
Introduction to Databases
Lectures 5 - 8

David J. Greaves

(with grateful thanks to Timothy G. Griffin)

Computer Laboratory
University of Cambridge, UK

Michaelmas Term, 2022-23

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 1 / 88

Lecture 5 - Transactions, Reliability, Throughput &
Consistency.

What is a transaction?
Locks and their effect on transaction rate (throughput).
Data redundancy and update anomalies.
Relational normalisation to reduce/eliminate redundancy.
Normalisation vs. transaction throughput.

I Databases can be designed to maximise the number of concurrent
users executing update transactions.

But what if your applications never or rarely update data?
I Read-oriented vs. update-oriented databases.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 2 / 88

Transaction Processing
A transaction on a database is a set of queries and changes that are
logically atomic.

Internal transactions:
Some number of values are read, perhaps more values conditionally read, and
then various values are changed based on the values read.

All of the values read or written are inside the same database.

External ‘transactions’ (do not really exist):
Some of the values changed or other side effects (like sending an SMS
acknowledgement) are external to the DBMS.

The DBMS cannot help make these atomic. Instead the system designers have
to think carefully about undoing them (e.g. “The flight booking we just confirmed
has now been cancelled since it turns out you are broke.”).

[Many DBMS systems allow the application to abort a transaction before it is
committed, but this is a topic for Part Ib Concurrent Systems.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 3 / 88

Transaction client flow.
Start

Transaction
commited

Transaction
aborted

th = transaction_start();

av :=
SELECT balance FROM A ...

UPDATE A
SET balance = av+bv ...

bv :=
SELECT balance FROM B ...

UPDATE B
SET balance = 0 ...

rc = transaction_commit(th);

th : transaction handle.

rc : return code.

Transaction ‘start’ and ‘commit’ calls
bracket the body.
The body consists of any number of
queries and updates in any order.
The client may chose to abort at any time:
all updates are then undone by the DBMS.
In some (optimistic) systems, the updates
or commit may also abort and the client is
forced to restart the transaction.
DBMSs support concurrent transactions.

[NB: This slide’s contents are not examinable on this course; they form part of Part Ib CDS.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 4 / 88

ACID transaction properties
Atomicity: All changes to data are performed as if they are a single operation. That is, all

the changes are performed, or none of them are. For example, in an
application that transfers funds from one account to another, the atomicity
property ensures that, if a debit is made successfully from one account, the
corresponding credit is made to the other account.

Consistency: Every transaction applied to a consistent database leaves it in a consistent
state. For example, in an application that transfers funds from one account to
another, the consistency property (invariant) is conservation of money: the total
value of funds held over all accounts remains constant.

Isolation: The intermediate state of a transaction is invisible to other transactions. As a
result, transactions that run concurrently appear to be (serialized). For
example, in an application that transfers funds from one account to another, the
isolation property ensures that another concurrent transaction sees the
transferred funds in one account or the other, but not in both, nor in neither.

Durability: After a transaction successfully completes, changes to data persist and are not
undone, even in the event of a system failure. For example, in an application
that transfers funds from one account to another, the durability property
ensures that the changes made to each account will not be reversed.

[NB: Implementing ACID transactions is one topic covered Ib Concurrent and Distributed

Systems [web: IBM definition].

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 5 / 88

https://www.ibm.com/docs/en/cics-ts/5.4?topic=processing-acid-properties-transactions

ACID vs BASE

As we’ll see next lecture, many NoSQL systems weaken ACID
properties. The result is often called BASE transactions (pun
intended).

BA: Basically Available,
S: Soft state,
E: Eventual consistency.

Exactly what this means varies from system to system. This is an area
of ongoing research. It’s certainly ideal for some applications, but some
proponents have lost their faith and fallen back to a relational system.

[Wikipedia: BASE].

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 6 / 88

https://en.wikipedia.org/wiki/Eventual_consistency

Implementing ACID transactions requires locking data

A lock is a special software or hardware primitive that provides mutual exclusion. A
resource (section of code, data or file) can be locked for exclusive access by one
concurrent application which must unlock it again after use. Other contending
applications have to wait, which slows systems down.

Locks are acquired and released by transactions.
Locks can be placed along a spectrum of granularity from very
coarse-grained (lock the entire database!) to very fine-grained
(lock a single data value).
How locks are used to implement ACID is not part of any DBMS
API. Rather, this is part of the “secret sauce” implemented by
each vendor.
Observation: If transactions lock large amounts of data, or lock
frequently used data, fewer concurrent updates can be supported,
degrading throughput.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 7 / 88

What is redundant data? Is it bad?
Our definition:
Data in a database is redundant if it can be deleted and then
reconstructed from the data remaining in the database.

Why is redundant data problematic?
If data is held in more than once place, copies can disagree.
In a database supporting a high rate of update transactions, high
levels of data redundancy imply that correct transactions may
have to acquire many locks to consistently update redundant
copies.

Redundant data goody:
If updates are rare, having multiple copies can increase read
bandwidth and speed up lookup.

[NB: Time-stamped, journalled or backup copies are used to provided durability, but this is not
what we mean by redundancy here.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 8 / 88

‘Closure’ — a widely used term in Computer Science.
Closure: an iteration is repeated until there are no further changes (a
fixed-point is found).

Least F/P iteration example: division.

let divider(num, den, quot) = // Non-recursive!
if den * quot >= num then (num, den, quot)
else (num, den, quot+1)

The least fixed-point of a function is the first argument value that is
also its return value (intersects y=x).
To divide, say 100 by 9 we ask for the LFP of divider(100, 8, 0)
which will be (100, 8, 12).
We’ll talk about transitive closure in Lecture 7, adding further
edges to a graph until no further are needed for all paths to be
achievable in one step.
Normal-form conversion is also a closure iteration.

[NB: This slide is mostly an aside to discuss general principles.]
djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 9 / 88

Normal form representation.

For many forms of data, a unique normal form for that information
can be defined.
To achieve it, information-preserving, reorganisation/rewriting
rules (transforms) are applied until closure.
A typical rule might be: swap a commutative operator’s arguments
over if lexographical ordering of the arguments is not observed.
For example (x + 2)(x + y + x) might be normalised as
2x2 + 2x + xy + 2y based on multiplying out, sorting terms in
order of power and then sorting alphabetically.

[NB: Independently rewriting both the l.h.s. and r.h.s. of an equation until both
are in normal form and then checking for equality (textual identity) is one
standard approach to mathematical proof.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 10 / 88

Normal form database schemas.
A normalised database is essentially one that has little or no redundant
data.

Typically, redundant relational databases have tables with too many attributes.

A good rule is that all table data should either be key or semantically depend on
the key.

