} \, x : \tau . \, M : \tau \rightarrow \tau'} \quad \text{if } x \notin \text{dom}(\Gamma)$$

$$(:\text{app}) \quad \frac{\Gamma \vdash M_1 : \tau \rightarrow \tau' \quad \Gamma \vdash M_2 : \tau}{\Gamma \vdash M_1 \, M_2 : \tau'}$$

$$(:\text{fix}) \quad \frac{\Gamma \vdash M : \tau \rightarrow \tau}{\Gamma \vdash \mathbf{fix}(M) : \tau}$$

Partial recursive functions in PCF

- Primitive recursion.

$$\begin{cases} h(x, 0) = f(x) \\ h(x, y + 1) = g(x, y, h(x, y)) \end{cases}$$

Partial recursive functions in PCF

- Primitive recursion.

$$\begin{cases} h(x, 0) = f(x) \\ h(x, y + 1) = g(x, y, h(x, y)) \end{cases}$$

- Minimisation.

$m(x) =$ the least $y \geq 0$ such that $k(x, y) = 0$

PCF evaluation relation

takes the form

$$M \Downarrow_{\tau} V$$

where

- τ is a PCF type
- $M, V \in \text{PCF}_{\tau}$ are closed PCF terms of type τ
- V is a **value**,

$$V ::= \mathbf{0} \mid \mathbf{succ}(V) \mid \mathbf{true} \mid \mathbf{false} \mid \mathbf{fn} \, x : \tau . \, M.$$

PCF evaluation (sample rules)

$(\Downarrow_{\text{val}}) \quad V \Downarrow_{\tau} V \quad (V \text{ a value of type } \tau)$

PCF evaluation (sample rules)

$$(\Downarrow_{\text{val}}) \quad V \Downarrow_{\tau} V \quad (V \text{ a value of type } \tau)$$

$$(\Downarrow_{\text{cbn}}) \quad \frac{M_1 \Downarrow_{\tau \rightarrow \tau'} \mathbf{fn} \, x : \tau . \, M'_1 \quad M'_1[M_2/x] \Downarrow_{\tau'} V}{M_1 \, M_2 \Downarrow_{\tau'} V}$$

PCF evaluation (sample rules)

$$(\Downarrow_{\text{val}}) \quad V \Downarrow_{\tau} V \quad (V \text{ a value of type } \tau)$$

$$(\Downarrow_{\text{cbn}}) \quad \frac{M_1 \Downarrow_{\tau \rightarrow \tau'} \mathbf{fn} \, x : \tau . \, M'_1 \quad M'_1[M_2/x] \Downarrow_{\tau'} V}{M_1 \, M_2 \Downarrow_{\tau'} V}$$

$$(\Downarrow_{\text{fix}}) \quad \frac{M \, \mathbf{fix}(M) \Downarrow_{\tau} V}{\mathbf{fix}(M) \Downarrow_{\tau} V}$$

Contextual equivalence

Two phrases of a programming language are **contextually equivalent** if any occurrences of the first phrase in a complete program can be replaced by the second phrase without affecting the observable results of executing the program.

Contextual equivalence of PCF terms

Given PCF terms M_1, M_2 , PCF type τ , and a type

environment Γ , the relation

$$\boxed{\Gamma \vdash M_1 \cong_{\text{ctx}} M_2 : \tau}$$

is defined to hold iff

- Both the typings $\Gamma \vdash M_1 : \tau$ and $\Gamma \vdash M_2 : \tau$ hold.
- For all PCF contexts \mathcal{C} for which $\mathcal{C}[M_1]$ and $\mathcal{C}[M_2]$ are closed terms of type γ , *where* $\gamma = \text{nat}$ or $\gamma = \text{bool}$, and for all values $V : \gamma$,

$$\mathcal{C}[M_1] \Downarrow_{\gamma} V \Leftrightarrow \mathcal{C}[M_2] \Downarrow_{\gamma} V.$$

PCF denotational semantics — aims

PCF denotational semantics — aims

- PCF types $\tau \mapsto$ domains $[\![\tau]\!]$.

PCF denotational semantics — aims

- PCF types $\tau \mapsto$ domains $\llbracket \tau \rrbracket$.
- Closed PCF terms $M : \tau \mapsto$ elements $\llbracket M \rrbracket \in \llbracket \tau \rrbracket$.
Denotations of open terms will be continuous functions.

PCF denotational semantics — aims

- PCF types $\tau \mapsto$ domains $\llbracket \tau \rrbracket$.
- Closed PCF terms $M : \tau \mapsto$ elements $\llbracket M \rrbracket \in \llbracket \tau \rrbracket$.
Denotations of open terms will be continuous functions.
- **Compositionality**.
In particular: $\llbracket M \rrbracket = \llbracket M' \rrbracket \Rightarrow \llbracket \mathcal{C}[M] \rrbracket = \llbracket \mathcal{C}[M'] \rrbracket$.

PCF denotational semantics — aims

- PCF types $\tau \mapsto$ domains $\llbracket \tau \rrbracket$.
- Closed PCF terms $M : \tau \mapsto$ elements $\llbracket M \rrbracket \in \llbracket \tau \rrbracket$.
Denotations of open terms will be continuous functions.
- **Compositionality**.
In particular: $\llbracket M \rrbracket = \llbracket M' \rrbracket \Rightarrow \llbracket \mathcal{C}[M] \rrbracket = \llbracket \mathcal{C}[M'] \rrbracket$.
- **Soundness**.
For any type τ , $M \Downarrow_{\tau} V \Rightarrow \llbracket M \rrbracket = \llbracket V \rrbracket$.

