Denotational Semantics
 Exercise Sheet

§ Topics 1-4

Exercise 1 [2010 Paper 7 Question $8(b)]$.
For a partially ordered set (P, \sqsubseteq), let $\left(\operatorname{Ch}(P), \sqsubseteq_{\mathrm{ptw}}\right)$ be the partially ordered set of chains in P ordered pointwise. That is,

$$
\operatorname{Ch}(P)=\left\{x=\left\{x_{n}\right\}_{n \in \mathbb{N}} \mid \text { for all } i \leq j \text { in } \mathbb{N}, x_{i} \sqsubseteq x_{j} \text { in } P\right\}
$$

and

$$
x \sqsubseteq_{\mathrm{ptw}} y \Longleftrightarrow x_{n} \sqsubseteq y_{n} \text { for all } n \in \mathbb{N}
$$

Show that if P is a domain then so is $\mathrm{Ch}(P)$.

Exercise 2 [2014 Paper 7 Question 6 (a)].

For partially ordered sets $\left(P, \sqsubseteq_{P}\right)$ and $\left(Q, \sqsubseteq_{Q}\right)$, define the set

$$
(P \Rightarrow Q)=\left\{f \mid f \text { is a monotone function from }\left(P, \sqsubseteq_{P}\right) \text { to }\left(Q, \sqsubseteq_{Q}\right)\right\}
$$

and, for all $f, g \in(P \Rightarrow Q)$, let

$$
f \sqsubseteq_{(P \Rightarrow Q)} g \Longleftrightarrow \forall p \in P . f(p) \sqsubseteq_{Q} g(p)
$$

(i) Prove that $\left((P \Rightarrow Q), \sqsubseteq_{(P \Rightarrow Q)}\right)$ is a partially ordered set.
(ii) Prove that if $\left(Q, \sqsubseteq_{Q}\right)$ is a domain then so is $\left((P \Rightarrow Q), \sqsubseteq_{(P \Rightarrow Q)}\right)$.

Exercise 3.

Derive the result of Exercise 1 from that of Exercise 2(ii).

Exercise 4 [2016 Paper 7 Question 7 (a.ii)].

Let $\mathcal{P}\left(\mathbb{N}^{2}\right)$ be the domain of all subsets of pairs of natural numbers ordered by inclusion. Show that the function $f: \mathcal{P}\left(\mathbb{N}^{2}\right) \rightarrow \mathcal{P}\left(\mathbb{N}^{2}\right)$ given by

$$
f(S)=\{(1,1)\} \cup\left\{(x+1, x \cdot y) \in \mathbb{N}^{2} \mid(x, y) \in S\right\} \quad\left(S \subseteq \mathbb{N}^{2}\right)
$$

is continuous.

Exercise 5 [2008 Paper 8 Question $14(c, d, e)]$.

(i) Let \mathbb{O} be the domain with two elements $\perp \sqsubseteq T$. For a domain E and $e \in E$, define the function $g_{e}: E \rightarrow \mathbb{O}$ by

$$
g_{e}(x)= \begin{cases}\perp & \text { if } x \sqsubseteq e \\ \top & \text { if } x \nsubseteq e\end{cases}
$$

Show that g_{e} is continuous.
(ii) As an example of the definition in part (i), let $E=\mathbb{B}_{\perp} \times \mathbb{B}_{\perp}$, where $\mathbb{B}=\{$ true, false $\}$, and consider $g_{(f a l s e, f a l s e)}: E \rightarrow \mathbb{O}$. Show that $g_{(\text {false }, \text { false })}(x, y)=\top$ iff $x=$ true or $y=$ true.
(iii) Let $f: D \rightarrow E$ be a function between domains D and E. Show that f is continuous iff $\forall e \in E . g_{e} \circ f$ is continuous.

Exercise 6 [2011 Paper 7 Question 5 (a)].
Let Ω be the domain of "vertical natural numbers" pictured in Figure 1 of the lecture notes.
(i) Is every monotone function from Ω to Ω continuous?
(ii) Does every monotone function from Ω to Ω have a least prefixed point?

Exercise 7 [2019 Paper 9 Question 7 (a)].

Suppose that (D, \sqsubseteq) is a poset which is chain-complete but does not have a least element, and that $f: D \rightarrow D$ is a continuous function.
(i) Give an example of such (D, \sqsubseteq) and f for which f has no fixed point.
(ii) If $d \in D$ satisfies $d \sqsubseteq f(d)$, prove that there is a least element $e \in D$ satisfying $d \sqsubseteq e=f(e)$.