If you can spot data that does not directly depend on the key (recall GP’s age
field), that part of the table should be split off into a separate table. This
procedure is then repeated on the new tables until closure.

‘Splitting off’ is essentially a division transform (ie. information-preserving
rewrite) that can be reversed using a join, which behaves like a multiplication.

Automated procedures have been mooted to convert databases into such
normal forms (3rd normal form or Boyce-Codd∗ normal form etc.).

But computers cannot really understand what ‘semantically depends’ means so
doing a good job of Entity-Relationship modelling in the first place, or
manual decomposition, is generally preferable.

Reducing redundancy facilitates higher update throughput.

* This course does not cover ‘textbook’ database normal forms anymore.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 11 / 88

Redundancy/Consistency/Throughput trade off.

Little/no
redundancy

Highly
redundant

Atomic
consistency

Eventual
consistency

High read/query
throughput

High write/update
throughput

ACID BASE

Imprecise
notion of
writing!

Unlocked
reads?

Low redundancy gives good update
throughput (need only lock a few
data items).
High redundancy gives good query
times (fewer files/blocks need be
accessed).

Data redundancy can lead to stored data inconsistency if updates are not
thorough.
Unlocked reading can give the impression of inconsistent data stored (eg. packet
tracked as at depot and on van).
Precomputing answers to common queries (either fully or partially) can greatly
speed up query response time: introduces redundancy, but useful for some
read-intensive applications. This is an approach common in aggregate-oriented
databases.

[NB: DBMS design is multi-dimensional and no 2-D projection defines the whole space.

eg. Suppose only one updater?]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 12 / 88

Throughput: Why read-oriented databases?

A fundamental tradeoff
Introducing data redundancy can speed up read-oriented transactions
at the expense of slowing down write-oriented transactions.

Something to ponder
How do database indexes demonstrate this point?

Situations where we might want a read-oriented database
1 Your data is seldom updated, but very often read.
2 Your reads can afford to be mildly out-of-synch with the

write-oriented database. Then consider periodically extracting
read-oriented snapshots and storing them in a database system
optimised for reading. The following two slides illustrate examples
of this situation.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 13 / 88

Example : Hinxton Bio-informatics

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 14 / 88

Example: Embedded databases

Embedded Database

Read−optimized
Normalized Database

fast updates

Extract

table−driven applications

Device

An embedded database system is a database management system
which is tightly integrated with an application software; it is embedded
in the application — web: Wikipedia.
For instance: a different SELECT from the main staff table might be
held in each electronic door lock.
FIDO = Fetch Intensive Data Organisation

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 15 / 88

https://en.wikipedia.org/wiki/Embedded_database

OLAP vs. OLTP.
OLAP — Online Analytical Processing

Write once or journal/ledger updates.

Commonly associated with terms like Decision Support, Data
Warehousing, etc..

OLTP — Online Transaction Processing

A rich mix of queries and updates to live data.

OLAP OLTP
Supports analysis day-to-day operations

Data is historical current
Transactions mostly reads updates

optimised for reads updates
data redundancy high low

database size humongous large

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 16 / 88

OLAP vs. OLTP (continued).
Processing power:

Historically, available computing power motiviated a clear distinction between OLAP and
OTAP. Bridge using Extract from OTAP, Transform, Load into OLAP).

Today, both OLAP and OTAP applications often are supported by one DBMS [web: IBM].

Update history:
An update to a relational database occludes the previous value of a field.

A revision control system (eg. git) stores the update history — an additional dimension to
the stored data/documents.

Even for OLTP, an update history within a limited time horizon is always stored for ACID
durability.

Further dimensions∗:
Looking at historic versions of a 2-D table makes it a cube.

The data (hyper-)cube model∗ adds further dimensions where the indivdual contributions
to a value in a table (eg. a total of something) can be seen.

Summing (group-by then scalar reduction) in different dimensions gives the same result
(eg. summing by region, salesperson or paint colour).

* = no longer on the syllabus or examinable.
djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 17 / 88

https://www.ibm.com/cloud/blog/olap-vs-oltp

Example: Data Warehouse (Decision support)

fast updates

Data Warehouse

business analysis queries

Operational Databases

ETL

ETL = Extract, Transform, and Load

[This looks very similar to slide 15!]
Slide 15 stored date optimised for known a priori queries. Size
would be an issue for embedded use.
Here data is pre-processed in many/every conceivable way for
visualisation and exploration by (typically) human agents.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 18 / 88

Lecture 6 - Semi-structured Document Databases

Semi-structured data.
NoSQL movement.
Document-oriented databases.
Denormal and BASE possible advantages.
An example database: DoctorWho .
Path query languages and ad hoc HLL access.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 19 / 88

Semi-structured data.

[web: ONLINE]

A textbook such as the one illustrated is a
document written in natural language (English)
but it has some structure:

There are chapters with names that
contain numbered sections and
sub-sections.
There are figures and diagrams that have
their own numbering system.
There are extensive cross references
between one section and another, etc..
But it would be far too much work to
manually index every word of text: a task
unlikely to be useful and also
poorly-defined.

What can sensibly or usefully be stored in a database?

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 20 / 88

https://www.cl.cam.ac.uk/~djg11/pubs/modern-soc-design-djg

Two approaches
Either

Store in two parts:
Keep the document in its native form (LaTeX, Word, PDF...),
Store the indexable features in relational tables.

or

Store just once, perhaps shredded, and use something instead
of SQL for queries:

Keep the document largely in native form (especially XML, JSON),
Develop database tools that can navigate semi-structured data.
These must return best-effort query answers, given that ‘schema’
violations could be frequent.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 21 / 88

Adding Structure to Unstructured Documents
Real-world data is often analogue and/or noisy

Natural Language

Processing (NLP)

Thriller

Textbook

Murder-mystery

Sitcom

Romcom

Children’s

...

French

English

Java

Polish

...

Document

type

Book

Screenplay

Poem

Contract

Invoice

Recipe

News report

Restaurant menu

...

Genre enumeration

Ingredients

Cooking time

Allergy warnings

Main meal/snack/breakfast

Character names
Locations: country and town
Season and episode

... the four children are sent to Smuggler’s Top, the home

of Mr. Lenoir, a fellow-scientist of George’s father,

Uncle Quentin. Smuggler’s Top is a queer house at

the summit of an old hilltop coastal ...

Language

Plain

text

doc

- Processing tools or humans can remove noise, discard spurious
data, index and classify, correct spellings etc..

- The document is carved up and marked up for storage.
- Advanced NLP or a simple keyword-based analysis.
- The original can be unshredded, as and when necessary.