PCF denotational semantics — aims

- PCF types $\tau \mapsto$ domains $\llbracket \tau \rrbracket$.
- Closed PCF terms $M : \tau \mapsto$ elements $\llbracket M \rrbracket \in \llbracket \tau \rrbracket$.
 - Denotations of open terms will be continuous functions.
- **Compositionality.**
In particular: $\llbracket M \rrbracket = \llbracket M' \rrbracket \Rightarrow \llbracket \mathcal{C}[M] \rrbracket = \llbracket \mathcal{C}[M'] \rrbracket$.
- **Soundness.**
For any type τ , $M \Downarrow_{\tau} V \Rightarrow \llbracket M \rrbracket = \llbracket V \rrbracket$.
- **Adequacy.**
For $\tau = \text{bool}$ or nat , $\llbracket M \rrbracket = \llbracket V \rrbracket \in \llbracket \tau \rrbracket \implies M \Downarrow_{\tau} V$.

Theorem. For all types τ and closed terms $M_1, M_2 \in \text{PCF}_\tau$, if $\llbracket M_1 \rrbracket$ and $\llbracket M_2 \rrbracket$ are equal elements of the domain $\llbracket \tau \rrbracket$, then $M_1 \cong_{\text{ctx}} M_2 : \tau$.

Theorem. For all types τ and closed terms $M_1, M_2 \in \text{PCF}_\tau$, if $\llbracket M_1 \rrbracket$ and $\llbracket M_2 \rrbracket$ are equal elements of the domain $\llbracket \tau \rrbracket$, then $M_1 \cong_{\text{ctx}} M_2 : \tau$.

Proof.

$$\mathcal{C}[M_1] \Downarrow_{\text{nat}} V \Rightarrow \llbracket \mathcal{C}[M_1] \rrbracket = \llbracket V \rrbracket \quad (\text{soundness})$$

$$\begin{aligned} \Rightarrow \llbracket \mathcal{C}[M_2] \rrbracket &= \llbracket V \rrbracket && (\text{compositionality} \\ &&& \text{on } \llbracket M_1 \rrbracket = \llbracket M_2 \rrbracket) \end{aligned}$$

$$\Rightarrow \mathcal{C}[M_2] \Downarrow_{\text{nat}} V \quad (\text{adequacy})$$

and symmetrically. □

Proof principle

To prove

$$M_1 \cong_{\text{ctx}} M_2 : \tau$$

it suffices to establish

$$\llbracket M_1 \rrbracket = \llbracket M_2 \rrbracket \text{ in } \llbracket \tau \rrbracket$$

Proof principle

To prove

$$M_1 \cong_{\text{ctx}} M_2 : \tau$$

it suffices to establish

$$\llbracket M_1 \rrbracket = \llbracket M_2 \rrbracket \text{ in } \llbracket \tau \rrbracket$$

The proof principle is sound, but is it complete? That is, is equality in the denotational model also a necessary condition for contextual equivalence?

Topic 6

Denotational Semantics of PCF

Denotational semantics of PCF

To every typing judgement

$$\Gamma \vdash M : \tau$$

we associate a continuous function

$$[\![\Gamma \vdash M]\!] : [\![\Gamma]\!] \rightarrow [\![\tau]\!]$$

between domains.

Denotational semantics of PCF types

$$\llbracket \text{nat} \rrbracket \stackrel{\text{def}}{=} \mathbb{N}_{\perp} \quad (\text{flat domain})$$

$$\llbracket \text{bool} \rrbracket \stackrel{\text{def}}{=} \mathbb{B}_{\perp} \quad (\text{flat domain})$$

where $\mathbb{N} = \{0, 1, 2, \dots\}$ and $\mathbb{B} = \{\text{true}, \text{false}\}$.

Denotational semantics of PCF types

$$\llbracket \text{nat} \rrbracket \stackrel{\text{def}}{=} \mathbb{N}_{\perp} \quad (\text{flat domain})$$

$$\llbracket \text{bool} \rrbracket \stackrel{\text{def}}{=} \mathbb{B}_{\perp} \quad (\text{flat domain})$$

$$\llbracket \tau \rightarrow \tau' \rrbracket \stackrel{\text{def}}{=} \llbracket \tau \rrbracket \rightarrow \llbracket \tau' \rrbracket \quad (\text{function domain}).$$

where $\mathbb{N} = \{0, 1, 2, \dots\}$ and $\mathbb{B} = \{\text{true}, \text{false}\}$.