Exercise 8 [2017 Paper 7 Question 7 (b.ii)].
Give a concrete explicit description of the fixed point $f i x(f) \subseteq \mathbb{N}^{2}$ of the continuous function f in Exercise 4. Justify your answer.

Exercise 9 [2007 Paper 8 Question 15 (e)].

Suppose that D is a domain and $f: D \times D \rightarrow D$ is a continuous function satisfying the property $\forall d, e \in D . f(d, e)=f(e, d)$. Let $g: D \times D \rightarrow D \times D$ be defined by

$$
g\left(d_{1}, d_{2}\right)=\left(f\left(d_{1}, f\left(d_{1}, d_{2}\right)\right), f\left(f\left(d_{1}, d_{2}\right), d_{2}\right)\right)
$$

Let $\left(u_{1}, u_{2}\right)=f i x(g)$. Show that $u_{1}=u_{2}$ using Scott induction.
Exercise 10 [2011 Paper 7 Question 5 (b)].
Let D and E be domains and let $f: D \rightarrow D$ and $g: E \rightarrow E$ be continuous functions.
(i) Define $f \times g: D \times E \rightarrow D \times E$ to be the continuous function given by $(f \times g)(d, e)=$ $(f(d), g(e))$ and let $\pi_{1}: D \times E \rightarrow D$ and $\pi_{2}: D \times E \rightarrow E$ respectively denote the first and second projection functions. Show that $f i x(f \times g) \sqsubseteq(f i x(f), f i x(g))$ and that $f i x(f) \sqsubseteq \pi_{1}(f i x(f \times g))$ and $f i x(g) \sqsubseteq \pi_{2}(f i x(f \times g))$.
(ii) It follows from part (i) that $f i x(f \times g)=(f i x(f), f i x(g))$. Use this and Scott's Fixed Point Induction Principle to show that, for all strict continuous functions $h: D \rightarrow E$,

$$
h \circ f=g \circ h \Longrightarrow h(f i x(f))=f i x(g)
$$

§ Topics 5-8

Exercise 1 [2009 Paper 9 Question 6 (b.i)].
Define a closed PCF term $H:($ nat \rightarrow nat \rightarrow nat $) \rightarrow$ nat \rightarrow nat \rightarrow nat such that $\llbracket \mathrm{fix}(H) \rrbracket \in$ $\left(\mathbb{N}_{\perp} \rightarrow\left(\mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}\right)\right)$ satisfies

$$
\llbracket \operatorname{fix}(H) \rrbracket(i)(j)=\max (i, j)
$$

for all $i, j \in \mathbb{N}$.

Exercise 2 [2017 Paper 9 Question 5 (c.i)].
For every pair of closed PCF expressions M, N of type nat, let $F_{M, N}$ be the closed PCF expression of type $(n a t \rightarrow n a t) \rightarrow(n a t \rightarrow n a t)$ given by

> fn $f:$ nat \rightarrow nat. fn $n:$ nat.
> if zero (n) then M
> else if $\operatorname{zero}(\operatorname{pred}(n))$ then N
> \quad else $\operatorname{succ}(f(\operatorname{pred}(n)))$

Give an explicit description of $\llbracket \operatorname{fix}\left(F_{M, N}\right) \rrbracket \in\left(\mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}\right)$ in terms of $\llbracket M \rrbracket, \llbracket N \rrbracket \in \mathbb{N}_{\perp}$. Justify your answer.

Exercise 3 [2019 Paper 9 Question 7 (b)].

(i) Define the notion of contextual equivalence for the language PCF.
(ii) State the compositionality, soundness, and adequacy properties of the denotational semantics of PCF. Explain why they imply that any two closed PCF terms of the same type with equal denotations are contextually equivalent.
(iii) Give an example of two contextually equivalent PCF terms that have unequal denotations.

Exercise 4 [2017 Paper 9 Question 5 (b.ii)].
Prove or disprove that

$$
(\mathbf{f n} n: \text { nat. } n) \cong_{c t x}(\mathbf{f n} n: \text { nat. } \operatorname{succ}(\operatorname{pred}(n))): \text { nat } \rightarrow \text { nat }
$$

Exercise 5 [2017 Paper 9 Question 5 (c.ii)].