[NB: Such NLP techniques are not examinable for this course.]
djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 22 / 88

BASE - Soft state & Eventual consistency

Orthogonal aspects:
- Tables vs. Documents.
- Distributed vs. centralised (monolithic).
- ACID vs. BASE.

Despite orthogonality, document databases are typically designed
to be easy to distribute and to not support ACID transactions.
Any or all ACID properties are relaxed, giving BASE:

I BAse: Basically available: availability promoted over consistency.
Any change in data made at one point is promulgated to all the
different nodes.

I Soft State: stored values may change without any application
intervention owing to eventual consistency updates or network
partition.

I Eventual Consistency: all readers throughout the system will
eventually see the same state as each other.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 23 / 88

Key/Value Store

Recall the associative store (dictionary) from Lecture 1: the values
stored could be generalised from strings to blobs, which are just
sequences of bytes.

Any structure inside the blobs is opaque to the key/value store.
Many implementations are distributed, spreading the data
randomly over all participating machines as shards.
Opaqueness implies the DBMS knows nothing about what is
stored – it would not mind if values were encrypted and it never
saw the encryption keys.
Distribution provides redundancy∗ and load balancing (eg. by a
hash of the key).
Implementations can range between ACID and BASE semantics.

[* The redundancy here is to help provide ACID durability and is nothing to do
with schema redundancy.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 24 / 88

Serialising (marshalling or pickling) an object.

Serialising: converting a data structure into a series of bytes for
transfer over a network or storing in a file.

JSON was originally designed for serialising data.
XML was designed for serialising and marking up a
human-readable document so different parts could be located or
processed in different ways.
Both are frequently used for transferring data between databases
or apps (CSV also commonly used).
But NoSQL may use them as the primary form of a document to
be stored.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 25 / 88

Abstract Syntax (formal spec) of XML and JSON
Formal specifications using ML-like concrete syntax where ulist is the same as list except the order is unimportant and keys
cannot be repeated (ie a dictionary).

Examples
XML: <PERSON name="Greaves"><DOB month="May" year="1902"/></PERSON>
JSON: "person":{"name":"Greaves","dob":{"month":"May","year":"1902"}}

Slightly simplified abstract syntaxes (grammars):
type xml_t = // XML stands for eXtensible Markup Language
| ELEMENT of string * (string * string) ulist * xml_t list
| LEAF of string

type json_t = // JSON stands for JavaScript Object Notation
| LEAF_S of string
| LEAF_N of integer
| ARRAY of json_t list
| OBJECT of (string * json_t) ulist
| NULL

Important fact: they both contain tree-structured text with named
nodes and hence are broadly similar.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 26 / 88

XML – Structured or Unstructured?
Structure spectrum:

1 All data in one large element,
2 Semi-structured: some elements contain a lot of text (clob ?), others contain an

atomic value (as per RDBMS),
3 Every atomic value in its own element (unrealistic).

XML documents may associated with a (DTD or W3C [not exminable]) schema:

Schema rigorousness spectrum:
1 A schema, named with a URL exists. The schema dictates precisely the element

names and which elements may be allowed inside which others along with
occurrence limits, Allowable attributes are also named.

2 The schema is relaxed: eg. the order of elements inside a parent element is
unimportant,

3 Other attribute or elements, beyond those in the schema are also allowed
(eg. application-specific extensions),

4 There’s no schema at all.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 27 / 88

Document-oriented database systems
- A document-oriented database stores data in the form of

semi-structured objects. Such database systems are also called
aggregate-oriented databases.

Un-structured data:
The key/value DBMS just mentioned could store unstructured documents.

In any application, there is likely to be some application-level structure within the
blobs,

but this cannot be exploited by the DBMS.

- Query of a distributed database encounters a round-trip time.

- Denormalised data is not directly semantically-related to the key it is
stored under (as we hinted for rDBMS).

- A denormal DBMS enables us to rapidly pull much or all of the data
likely to be needed using one key.

- One or two fetches of denormal data should enable all sorts of fast, local
operations (select, join etc.) in an application-specific way.
djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 28 / 88

Document query languages

All sorts of queries are possible:
Query unstructured text (eg. How many words? What is the
FOG factor? Does it mention Kevin Bacon?)
Query tags (eg. What are the ‘eye-colour’ attributes to each of the
‘Vizier’ elements under the second ‘Chapter’ element?)
Application-specific compositions of these.

- So although there are standards such as Xpath [web], instead using general
high-level languages to formulate queries is common.

- Ideally write queries in a declarative language since imperative programming
defeats future automated query optimisation.

- The ‘database’ itself may support a variety of inverted indices or re-normalised
data (example shortly).

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 29 / 88

https://en.wikipedia.org/wiki/Gunning_fog_index
https://www.w3schools.com/xml/xpath_syntax.asp

Typical document query languages: eg. XPath
We need to navigate a semi-structured tree, aggregating various bits:

type pathexp_t = // Typical query abstract syntax
| SelectRoot // Whole thing
| SelectAttribute of pathexp_t * string // v in string="v"
| SelectElement of pathexp_t * predicate // <EL> ... </EL>
| NextElement of pathexp_t * int // Fwd or back by n
| SelectData of pathexp_t * ranges // Chunks of raw text
| Concatenate of pathexp_t * pathexp_t // Aggregation
| ...

If we have more than one tree, something equivalent to a join is also
needed.

What is the return type of a query? SelectRoot clearly gives a whole
tree whereas SelectAttribute just gives one string...

Some say “Shucks, who needs types!” , but algebraic data types can
help [Part Ib Concepts Course]. We’ll use Python for Dr. Who .

[NB: pathexp_t details not examinable.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 30 / 88

NoSQL Movement (1)

‘Horizontally scalable’ — expand by adding further machines (not
upgrading existing machines).
[Is there a typo in their last line?]
Can there really be schema-free, typeless programming?
“There’s a sketch on the whiteboard in Fred’s office. It is slightly wrong because

every tenth item in the list is actually a height and not a pointer to a wombat. Oh
dear, I didn’t know building management had installed new whiteboards over the
summer!”

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 31 / 88

Different key nestings of (semi-)structured data.
- Here is some relation data [web] with composite key A B.
- To support rapid retrieval of all likely related data using different

keys, we precompute and store several of them.
- This replication factor multiplies with any replication arising from

the data being denormal.

Here the "A" value is unique and at the top of tree.

{ "A": a1, "X": x1,
"R": [{"B": b1, "Z": z1, "Y": y1},

{"B": b2, "Z": z2, "Y": y2},
{"B": b3, "Z": z3, "Y": y3}],

"Q": [{"B": b4, "Z": z4, "W": w1}]
}

{ "A": a2, "X": x2,
"R": [{"B": b1, "Z": z1, "Y": y4},

{"B": b3, "Z": z3, "Y": y5}],
"Q": []

}

{ "A": a3, "X": x3,
"R": [],
"Q": [{"B": b2, "Z": z2, "W": w2},

{"B": b3, "Z": z3, "W": w3}]
}

Same data, "B" value is now above "A" in the tree.