Denotational semantics of PCF type environments

$$\llbracket \Gamma \rrbracket \stackrel{\text{def}}{=} \prod_{x \in \text{dom}(\Gamma)} \llbracket \Gamma(x) \rrbracket \quad (\Gamma\text{-environments})$$

Denotational semantics of PCF type environments

$\llbracket \Gamma \rrbracket \stackrel{\text{def}}{=} \prod_{x \in \text{dom}(\Gamma)} \llbracket \Gamma(x) \rrbracket$ (Γ -environments)

\equiv the domain of partial functions ρ from variables to domains such that $\text{dom}(\rho) = \text{dom}(\Gamma)$ and $\rho(x) \in \llbracket \Gamma(x) \rrbracket$ for all $x \in \text{dom}(\Gamma)$

Denotational semantics of PCF type environments

$$\llbracket \Gamma \rrbracket \stackrel{\text{def}}{=} \prod_{x \in \text{dom}(\Gamma)} \llbracket \Gamma(x) \rrbracket \quad (\Gamma\text{-environments})$$

\equiv the domain of partial functions ρ from variables to domains such that $\text{dom}(\rho) = \text{dom}(\Gamma)$ and $\rho(x) \in \llbracket \Gamma(x) \rrbracket$ for all $x \in \text{dom}(\Gamma)$

Example:

1. For the empty type environment \emptyset ,

$$\llbracket \emptyset \rrbracket = \{ \perp \}$$

where \perp denotes the unique partial function with $\text{dom}(\perp) = \emptyset$.

$$2. \llbracket \langle x \mapsto \tau \rangle \rrbracket = (\{x\} \rightarrow \llbracket \tau \rrbracket)$$

$$2. \llbracket \langle x \mapsto \tau \rangle \rrbracket = (\{x\} \rightarrow \llbracket \tau \rrbracket) \cong \llbracket \tau \rrbracket$$

$$2. \llbracket \langle x \mapsto \tau \rangle \rrbracket = (\{x\} \rightarrow \llbracket \tau \rrbracket) \cong \llbracket \tau \rrbracket$$

3.

$$\begin{aligned} & \llbracket \langle x_1 \mapsto \tau_1, \dots, x_n \mapsto \tau_n \rangle \rrbracket \\ & \cong (\{x_1\} \rightarrow \llbracket \tau_1 \rrbracket) \times \dots \times (\{x_n\} \rightarrow \llbracket \tau_n \rrbracket) \\ & \cong \llbracket \tau_1 \rrbracket \times \dots \times \llbracket \tau_n \rrbracket \end{aligned}$$

Denotational semantics of PCF terms, I

$$\llbracket \Gamma \vdash \mathbf{0} \rrbracket(\rho) \stackrel{\text{def}}{=} 0 \in \llbracket \text{nat} \rrbracket$$

$$\llbracket \Gamma \vdash \mathbf{true} \rrbracket(\rho) \stackrel{\text{def}}{=} \text{true} \in \llbracket \text{bool} \rrbracket$$

$$\llbracket \Gamma \vdash \mathbf{false} \rrbracket(\rho) \stackrel{\text{def}}{=} \text{false} \in \llbracket \text{bool} \rrbracket$$

Denotational semantics of PCF terms, I

$$\llbracket \Gamma \vdash \mathbf{0} \rrbracket(\rho) \stackrel{\text{def}}{=} 0 \in \llbracket \text{nat} \rrbracket$$

$$\llbracket \Gamma \vdash \mathbf{true} \rrbracket(\rho) \stackrel{\text{def}}{=} \text{true} \in \llbracket \text{bool} \rrbracket$$

$$\llbracket \Gamma \vdash \mathbf{false} \rrbracket(\rho) \stackrel{\text{def}}{=} \text{false} \in \llbracket \text{bool} \rrbracket$$

$$\llbracket \Gamma \vdash x \rrbracket(\rho) \stackrel{\text{def}}{=} \rho(x) \in \llbracket \Gamma(x) \rrbracket \quad (x \in \text{dom}(\Gamma))$$

Denotational semantics of PCF terms, II

$\llbracket \Gamma \vdash \mathbf{succ}(M) \rrbracket(\rho)$

$$\stackrel{\text{def}}{=} \begin{cases} \llbracket \Gamma \vdash M \rrbracket(\rho) + 1 & \text{if } \llbracket \Gamma \vdash M \rrbracket(\rho) \neq \perp \\ \perp & \text{if } \llbracket \Gamma \vdash M \rrbracket(\rho) = \perp \end{cases}$$

Denotational semantics of PCF terms, II

$$\llbracket \Gamma \vdash \mathbf{succ}(M) \rrbracket(\rho)$$

$$\stackrel{\text{def}}{=} \begin{cases} \llbracket \Gamma \vdash M \rrbracket(\rho) + 1 & \text{if } \llbracket \Gamma \vdash M \rrbracket(\rho) \neq \perp \\ \perp & \text{if } \llbracket \Gamma \vdash M \rrbracket(\rho) = \perp \end{cases}$$

$$\llbracket \Gamma \vdash \mathbf{pred}(M) \rrbracket(\rho)$$

$$\stackrel{\text{def}}{=} \begin{cases} \llbracket \Gamma \vdash M \rrbracket(\rho) - 1 & \text{if } \llbracket \Gamma \vdash M \rrbracket(\rho) > 0 \\ \perp & \text{if } \llbracket \Gamma \vdash M \rrbracket(\rho) = 0, \perp \end{cases}$$