For M, N and $F_{M, N}$ as in Exercise 2, prove or disprove that there are closed PCF expressions M, N of type nat such that

$$
\operatorname{fix}\left(F_{M, N}\right) \cong_{\operatorname{ctx}}(\mathbf{f n} n: n a t . \operatorname{pred}(n)): n a t \rightarrow n a t
$$

You may use any standard results provided that you state them clearly.

Exercise 6 [2011 Paper 9 Question 3 (b)].

Consider the following two statements for PCF terms M_{1} and M_{2} for which the typings $\Gamma \vdash M_{1}: \tau$ and $\Gamma \vdash M_{2}: \tau$ hold for some type environment Γ and type τ.
(1) For all PCF contexts $\mathcal{C}[-]$ for which $\mathcal{C}\left[M_{1}\right]$: bool and $\mathcal{C}\left[M_{2}\right]$: bool,

$$
\mathcal{C}\left[M_{1}\right] \Downarrow_{\text {bool }} \Longleftrightarrow \mathcal{C}\left[M_{2}\right] \Downarrow_{\text {bool }}
$$

(2) For all PCF contexts $\mathcal{C}[-]$ for which $\mathcal{C}\left[M_{1}\right]:$ bool and $\mathcal{C}\left[M_{2}\right]:$ bool,

$$
\mathcal{C}\left[M_{1}\right] \Downarrow_{\text {bool }} \text { true } \Longleftrightarrow \mathcal{C}\left[M_{2}\right] \Downarrow_{\text {bool }} \text { true }
$$

(i) Show that (1) implies (2).
(ii) Show that (2) implies that M_{1} and M_{2} are contextually equivalent.

Exercise 7 [2010 Paper 9 Question 5 (c)].
Is the following statement true or false, and why?
For all closed PCF-terms M_{1} and M_{2} of type nat \rightarrow nat, if $M_{1} \cong_{\text {ctx }} M_{2}:$ nat \rightarrow nat then $\llbracket M_{1} \rrbracket=\llbracket M_{2} \rrbracket$ in $\mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}$.

Exercise 8 [2015 Paper 9 Question 4 (c)].
Let M be the PCF+por term

$$
\begin{aligned}
& \text { fn } f:(\text { nat } \rightarrow \text { bool }) \rightarrow \text { bool. } \\
& \text { fn } P: \text { nat } \rightarrow \text { bool. } \\
& \quad \operatorname{por}(P(\mathbf{0}), f(\text { fn } n: \text { nat. } P(\operatorname{succ}(n))))
\end{aligned}
$$

Give an explicit description of $\llbracket \mathfrak{f i x}(M) \rrbracket \in\left(\left(\mathbb{N}_{\perp} \rightarrow \mathbb{B}_{\perp}\right) \rightarrow \mathbb{B}_{\perp}\right)$.

Exercise 9 [2021 Paper 9 Question 7].

Say whether the following statements are true or false with justification. You may use standard results provided that you state them clearly.
(i) For all PCF types τ and terms $M \in \mathrm{PCF}_{\tau}$, if $\llbracket M \rrbracket=\perp_{\llbracket \tau \rrbracket}$ then $M \cong_{\text {ctx }} \Omega_{\tau}: \tau$.
(ii) For all PCF types τ and terms $M \in \mathrm{PCF}_{\tau}$, if $\llbracket M \rrbracket=\perp_{\llbracket \tau \rrbracket}$ then $M \nVdash_{\tau}$.
(iii) For all PCF types τ and terms $M \in \mathrm{PCF}_{\tau}$, if $M \cong_{c t x} \Omega_{\tau}: \tau$ then $M \psi_{\tau}$.
(iv) For all PCF types τ and terms $M \in \mathrm{PCF}_{\tau}$, if $M \not \psi_{\tau}$ then $M \cong{ }_{\operatorname{ctx}} \Omega_{\tau}: \tau$.
(v) For all PCF types τ and terms $M \in \mathrm{PCF}_{\tau}$, if $M \cong{ }_{c t x} \Omega_{\tau}: \tau$ then $\llbracket M \rrbracket=\perp_{\llbracket \tau \rrbracket}$.

Exercise 10 [1998 Paper 7 Question 5].

Suppose that lam: $(D \rightarrow D) \rightarrow D$ and app: $D \rightarrow(D \rightarrow D)$ are continuous functions for a domain D. Use this data to give a denotational semantics for the terms of the untyped λ-calculus by answering Question 5 from Paper 7 of the 1998 CS Tripos.