{ "B": b1, "Z": z1,
"R": [{"A": a1, "X": x1, "Y": y2},

{"A": a2, "X": x2, "Y": y4}],
"Q": [] }

{ "B": b2, "Z": z2,
"R": [{"A": a1, "X": x1, "Y": y2}],
"Q": [{"A": a3, "X": x3, "Y": w2}] }

{ "B": b3, "Z": z3,
"R": [{"A": a1, "X": x1, "Y": y3},

{"A": a2, "X": x2, "Y": y5}],
"Q": [{"A": a3, "X": x3, "Y": w3}]}

{ "B": b4, "Z": z4, "R": [],
"Q": [{"A": a1, "X": x1, "Y": w1}] }

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 32 / 88

https://www.cl.cam.ac.uk/teaching/2223/Databases/djg-materials/denormal-data-has-nulls.pdf

DOCtor Who “database” IMDB snapshot

This will be used for the 2nd Assessed Exercise (tick).
- In-core, using JSON (not XML) and queried using Python.
- No support for transactions, hence easy(?) to implement a

distributed/sharded version (we won’t).
- One (no longer two) primary, denormal table.
- Unstructured text for Goofs, Trivia, Quotes etc. (now present).
- Data needs to indexed on various keys (keys must still be unique).
- Some fields are foreign keys (so key integrity still expected).

The provided DOCtor Who “database” just has one aggregate containing films and people. Here

database is in quotes since its just a Python dictionary mapping from a key to a JSON object.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 33 / 88

DOCtor Who : Example person record.

person_id nm0031976 maps to

{ ’person_id’: ’nm0031976’,
’name’: ’Judd Apatow’,
’birthYear’: ’1967’,
’acted_in’: [

{’movie_id’: ’tt7860890’, ’roles’: [’Himself’],
’title’: ’The Zen Diaries of Garry Shandling’, ’year’: ’2018’}],

’directed’: [
{’movie_id’: ’tt0405422’,
’title’: ’The 40-Year-Old Virgin’, ’year’: ’2005’}],

’produced’: [
{’movie_id’: ’tt0357413’,
’title’: ’Anchorman: The Legend of Ron Burgundy’, ’year’: ’2004’},

{’movie_id’: ’tt5462602’,
’title’: ’The Big Sick’, ’year’: ’2017’},

{’movie_id’: ’tt0829482’, ’title’: ’Superbad’, ’year’: ’2007’},
{’movie_id’: ’tt0800039’,
’title’: ’Forgetting Sarah Marshall’, ’year’: ’2008’},

{’movie_id’: ’tt1980929’, ’title’: ’Begin Again’, ’year’: ’2013’}],
’was_self’: [

{’movie_id’: ’tt7860890’,
’title’: ’The Zen Diaries of Garry Shandling’, ’year’: ’2018’}],

’wrote’: [
{’movie_id’: ’tt0910936’,
’title’: ’Pineapple Express’, ’year’: ’2008’}]

}

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 34 / 88

DOCtor Who : Example movie record.

movie_id tt1045658 maps to

{ ’movie_id’: ’tt1045658’,
’title’: ’Silver Linings Playbook’,
’type’: ’movie’,
’rating’: ’7.7’,
’votes’: ’651782’,
’minutes’: ’122’,
’year’: ’2012’,
’genres’: [’Comedy’, ’Drama’, ’Romance’],
’actors’: [

{’name’: ’Robert De Niro’, ’person_id’: ’nm0000134’,
’roles’: [’Pat Sr.’]},
{’name’: ’Jennifer Lawrence’, ’person_id’: ’nm2225369’,
’roles’: [’Tiffany’]},
{’name’: ’Jacki Weaver’, ’person_id’: ’nm0915865’,
’roles’: [’Dolores’]},
{’name’: ’Bradley Cooper’, ’person_id’: ’nm0177896’,
’roles’: [’Pat’]}],

’directors’: [
{’name’: ’David O. Russell’, ’person_id’: ’nm0751102’}],

’producers’: [
{’name’: ’Jonathan Gordon’, ’person_id’: ’nm0330335’},
{’name’: ’Donna Gigliotti’, ’person_id’: ’nm0317642’},
{’name’: ’Bruce Cohen’, ’person_id’: ’nm0169260’}],

’writers’: [{’name’: ’Matthew Quick’, ’person_id’: ’nm2683048’}]
}

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 35 / 88

But how do we query DOCtor Who ?
... write python code:

import sys # operating system interface
import os.path # manipulate paths to files, directories
import pickle # read/write pickled python dictionaries
import pprint # pretty print JSON
The directory holding pickled data
data_dir = sys.argv[1] # first command-line argument
use os.path.join so that path works on both Windows and Unix.
doctorwho_path = os.path.join

(data_dir, ’imdb_doctorwho_database_v3.pickled’)
Open data dictionary file and un-pickle it.
doctorwhoFile = open(doctorwho_path, mode= "rb")
doctorwho = pickle.load(doctorwhoFile)

#####################################
write your query code here ...
movie_key = "tt1109624" # Paddington - 2014
pprint.pprint (doctorwho[movie_key])

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 36 / 88

Quick, in-lecture

Things to think about (for Tick 2):
- When we write our Python we’re doing query planning. What did

we take into account? Did we make an index first?
- Imagine an actor’s name has been systematically misspelled.

What is the cost of correcting it in the DoctorWho database?
- An RDBMS query involves 3 joins. What affects the cost of the

same query in DoctorWho ?
- What sort of checks should be associated with inserting new

data?
- Which of the ACID properties might be relatively easy to

implement? [You’ll be better placed to answer this after the Part Ib CCDS
course.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 37 / 88

Branded types – an opposite to semi-structured.
- Databases hold a lot of strings and numbers.
- Many are members of enumerations: eg. colour, gender ...
- Many are units of measure (UoM): eg. date, weight_kg, weight_lbs ...
- Should we make types overt?

type velocity_t = branded float;
val speed_of_light:velocity_tlsh = 2.998e8;

type distance_t = branded float;
val bognor_to_romsey:distance_t = 45.2;
val romsey_to_paris:distance_t = 212.4;
val bognor_to_paris = bognor_to_romsey + romsey_to_paris;

val journey_time = bognor_to_paris / speed_of_light;
(* All ok so far *)

val nonsense_value = journey_time + bognor_to_romsey;

*** Error: dimensionally-unsound expression input!

- Many silly operations on data can be prevented.
- Being the key to another table is a sort of type.