Denotational semantics of PCF terms, II

$$\llbracket \Gamma \vdash \mathbf{succ}(M) \rrbracket(\rho)$$

$$\stackrel{\text{def}}{=} \begin{cases} \llbracket \Gamma \vdash M \rrbracket(\rho) + 1 & \text{if } \llbracket \Gamma \vdash M \rrbracket(\rho) \neq \perp \\ \perp & \text{if } \llbracket \Gamma \vdash M \rrbracket(\rho) = \perp \end{cases}$$

$$\llbracket \Gamma \vdash \mathbf{pred}(M) \rrbracket(\rho)$$

$$\stackrel{\text{def}}{=} \begin{cases} \llbracket \Gamma \vdash M \rrbracket(\rho) - 1 & \text{if } \llbracket \Gamma \vdash M \rrbracket(\rho) > 0 \\ \perp & \text{if } \llbracket \Gamma \vdash M \rrbracket(\rho) = 0, \perp \end{cases}$$

$$\llbracket \Gamma \vdash \mathbf{zero}(M) \rrbracket(\rho) \stackrel{\text{def}}{=} \begin{cases} \text{true} & \text{if } \llbracket \Gamma \vdash M \rrbracket(\rho) = 0 \\ \text{false} & \text{if } \llbracket \Gamma \vdash M \rrbracket(\rho) > 0 \\ \perp & \text{if } \llbracket \Gamma \vdash M \rrbracket(\rho) = \perp \end{cases}$$

Denotational semantics of PCF terms, III

$\llbracket \Gamma \vdash \text{if } M_1 \text{ then } M_2 \text{ else } M_3 \rrbracket(\rho)$

$$\stackrel{\text{def}}{=} \begin{cases} \llbracket \Gamma \vdash M_2 \rrbracket(\rho) & \text{if } \llbracket \Gamma \vdash M_1 \rrbracket(\rho) = \text{true} \\ \llbracket \Gamma \vdash M_3 \rrbracket(\rho) & \text{if } \llbracket \Gamma \vdash M_1 \rrbracket(\rho) = \text{false} \\ \perp & \text{if } \llbracket \Gamma \vdash M_1 \rrbracket(\rho) = \perp \end{cases}$$

Denotational semantics of PCF terms, III

$$\llbracket \Gamma \vdash \text{if } M_1 \text{ then } M_2 \text{ else } M_3 \rrbracket(\rho)$$

$$\stackrel{\text{def}}{=} \begin{cases} \llbracket \Gamma \vdash M_2 \rrbracket(\rho) & \text{if } \llbracket \Gamma \vdash M_1 \rrbracket(\rho) = \text{true} \\ \llbracket \Gamma \vdash M_3 \rrbracket(\rho) & \text{if } \llbracket \Gamma \vdash M_1 \rrbracket(\rho) = \text{false} \\ \perp & \text{if } \llbracket \Gamma \vdash M_1 \rrbracket(\rho) = \perp \end{cases}$$

$$\llbracket \Gamma \vdash M_1 M_2 \rrbracket(\rho) \stackrel{\text{def}}{=} (\llbracket \Gamma \vdash M_1 \rrbracket(\rho)) (\llbracket \Gamma \vdash M_2 \rrbracket(\rho))$$

Denotational semantics of PCF terms, IV

$$\begin{aligned} & \llbracket \Gamma \vdash \mathbf{fn} \, x : \tau . \, M \rrbracket(\rho) \\ & \stackrel{\text{def}}{=} \lambda d \in \llbracket \tau \rrbracket . \, \llbracket \Gamma[x \mapsto \tau] \vdash M \rrbracket(\rho[x \mapsto d]) \quad (x \notin \text{dom}(\Gamma)) \end{aligned}$$

NB: $\rho[x \mapsto d] \in \llbracket \Gamma[x \mapsto \tau] \rrbracket$ is the function mapping x to $d \in \llbracket \tau \rrbracket$ and otherwise acting like ρ .

Denotational semantics of PCF terms, V

$$\llbracket \Gamma \vdash \mathbf{fix}(M) \rrbracket(\rho) \stackrel{\text{def}}{=} \text{fix}(\llbracket \Gamma \vdash M \rrbracket(\rho))$$

Recall that *fix* is the function assigning least fixed points to continuous functions.

Denotational semantics of PCF

Proposition. *For all typing judgements $\Gamma \vdash M : \tau$, the denotation*

$$\llbracket \Gamma \vdash M \rrbracket : \llbracket \Gamma \rrbracket \rightarrow \llbracket \tau \rrbracket$$

is a well-defined continuous function.

Denotations of closed terms

For a closed term $M \in \text{PCF}_\tau$, we get

$$\llbracket \emptyset \vdash M \rrbracket : \llbracket \emptyset \rrbracket \rightarrow \llbracket \tau \rrbracket$$

and, since $\llbracket \emptyset \rrbracket = \{ \perp \}$, we have

$$\llbracket M \rrbracket \stackrel{\text{def}}{=} \llbracket \emptyset \vdash M \rrbracket(\perp) \in \llbracket \tau \rrbracket \quad (M \in \text{PCF}_\tau)$$

Compositionality

Proposition. *For all typing judgements $\Gamma \vdash M : \tau$ and $\Gamma \vdash M' : \tau$, and all contexts $\mathcal{C}[-]$ such that $\Gamma' \vdash \mathcal{C}[M] : \tau'$ and $\Gamma' \vdash \mathcal{C}[M'] : \tau'$,*

if $\llbracket \Gamma \vdash M \rrbracket = \llbracket \Gamma \vdash M' \rrbracket : \llbracket \Gamma \rrbracket \rightarrow \llbracket \tau \rrbracket$

then $\llbracket \Gamma' \vdash \mathcal{C}[M] \rrbracket = \llbracket \Gamma' \vdash \mathcal{C}[M] \rrbracket : \llbracket \Gamma' \rrbracket \rightarrow \llbracket \tau' \rrbracket$

Soundness

Proposition. *For all closed terms $M, V \in \text{PCF}_\tau$,*

if $M \Downarrow_\tau V$ then $\llbracket M \rrbracket = \llbracket V \rrbracket \in \llbracket \tau \rrbracket$.