[NB: I’ve used a made-up language that is not examinable.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 38 / 88

The NoSQL schema-free ideal (grail) ?

- “No schema” really means “not stored as part of the database or
checked during update”.

- For most activities, there will inevitably still be a schema - perhaps
on a whiteboard, scrap of paper or stored in somebody’s head.

- New joiners to a software project have to learn the schema
somehow. The DBMS does not help.

- Poor education? — “Typeless languages don’t use a keyboard to
type them in” [web: Have the tables turned on NoSQL?].

Commercial success(?) of Javascript, Ruby, Python, PHP, and
other dynamically-typed languages:

- Javascript is often just a compilation target and is being displaced
by WASM.

- Python types are now being used de rigueur (pioneered by J
Lehtosalo of this department).

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 39 / 88

https://stackoverflow.blog/2021/01/14/have-the-tables-turned-on-nosql

Semi-structured, Aggregate and NoSQL Summary
There has been a lot of churn in this area:

+ Lemahieu, Broucke & Baesens pp. 275 notes Xpath’s ability to
return items at different levels requires recursive SQL to express
(next lecture).

+ In the noughties, a large number of new, XML- and web-related
standards were defined, eg. RDF, OWL, YAML, SOAP, XMLRPC...

- Although computing power and network bandwidth were
becoming cheaper, the move to human-readable representations
has lead to an order-of-magnitude inflation in data size and
parsing overhead compared with binary data exchange.

- Many traditional SQL-based systems were extended with NoSQL
features. Likewise, many NoSQL systems were extended with
traditional SQL features.

NB: For document database Tripos questions, a well-argued answer can garner full
credit, even if completely disagreeing with the expected answer.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 40 / 88

Lecture 7 - Further SQL

Declarations always hold:

Recursive declarations
sometimes make sense:

(Hmm, no fixed point.)

Another look at SQL
Complexity of join.
What is a database index?
Two complications for SQL semantics

I Multi-sets (bags)
I NULL values

Transitive computations: Erdős (Kevin
Bacon) numbers.
Recursive SQL.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 41 / 88

Complexity of a Join?

Given tables R(A, B) and S(B, C), how much work is required to
compute the join R on S?

// Brute force appaoch:
// scan R
for each (a, b) in R {

// scan S
for each (b’, c) in S {

if b = b’ then create (a, b, c) ...
}

}

Worst case: requires on the order of | R | × | S | steps. But note that
on each iteration over R, there may be only a very small number of
matching records in S — only one if R’s B is a foreign key into S.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 42 / 88

We have already spoken of a table having an index.
An index is a data structure — created and maintained within a
database system — that can greatly reduce the time needed to locate
records.

// scan R
for each (a, b) in R {

// don’t scan S, use an index
for each s in S-INDEX-ON-B(b) {

create (a, b, s.c) ...
}

- Ia Algorithms presents useful data structures for implementing
database indices (search trees, hash tables and so on).

- The foreign key lookup can be performed in ∝ log |S| instructions
instead of ∝ |S| (linear).

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 43 / 88

Remarks
Typical SQL commands for creating and deleting an index:

CREATE INDEX index_name on S(B)

DROP INDEX index_name

There are many types of database indices and the commands for
creating them can be complex.
Index creation is not defined in the SQL standards. It can
sometimes be done by a specialist team or automated.
While an index can speed up reads, it will slow down updates.
This is one more illustration of a fundamental database tradeoff.
The tuning of database performance using indices is a fine art.
In some cases it is better to store read-oriented data in a separate
database optimised for that purpose.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 44 / 88

Why the distinct in the SQL?

The SQL query

select B, C from R

will produce a bag (multiset)!

R

A B C D
20 10 0 55
11 10 0 7
4 99 17 2

77 25 4 0

=⇒

Q(R)

B C
10 0 ? ? ?
10 0 ? ? ?
99 17
25 4

SQL is actually based on multisets, not sets.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 45 / 88

Why Multisets?
Duplicates are important for aggregate functions (min, max, ave, count,
and so on). These are typically used with the GROUP BY construct.

sid course mark
ev77 databases 92
ev77 spelling 99
tgg22 spelling 3
tgg22 databases 100
fm21 databases 92
fm21 spelling 100
jj25 databases 88
jj25 spelling 92

group by
=⇒

course mark
spelling 99
spelling 3
spelling 100
spelling 92

course mark
databases 92
databases 100
databases 92
databases 88

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 46 / 88

Visualizing the aggregate function min

course mark
spelling 99
spelling 3
spelling 100
spelling 92

course mark
databases 92
databases 100
databases 92
databases 88

min(mark)
=⇒

course min(mark)
spelling 3

databases 88

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 47 / 88

Looking at this in SQL

select course,
min(mark),
max(mark),
avg(mark)

from marks
group by course;

+-----------+-----------+-----------+-----------+
| course | min(mark) | max(mark) | avg(mark) |
+-----------+-----------+-----------+-----------+
| databases | 88 | 100 | 93.0000 |
| spelling | 3 | 100 | 73.5000 |
+-----------+-----------+-----------+-----------+

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 48 / 88

What is NULL?

NULL is not the empty string “”.
NULL is a place-holder, not a value!
NULL is not a member of any domain (type),
This means we need three-valued logic.

Let ⊥ represent we don’t know!

∧ T F ⊥
T T F ⊥
F F F F
⊥ ⊥ F ⊥

∨ T F ⊥
T T T T
F T F ⊥
⊥ T ⊥ ⊥

v ¬v
T F
F T
⊥ ⊥

[NB: Similar logic systems and lattices are used in many areas of computer
science, such as digital logic simulation (Part Ib Verilog) or checking whether
an expression is constant (Part II Optimising Compilers).]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 49 / 88

NULL can lead to unexpected results
select * from students;
+------+--------+------+
| sid | name | age |
+------+--------+------+
ev77	Eva	18
fm21	Fatima	20
jj25	James	19
ks87	Kim	NULL
+------+--------+------+

select * from students where age <> 19;
+------+--------+------+
| sid | name | age |
+------+--------+------+
| ev77 | Eva | 18 |
| fm21 | Fatima | 20 |
+------+--------+------+

select ... where P

The select statement only returns those records where the where
predicate evaluates to true.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 50 / 88

The ambiguity of NULL
Possible interpretations of NULL

There is a value, but we don’t know what it is.
No value is applicable.
The value is known, but you are not allowed to see it.
...

A great deal of semantic muddle is created by conflating all of these
interpretations into one non-value.

“I don’t have a sister, and nor does my friend. If "NULL =
NULL" then we have a common sister, and are therefore re-
lated!” — Matt Hamilton, 2009.