Substitution property

Proposition. Suppose that $\Gamma \vdash M : \tau$ and that

$\Gamma[x \mapsto \tau] \vdash M' : \tau'$, so that we also have $\Gamma \vdash M'[M/x] : \tau'$.

Then,

$$\begin{aligned} & \llbracket \Gamma \vdash M'[M/x] \rrbracket(\rho) \\ &= \llbracket \Gamma[x \mapsto \tau] \vdash M' \rrbracket(\rho[x \mapsto \llbracket \Gamma \vdash M \rrbracket(\rho)]) \end{aligned}$$

for all $\rho \in \llbracket \Gamma \rrbracket$.

Substitution property

Proposition. Suppose that $\Gamma \vdash M : \tau$ and that

$\Gamma[x \mapsto \tau] \vdash M' : \tau'$, so that we also have $\Gamma \vdash M'[M/x] : \tau'$.

Then,

$$\begin{aligned} & \llbracket \Gamma \vdash M'[M/x] \rrbracket(\rho) \\ &= \llbracket \Gamma[x \mapsto \tau] \vdash M' \rrbracket(\rho[x \mapsto \llbracket \Gamma \vdash M \rrbracket(\rho)]) \end{aligned}$$

for all $\rho \in \llbracket \Gamma \rrbracket$.

In particular when $\Gamma = \emptyset$, $\llbracket \langle x \mapsto \tau \rangle \vdash M' \rrbracket : \llbracket \tau \rrbracket \rightarrow \llbracket \tau' \rrbracket$ and

$$\llbracket M'[M/x] \rrbracket = \llbracket \langle x \mapsto \tau \rangle \vdash M' \rrbracket(\llbracket M \rrbracket)$$

Topic 7

Relating Denotational and Operational Semantics

Adequacy

For any closed PCF terms M and V of *ground* type
 $\gamma \in \{nat, bool\}$ with V a value

$$\llbracket M \rrbracket = \llbracket V \rrbracket \in \llbracket \gamma \rrbracket \implies M \Downarrow_{\gamma} V.$$

Adequacy

For any closed PCF terms M and V of *ground* type
 $\gamma \in \{nat, bool\}$ with V a value

$$\llbracket M \rrbracket = \llbracket V \rrbracket \in \llbracket \gamma \rrbracket \implies M \Downarrow_{\gamma} V.$$

NB. Adequacy does not hold at function types

Adequacy

For any closed PCF terms M and V of *ground* type
 $\gamma \in \{nat, bool\}$ with V a value

$$\llbracket M \rrbracket = \llbracket V \rrbracket \in \llbracket \gamma \rrbracket \implies M \Downarrow_{\gamma} V.$$

NB. Adequacy does not hold at function types:

$$\llbracket \mathbf{fn} \, x : \tau. \, (\mathbf{fn} \, y : \tau. \, y) \, x \rrbracket = \llbracket \mathbf{fn} \, x : \tau. \, x \rrbracket : \llbracket \tau \rrbracket \rightarrow \llbracket \tau \rrbracket$$

Adequacy

For any closed PCF terms M and V of *ground* type
 $\gamma \in \{nat, bool\}$ with V a value

$$\llbracket M \rrbracket = \llbracket V \rrbracket \in \llbracket \gamma \rrbracket \implies M \Downarrow_{\gamma} V.$$

NB. Adequacy does not hold at function types:

$$\llbracket \mathbf{fn} \ x : \tau. \ (\mathbf{fn} \ y : \tau. \ y) \ x \rrbracket = \llbracket \mathbf{fn} \ x : \tau. \ x \rrbracket : \llbracket \tau \rrbracket \rightarrow \llbracket \tau \rrbracket$$

but

$$\mathbf{fn} \ x : \tau. \ (\mathbf{fn} \ y : \tau. \ y) \ x \not\Downarrow_{\tau \rightarrow \tau} \mathbf{fn} \ x : \tau. \ x$$

Adequacy proof idea

Adequacy proof idea

1. We cannot proceed to prove the adequacy statement by a straightforward induction on the structure of terms.
 - ▶ Consider M to be $M_1 M_2$, $\text{fix}(M')$.

Adequacy proof idea

1. We cannot proceed to prove the adequacy statement by a straightforward induction on the structure of terms.
 - ▶ Consider M to be $M_1 M_2$, $\text{fix}(M')$.
2. So we proceed to prove a stronger statement that applies to terms of arbitrary types and implies adequacy.

Adequacy proof idea

1. We cannot proceed to prove the adequacy statement by a straightforward induction on the structure of terms.
 - Consider M to be $M_1 M_2$, $\text{fix}(M')$.
2. So we proceed to prove a stronger statement that applies to terms of arbitrary types and implies adequacy.

This statement roughly takes the form:

$$\llbracket M \rrbracket \triangleleft_{\tau} M \text{ for all types } \tau \text{ and all } M \in \text{PCF}_{\tau}$$

where the *formal approximation relations*

$$\triangleleft_{\tau} \subseteq \llbracket \tau \rrbracket \times \text{PCF}_{\tau}$$

are *logically* chosen to allow a proof by induction.

Requirements on the formal approximation relations, I

We want that, for $\gamma \in \{nat, bool\}$,

$\llbracket M \rrbracket \triangleleft_\gamma M$ implies $\underbrace{\forall V (\llbracket M \rrbracket = \llbracket V \rrbracket \implies M \Downarrow_\gamma V)}$

adequacy

Definition of $d \triangleleft_\gamma M$ ($d \in \llbracket \gamma \rrbracket, M \in \text{PCF}_\gamma$)
for $\gamma \in \{nat, bool\}$

$$n \triangleleft_{nat} M \stackrel{\text{def}}{\Leftrightarrow} (n \in \mathbb{N} \Rightarrow M \Downarrow_{nat} \mathbf{succ}^n(\mathbf{0}))$$

$$\begin{aligned} b \triangleleft_{bool} M \stackrel{\text{def}}{\Leftrightarrow} & (b = \text{true} \Rightarrow M \Downarrow_{bool} \mathbf{true}) \\ & \& (b = \text{false} \Rightarrow M \Downarrow_{bool} \mathbf{false}) \end{aligned}$$

Proof of: $\llbracket M \rrbracket \triangleleft_\gamma M$ implies adequacy

Case $\gamma = \text{nat}$.

$$\llbracket M \rrbracket = \llbracket V \rrbracket$$

$$\implies \llbracket M \rrbracket = \llbracket \mathbf{succ}^n(0) \rrbracket \quad \text{for some } n \in \mathbb{N}$$

$$\implies n = \llbracket M \rrbracket \triangleleft_\gamma M$$

$$\implies M \Downarrow \mathbf{succ}^n(0) \quad \text{by definition of } \triangleleft_{\text{nat}}$$

Case $\gamma = \text{bool}$ is similar.

Requirements on the formal approximation relations, II

We want to be able to proceed by induction.

- ▶ Consider the case $M = M_1 M_2$.

\rightsquigarrow *logical definition*

Definition of

$f \triangleleft_{\tau \rightarrow \tau'} M \quad (f \in (\llbracket \tau \rrbracket \rightarrow \llbracket \tau' \rrbracket), M \in \text{PCF}_{\tau \rightarrow \tau'})$

Definition of

$$f \triangleleft_{\tau \rightarrow \tau'} M \quad (f \in (\llbracket \tau \rrbracket \rightarrow \llbracket \tau' \rrbracket), M \in \text{PCF}_{\tau \rightarrow \tau'})$$

$$f \triangleleft_{\tau \rightarrow \tau'} M$$

$$\stackrel{\text{def}}{\Leftrightarrow} \forall x \in \llbracket \tau \rrbracket, N \in \text{PCF}_\tau$$

$$(x \triangleleft_\tau N \Rightarrow f(x) \triangleleft_{\tau'} M N)$$

Requirements on the formal approximation relations, III

We want to be able to proceed by induction.

- ▶ Consider the case $M = \mathbf{fix}(M')$.

↗ *admissibility* property

Admissibility property

Lemma. *For all types τ and $M \in \text{PCF}_\tau$, the set*

$$\{ d \in \llbracket \tau \rrbracket \mid d \triangleleft_\tau M \}$$

is an admissible subset of $\llbracket \tau \rrbracket$.

Further properties

Lemma. *For all types τ , elements $d, d' \in \llbracket \tau \rrbracket$, and terms $M, N, V \in \text{PCF}_\tau$,*

1. *If $d \sqsubseteq d'$ and $d' \triangleleft_\tau M$ then $d \triangleleft_\tau M$.*
2. *If $d \triangleleft_\tau M$ and $\forall V (M \Downarrow_\tau V \implies N \Downarrow_\tau V)$ then $d \triangleleft_\tau N$.*

Requirements on the formal approximation relations, IV

We want to be able to proceed by induction.

► Consider the case $M = \mathbf{fn} \ x : \tau . \ M'$.

↗ *substitutivity* property for open terms

Fundamental property

Theorem. For all $\Gamma = \langle x_1 \mapsto \tau_1, \dots, x_n \mapsto \tau_n \rangle$ and all $\Gamma \vdash M : \tau$, if $d_1 \triangleleft_{\tau_1} M_1, \dots, d_n \triangleleft_{\tau_n} M_n$ then $\llbracket \Gamma \vdash M \rrbracket[x_1 \mapsto d_1, \dots, x_n \mapsto d_n] \triangleleft_{\tau} M[M_1/x_1, \dots, M_n/x_n]$.

Fundamental property

Theorem. For all $\Gamma = \langle x_1 \mapsto \tau_1, \dots, x_n \mapsto \tau_n \rangle$ and all $\Gamma \vdash M : \tau$, if $d_1 \triangleleft_{\tau_1} M_1, \dots, d_n \triangleleft_{\tau_n} M_n$ then $\llbracket \Gamma \vdash M \rrbracket[x_1 \mapsto d_1, \dots, x_n \mapsto d_n] \triangleleft_{\tau} M[M_1/x_1, \dots, M_n/x_n]$.