Avoided by SQL equality definition: ‘NULL is not equal (=) to anything
— not even to another NULL.’

On the other hand, introducing distinct NULLs for each possible
interpretation leads to very complex logics ...

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 51 / 88

SQL’s NULL has generated endless controversy

C. J. Date [D2004], Chapter 19
“Before we go any further, we should make it very clear that in our
opinion (and in that of many other writers too, we hasten to add),
NULLs and 3VL are and always were a serious mistake and have no
place in the relational model.”

In defense of Nulls, by Fesperman
“[...] nulls have an important role in relational databases. To remove
them from the currently flawed SQL implementations would be
throwing out the baby with the bath water. On the other hand, the
flaws in SQL should be repaired immediately” [web: Are Nulls Evil?].

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 52 / 88

https://www.cl.cam.ac.uk/teaching/2223/Databases/djg-materials/MWragg_Are_Nulls_Evil_A_Discussion.pdf

How can we select on null then?

With our small database, the query

SELECT note FROM credits WHERE note IS NULL;

returns 4892 records of NULL.

The SQL ‘IS NULL’ predicate:
Being a predicate, the expression ‘foo IS NULL’ is either true or
false

- true when foo is the NULL value,
- false otherwise.

[NB: There is also the ‘IS NOT NULL’ predicate in SQL, which returns the
opposite value (negated answer).]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 53 / 88

Flaws? One example of SQL’s inconsistency.

Furthermore, the query

SELECT note, count(*) AS total
FROM credits
WHERE note IS NULL GROUP BY note;

returns a single record

note total
---- -----
NULL 4892

We have one group. This seems to mean that NULL is equal to NULL.
But we have defined that NULL is not equal to NULL!

[NB: Infact, ‘NULL = NULL’ returns ‘NULL’.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 54 / 88

[Erdős or] Bacon Number

P. Erdős (maths) and K. Bacon (acting) are the origins. We’ll ignore
maths.

Kevin Bacon has Bacon number 0.
Anyone acting in a movie with Kevin Bacon has Bacon number 1.
For any other actor, their Bacon number is calculated as follows.
Look at all of the movies the actor acts in. Among all of the
associated co-actors, find the smallest Bacon number k . Then the
actor has Bacon number k + 1.

Let’s try to calculate Bacon numbers using SQL.

First, what is Kevin Bacon’s person_id?
select person_id from people where name = ’Kevin Bacon’;

Result is “nm0000102”.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 55 / 88

Function composition and relation composition
Function composition operator:
Given two functions, f and g,

- If f (g(x)) = y then (f ◦ g)(x) = y (mathematics definition).
- let compose (f, g) = fun x -> f(g x) (ML definition).

Relation composition operator:
Given two binary relations

R ⊆ S × T
Q ⊆ T × U

their composition is Q ◦ R ⊆ S × U where

Q ◦ R ≡ {(s, u) | ∃t ∈ T .(s, t) ∈ R ∧ (t , u) ∈ Q}

[Aside: In some ML dialects, the circle operator is built in, for example ‘o’ in
standard ML and ‘»’ in F#.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 56 / 88

Partial functions as relations

Functions of one argument are special cases of relations:
- A relation R where, if (s, t1) ∈ R and (s, t2) ∈ R implies that

t1 = t2, defines a function (could be total or partial).

- Hence, the composition of functions is a special case of the
composition of relations.

- The definition of ◦ for relations and functions is equivalent for
relations that represent functions.

If we write Q ◦ R as R on2=1 Q we see that joins are a generalisation
of function composition; generalised in that they cope with relations
and not just functions.
[NB: When mathematicians speak of ‘functions’ they mean total functions: those

which give a single result for every value in their domain. A partial function, on the
other hand, may not be defined for some input values. A relation can give multiple
‘answers’ for the same ‘input’.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 57 / 88

Directed Graphs

G = (V , A) is a directed graph, where
V a finite set of vertices (also called nodes).
A is a binary relation over V . That is A ⊆ V × V .
If (u, v) ∈ A, then we have an arc from u to v .
The arc (u, v) ∈ A is also called a directed edge, or a
relationship of u to v .

V = {E ,B,C,D}
A = {(E , B), (E , D), (B, C), (C, C)}

BE C D

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 58 / 88

Composition example
A = {(E, B), (E, D), (B, C), (C, C)}

BE C D

A ◦ A = {(E , C), (B, C), (C, C)}

BE C D

Elements of A ◦ A represent paths of length 2
(E , C) ∈ A ◦ A by the path E → B → C

(B, C) ∈ A ◦ A by the path B → C → C

(C, C) ∈ A ◦ A by the path C → C → C

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 59 / 88

Iterated composition and paths.

Suppose R is a binary relation over S, R ⊆ S × S. Define iterated
composition as

R1 ≡ R
Rn+1 ≡ R ◦ Rn

Let G = (V , A) be a directed graph. Suppose v1, v2, · · · vk+1 is a
sequence of vertices. Then this sequence represents a path in G of
length k when (vi , vi+1) ∈ A, for i ∈ {1,2, · · · k}. We will often write
this as

v1 → v2 → · · · vk

Observation
If G = (V , A) is a directed graph, and (u, v) ∈ Ak , then there is at least
one path in G from u to v of length k . Such paths may contain loops.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 60 / 88

Shortest path

Definition of R-distance (hop count)
Suppose s0 ∈ π1(R) (ie. there is a pair (s0, s1) ∈ R).

The distance from s0 to s0 is defined as 0.
If (s0, s1) ∈ R, then the distance from s0 to s1 is 1.
For any other s′ ∈ π2(R), the distance from s0 to s′ is the least n
such that (s0, s′) ∈ Rn.

We will think of the Bacon number as an R-distance where s0 is Kevin
Bacon. But what is R?

[NB: By π1 we mean extracting the first field, since πk is the k th projection
function.]
[NB: This is the ‘single-source’ shortest path problem. Algorithms Ia also
considers all-sources shortest path problem.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 61 / 88

Let R be the co-actor relation

DROP VIEW IFEXISTS coactors;

CREATE VIEW coactors AS
SELECT DISTINCT p1.person_id AS pid1,

p2.person_id AS pid2
FROM plays_role AS p1
JOIN plays_role AS p2 ON p2.movie_id = p1.movie_id

;

On our database, this relation contains 18,252 rows. Note that this
relation is reflexive and symmetric.