NB. The case $\Gamma = \emptyset$ reduces to

$$\llbracket M \rrbracket \triangleleft_{\tau} M$$

for all $M \in \text{PCF}_{\tau}$.

Fundamental property of the relations \triangleleft_τ

Proposition. *If $\Gamma \vdash M : \tau$ is a valid PCF typing, then for all Γ -environments ρ and all Γ -substitutions σ*

$$\rho \triangleleft_\Gamma \sigma \Rightarrow \llbracket \Gamma \vdash M \rrbracket(\rho) \triangleleft_\tau M[\sigma]$$

- $\rho \triangleleft_\Gamma \sigma$ means that $\rho(x) \triangleleft_{\Gamma(x)} \sigma(x)$ holds for each $x \in \text{dom}(\Gamma)$.
- $M[\sigma]$ is the PCF term resulting from the simultaneous substitution of $\sigma(x)$ for x in M , each $x \in \text{dom}(\Gamma)$.

Contextual preorder between PCF terms

Given PCF terms M_1, M_2 , PCF type τ , and a type environment Γ , the relation $\boxed{\Gamma \vdash M_1 \leq_{\text{ctx}} M_2 : \tau}$ is defined to hold iff

- Both the typings $\Gamma \vdash M_1 : \tau$ and $\Gamma \vdash M_2 : \tau$ hold.
- For all PCF contexts \mathcal{C} for which $\mathcal{C}[M_1]$ and $\mathcal{C}[M_2]$ are closed terms of type γ , *where* $\gamma = \text{nat}$ *or* $\gamma = \text{bool}$, and for all values $V \in \text{PCF}_\gamma$,

$$\mathcal{C}[M_1] \Downarrow_\gamma V \implies \mathcal{C}[M_2] \Downarrow_\gamma V .$$

Extensionality properties of \leq_{ctx}

At a ground type $\gamma \in \{\text{bool}, \text{nat}\}$,

$M_1 \leq_{\text{ctx}} M_2 : \gamma$ holds if and only if

$$\forall V \in \text{PCF}_\gamma (M_1 \Downarrow_\gamma V \implies M_2 \Downarrow_\gamma V) .$$

At a function type $\tau \rightarrow \tau'$,

$M_1 \leq_{\text{ctx}} M_2 : \tau \rightarrow \tau'$ holds if and only if

$$\forall M \in \text{PCF}_\tau (M_1 M \leq_{\text{ctx}} M_2 M : \tau') .$$

Topic 8

Full Abstraction

Proof principle

For all types τ and closed terms $M_1, M_2 \in \text{PCF}_\tau$,

$$\llbracket M_1 \rrbracket = \llbracket M_2 \rrbracket \text{ in } \llbracket \tau \rrbracket \implies M_1 \cong_{\text{ctx}} M_2 : \tau .$$

Hence, to prove

$$M_1 \cong_{\text{ctx}} M_2 : \tau$$

it suffices to establish

$$\llbracket M_1 \rrbracket = \llbracket M_2 \rrbracket \text{ in } \llbracket \tau \rrbracket .$$

Full abstraction

A denotational model is said to be *fully abstract* whenever denotational equality characterises contextual equivalence.

Full abstraction

A denotational model is said to be *fully abstract* whenever denotational equality characterises contextual equivalence.

- The domain model of PCF is *not* fully abstract.
In other words, there are contextually equivalent PCF terms with different denotations.

Failure of full abstraction, idea

We will construct two closed terms

$$T_1, T_2 \in \text{PCF}_{(bool \rightarrow (bool \rightarrow bool)) \rightarrow bool}$$

such that

$$T_1 \cong_{\text{ctx}} T_2$$

and

$$\llbracket T_1 \rrbracket \neq \llbracket T_2 \rrbracket$$

- We achieve $T_1 \cong_{\text{ctx}} T_2$ by making sure that

$$\forall M \in \text{PCF}_{\text{bool} \rightarrow (\text{bool} \rightarrow \text{bool})} (T_1 M \not\downarrow_{\text{bool}} \& T_2 M \not\downarrow_{\text{bool}})$$

- We achieve $T_1 \cong_{\text{ctx}} T_2$ by making sure that

$$\forall M \in \text{PCF}_{\text{bool} \rightarrow (\text{bool} \rightarrow \text{bool})} (T_1 M \not\downarrow_{\text{bool}} \& T_2 M \not\downarrow_{\text{bool}})$$

Hence,

$$[\![T_1]\!](\![M]\!) = \perp = [\![T_2]\!](\![M]\!)$$

for all $M \in \text{PCF}_{\text{bool} \rightarrow (\text{bool} \rightarrow \text{bool})}$.

- We achieve $T_1 \cong_{\text{ctx}} T_2$ by making sure that

$$\forall M \in \text{PCF}_{\text{bool} \rightarrow (\text{bool} \rightarrow \text{bool})} (T_1 M \not\downarrow_{\text{bool}} \& T_2 M \not\downarrow_{\text{bool}})$$

Hence,

$$\llbracket T_1 \rrbracket(\llbracket M \rrbracket) = \perp = \llbracket T_2 \rrbracket(\llbracket M \rrbracket)$$

for all $M \in \text{PCF}_{\text{bool} \rightarrow (\text{bool} \rightarrow \text{bool})}$.