[NB: Recall the DISTINCT keyword eliminates duplicates from the default
multi-set.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 62 / 88

SQL: Bacon number 1

DROP VIEW IF EXISTS bacon_number_1;

CREATE VIEW bacon_number_1 AS
SELECT DISTINCT pid2 AS pid,

1 AS bacon_number
FROM coactors
WHERE pid1 = ’nm0000102’ AND pid1 <> pid2;

Remember Kevin Bacon’s person_id is nm0000102.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 63 / 88

SQL: Bacon number 2

DROP VIEW IF EXISTS bacon_number_2;

CREATE VIEW BACON_number_2 AS
SELECT DISTINCT ca.pid2 AS pid,

2 AS bacon_number
FROM bacon_number_1 AS bn1
JOIN coactors AS ca ON ca.pid1 = bn1.pid
WHERE ca.pid2 <> ’nm0000102’ AND
NOT(ca.pid2 IN (SELECT pid FROM bacon_number_1));

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 64 / 88

SQL: Bacon number 3

DROP VIEW IF EXISTS bacon_number_3;

CREATE VIEW bacon_number_3 AS
SELECT DISTINCT ca.pid2 AS pid,

3 AS bacon_number
FROM bacon_number_2 AS bn2
JOIN coactors AS ca ON ca.pid1 = bn2.pid
WHERE ca.pid2 <> ’nm0000102’ AND
NOT(ca.pid2 IN (SELECT pid FROM bacon_number_1))

AND
NOT(ca.pid2 IN (SELECT pid FROM bacon_number_2));

You get the idea...
Let’s do this all the way up to bacon_number_9.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 65 / 88

SQL: Bacon number 9

DROP VIEW IF EXISTS bacon_number_9;

CREATE VIEW bacon_number_9 AS
SELECT DISTINCT ca.pid2 AS pid,

9 AS bacon_number
FROM bacon_number_8 AS bn8
JOIN coactors AS ca ON ca.pid1 = bn8.pid
WHERE ca.pid2 <> ’nm0000102’
AND NOT(ca.pid2 in (SELECT pid FROM bacon_number_1))
AND NOT(ca.pid2 in (SELECT pid FROM bacon_number_2))
AND NOT(ca.pid2 in (SELECT pid FROM bacon_number_3))
AND NOT(ca.pid2 in (SELECT pid FROM bacon_number_4))
AND NOT(ca.pid2 in (SELECT pid FROM bacon_number_5))
AND NOT(ca.pid2 in (SELECT pid FROM bacon_number_6))
AND NOT(ca.pid2 in (SELECT pid FROM bacon_number_7))
AND NOT(ca.pid2 in (SELECT pid FROM bacon_number_8));

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 66 / 88

SQL: Bacon numbers
DROP VIEW IF EXISTS bacon_numbers;

CREATE VIEW bacon_numbers AS
SELECT * FROM bacon_number_1
UNION
SELECT * FROM bacon_number_2
UNION
SELECT * FROM bacon_number_3
UNION
SELECT * FROM bacon_number_4
UNION
SELECT * FROM bacon_number_5
UNION
SELECT * FROM bacon_number_6
UNION
SELECT * FROM bacon_number_7
UNION
SELECT * FROM bacon_number_8
UNION
SELECT * from bacon_number_9 ;

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 67 / 88

Bacon Numbers, counted

SELECT bacon_number, count(*) AS total
FROM bacon_numbers
GROUP BY bacon_number
ORDER BY bacon_number;

Results
BACON_NUMBER TOTAL
------------ -----

1 12
2 110
3 614
4 922
5 381
6 123
7 86
8 16

bacon_number_9 is empty!
djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 68 / 88

Transitive closure
Suppose R is a binary relation over S, R ⊆ S × S. The transitive
closure of R, denoted R+, is the smallest binary relation on S such
that R ⊆ R+ and R+ is transitive. R+ being transitive means:

(x , y) ∈ R+ ∧ (y , z) ∈ R+ =⇒ (x , z) ∈ R+.

Then
R+ =

⋃
n∈{1, 2, ··· }

Rn.

Happily, all of our relations are finite, so there must be some k
with

R+ = R ∪ R2 ∪ · · · ∪ Rk .

Sadly, k will depend on the contents of R!
Conclude: we cannot compute transitive closure in the Relational
Algebra (or SQL without recursion).

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 69 / 88

A ‘let rec’ for SQL enables recursion.

The WITH keyword in SQL allows a recursive declaration:
Does this have a least-fixed-point?

WITH R AS (SELECT 1 AS n)
SELECT n + 1 FROM R;

How about this one?

WITH countUp AS (SELECT 1 AS n
UNION ALL SELECT n + 1 FROM countUp WHERE n<3)

SELECT * FROM countUp;

[Recusive SQL not examinable in 22/23]. [web:SWLH]).

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 70 / 88

https://medium.com/swlh/recursion-in-sql-explained-graphically-679f6a0f143b

Recursive Bacon SQL query

A fine student answer from jp2002 (22nd Nov 2022):

WITH RECURSIVE bacon(n,pid) AS
(SELECT 0 AS n, pid2 AS pid FROM coactors

WHERE pid1=’nm0000102’ AND pid1=pid2
UNION
SELECT n+1 AS n, c.pid2 AS pid FROM bacon
JOIN coactors AS c ON c.pid1 = pid WHERE

NOT(c.pid2 IN (SELECT pid FROM bacon)) AND n < 20
) SELECT n, COUNT(*)

FROM (SELECT min(n) AS n, pid FROM bacon GROUP BY pid)
GROUP BY n;

Boggle! Efficiency? This will be much easier in a graph database.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 71 / 88

Lecture 8: Graph-oriented Databases

Typically one big graph is stored (instance of an E/R diagram?)
Nodes have a type, a unique label (or several in Neo4J) and
properties.
Edges are directed between two nodes. They have a type,
optional label and properties.
Can collate by type to convert to rDBMS tables.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 72 / 88

We could simply store graphs in relational tables?

Rome

Verona

Bognor

Paris

Romsey

Italy

UK

France

L1 Rome

L2

L3

L4

L5

Bus

Plane

12

181

Null

33

Distance

Italy

UK

Verona

Verona

Bognor Romsey

Paris

Romsey Paris

Paris Bognor

Teleport

Plane

Bus

125

FormV2V1EIDTown Country

NODES EDGES

This is a small example.

Think of a million nodes

and considerably more

edges.

This is a unary relation:

the schema range and

domain type are both

towns.

One table for nodes and one for edges?
Need to name the edges (EID often artificial?).
Inefficient:

I All edges must be scanned to find the neighbour of a node.
I The ends are interchangable for undirected searches, so two fields

to examine.
I Queries involving many hops are painful in SQL (especially Kleene

star [Part Ia Algorithms]).
I Will typically need to store two inverted indexes to the edges

relation.
djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 73 / 88

Binary and higher relations: one rDBMS table per
node type?