- We achieve $\llbracket T_1 \rrbracket \neq \llbracket T_2 \rrbracket$ by making sure that

$$\llbracket T_1 \rrbracket(\text{por}) \neq \llbracket T_2 \rrbracket(\text{por})$$

for some *non-definable* continuous function

$$\text{por} \in (\mathbb{B}_\perp \rightarrow (\mathbb{B}_\perp \rightarrow \mathbb{B}_\perp)) .$$

Parallel-or function

is the unique continuous function $por : \mathbb{B}_\perp \rightarrow (\mathbb{B}_\perp \rightarrow \mathbb{B}_\perp)$ such that

$$por \ true \ \perp = true$$

$$por \ \perp \ true = true$$

$$por \ false \ false = false$$

Parallel-or function

is the unique continuous function $\text{por} : \mathbb{B}_\perp \rightarrow (\mathbb{B}_\perp \rightarrow \mathbb{B}_\perp)$ such that

$$\text{por } \text{true } \perp = \text{true}$$

$$\text{por } \perp \text{ true} = \text{true}$$

$$\text{por } \text{false } \text{false} = \text{false}$$

In which case, it necessarily follows by monotonicity that

$$\text{por } \text{true } \text{true} = \text{true}$$

$$\text{por } \text{false } \perp = \perp$$

$$\text{por } \text{true } \text{false} = \text{true}$$

$$\text{por } \perp \text{ false} = \perp$$

$$\text{por } \text{false } \text{true} = \text{true}$$

$$\text{por } \perp \perp = \perp$$

Undefinability of parallel-or

Proposition. *There is no closed PCF term*

$$P : \text{bool} \rightarrow (\text{bool} \rightarrow \text{bool})$$

satisfying

$$\llbracket P \rrbracket = \text{por} : \mathbb{B}_\perp \rightarrow (\mathbb{B}_\perp \rightarrow \mathbb{B}_\perp) .$$

Parallel-or test functions

Parallel-or test functions

For $i = 1, 2$ define

$$\begin{aligned} T_i \stackrel{\text{def}}{=} & \text{fn } f : \text{bool} \rightarrow (\text{bool} \rightarrow \text{bool}) . \\ & \text{if } (f \text{ true } \Omega) \text{ then} \\ & \quad \text{if } (f \Omega \text{ true}) \text{ then} \\ & \quad \quad \text{if } (f \text{ false } \text{false}) \text{ then } \Omega \text{ else } B_i \\ & \quad \text{else } \Omega \\ & \text{else } \Omega \end{aligned}$$

where $B_1 \stackrel{\text{def}}{=} \text{true}$, $B_2 \stackrel{\text{def}}{=} \text{false}$,
and $\Omega \stackrel{\text{def}}{=} \text{fix}(\text{fn } x : \text{bool} . x)$.

Failure of full abstraction

Proposition.

$$T_1 \cong_{\text{ctx}} T_2 : (\text{bool} \rightarrow (\text{bool} \rightarrow \text{bool})) \rightarrow \text{bool}$$

$$\llbracket T_1 \rrbracket \neq \llbracket T_2 \rrbracket \in (\mathbb{B}_\perp \rightarrow (\mathbb{B}_\perp \rightarrow \mathbb{B}_\perp)) \rightarrow \mathbb{B}_\perp$$

PCF+por

Expressions $M ::= \dots \mid \text{por}(M, M)$

Typing
$$\frac{\Gamma \vdash M_1 : \text{bool} \quad \Gamma \vdash M_2 : \text{bool}}{\Gamma \vdash \text{por}(M_1, M_2) : \text{bool}}$$

Evaluation

$$\frac{M_1 \Downarrow_{\text{bool}} \text{true} \quad M_2 \Downarrow_{\text{bool}} \text{true}}{\text{por}(M_1, M_2) \Downarrow_{\text{bool}} \text{true}} \quad \frac{M_2 \Downarrow_{\text{bool}} \text{true}}{\text{por}(M_1, M_2) \Downarrow_{\text{bool}} \text{true}}$$
$$\frac{M_1 \Downarrow_{\text{bool}} \text{false} \quad M_2 \Downarrow_{\text{bool}} \text{false}}{\text{por}(M_1, M_2) \Downarrow_{\text{bool}} \text{false}}$$

Plotkin's full abstraction result

The denotational semantics of PCF+por is given by extending that of PCF with the clause

$$\llbracket \Gamma \vdash \mathbf{por}(M_1, M_2) \rrbracket(\rho) \stackrel{\text{def}}{=} \text{por}\left(\llbracket \Gamma \vdash M_1 \rrbracket(\rho)\right)\left(\llbracket \Gamma \vdash M_2 \rrbracket(\rho)\right)$$

This denotational semantics is fully abstract for contextual equivalence of PCF+por terms:

$$\Gamma \vdash M_1 \cong_{\text{ctx}} M_2 : \tau \Leftrightarrow \llbracket \Gamma \vdash M_1 \rrbracket = \llbracket \Gamma \vdash M_2 \rrbracket.$$