To avoid an EID, here the edges table is all-key.
rDBMS is not ideal for enormous, many-to-many relations.
For OLAP, a denormal representation would probably be used.
This binary relation is bipartite: two types of node; all edges go from one type to the other.

Rome

Verona

Bognor

Paris

Brussels

343

2

312

Rome

Genders

33

201

Core VocabLanguageTownTown Population

TOWNS OFFICIAL_LANGUAGE LANGUAGES

Bognor

Paris

Brussels

Brussels

Italian

English

French

French

Flemish

Brussels German

Language

Flemish

German

Italian

English

French

ItalianItalian 500,000 2

1,600,000 3

135,000 2

300,000 2.5

200,000 3

Edges relation

Modelling ternary relations?
Edges have two ends.

Earlier we stored Terry Nation as an attribute value.

Was the screenplay author a person? An attribute value may be a foreign key.

- Is this a good schema? Edges from edge attributes?

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 74 / 88

Neo4j: Cypher immediate data entry.

Data is typically imported from external sources, but ...

Immediate Node Data:
CREATE (nm0000102:Person {name: ’Kevin Bacon’, birthyear:1958, deathyear:Null})
CREATE (nm0002002:Person {name: ’Sean Connery’, birthyear:1954, deathyear:2007})
CREATE (nm0012032:Person {name: ’Roger Moore’, birthyear:1927, deathyear:2017})
CREATE (tt0299478:Film {title:’Dr No’, screenplay=’Richard Maibaum’, Time=’109 mins’})
CREATE (tt0299479:Film {title:’Thunderball’, screenplay=’Richard Maibaum’, Time=’130 mins’})

Immediate Edge Data:
CREATE (nm0002002)-[:ACTED_IN {Role:’James Bond’}]->(tt0299478)
CREATE (nm0002002)-[:ACTED_IN {Role:’James Bond’}]->(tt0299479)

Edges and nodes have <primary name>:<type> and then
key/value properties.
All edges have a direction as stored.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 75 / 88

Graph data normalisation.

Do we want the role name to be the arc name?

(nm0000084)-[’Su Li-zhen’:PLAYS_ROLE]->(tt0212712)
(nm0000090)-[’Semyon’:PLAYS_ROLE]->(tt0765443)
(nm0000093)-[’Mickey O’Neil’:PLAYS_ROLE]->(tt0208092)

Hmm!
Arc names must be unique.
Modelling mistake since the same role name will appear in
remakes between different actors and movies.

Better:

(nm0000084)-[:PLAYS_ROLE {role:’Su Li-zhen’}]->(tt0212712)

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 76 / 88

Databases and Graph Databases
General points:

An arc type essentially models an E-R binary (or unary) relation.

Pattern matching on paths is supported.

Transitive closure is free ...

... many other common graph algorithms supported ...

Neo4J specific:
Edges, when created, need have no identifiers, so create is not idempotent?

Edges, as entered, are directed, but queries can treat them as un-directed.

Queries can be expressed as reusable functions with formal parameters (equally
possible for rDBMS).

Suffered some serious security vulnerabilities last year (equally possible for
rDBMS).

Regular expressions on values violate value integrity (yes, widely done in SQL
too!).

(Idempotent operation) ⇐⇒ (repeating it has no effect).
djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 77 / 88

Neo4j — example pattern-matching queries:
Path patterns contain constants and/or bind local variables a, b ...

(a)-->(b)
All pairs of nodes with
an edge from one to the
other.

(a:Person)-->(b:Film)
Any type of edge between
any person and any film.

(*)-[:ACTED_IN]->(b)
Nodes at the end of any
edge of type ACTED_IN.

(a)--(b)
Any pair of nodes with an
edge between them in ei-
ther direction.

(a)--(b)--(c)-->(d)
Four (distinct? a=c?) con-
nected nodes.

(a)-[:ACTED_IN]->(b)
All pairs related by
ACTED_IN.

(*)-->(a)<--(*)
Any node with two or
more incoming edges.

(a:Person
{name:’Madonna’})-->
(*:Film {title:t})
Node attribute matching
and binding.

(a:Person)-
[:ACTED_IN*]->(b)

Transitive matching.

The Kleene star matches a path of any length. Further syntax upper and/or lower
bounds the path length: eg. (a)-[*3..5]->(b).

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 78 / 88

Pattern matching. Example 1:

MATCH
(john {name: ’John’})-[:FRIEND]->()-[:FRIEND]->(fof)

RETURN john.name, fof.name

Resulting in:

+----------------------+
| john.name | fof.name |
+----------------------+
| "John" | "Maria" |
| "John" | "Steve" |
+----------------------+
2 rows

Friendship should surely be symmetric; shouldn’t John be his own FOF?

[neo4j.com/docs/cypher-manual/current/introduction].

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 79 / 88

https://neo4j.com/docs/cypher-manual/current/introduction

Pattern matching. Example 2: co-actors
Get all co-actors with

MATCH (p1:Person) -[:ACTED_IN]-> (m:Film),
(p2:Person) -[:ACTED_IN]-> (m:Film)

WHERE p1.person_id <> p2.person_id
RETURN p1.name AS name1, p2.name AS name2, count(*) AS TOTAL
ORDER BY total desc, name1, name2
LIMIT 10;

OR

MATCH (p1:Person) -[:ACTED_IN]-> (m:Film) <-[:ACTED_IN]- (p2:Person)
WHERE ...

OR

MATCH (p1:Person) -[:ACTED_IN*2]- (p2:Person)
WHERE ...

Resulting in:

+---+
| name1 | name2 | total |
+---+
"Daniel Radcliffe"	"Rupert Grint"	8
"Kohl Sudduth"	"Tom Selleck"	8
"Rupert Grint"	"Daniel Radcliffe"	8
"Tom Selleck"	"Kohl Sudduth"	8

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 80 / 88

Graph Algorithms (are important)
Desire efficient support for a large number of graph algorithms and metrics.

- Breadth-first search, depth-first, shortest path, Page Rank, spanning trees,
articulation point, strongly-connected components, cliques, max flow ...

Metrics:
Community: Edge/node ratio, diameter,
how are nodes clustered, tree count...

Centrality: How important is each node or
link to the structure of the entire graph.

Similarity: How alike are two or more
nodes?

Prediction: How likely is it that a new arc
will be formed between two nodes?

Path finding: What is the “best” path
between two nodes?

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 81 / 88

Graph DBMS optimised for Big Data (will not fit in
core∗)“Data Science” queries.

This is a small metabolic network from Urinary metabolic signatures of human
adiposity (2015) [web].
Many biological networks derived from experiments have millions of nodes and edges.
Biologist interested in drug development “query” such graphs to find important structures.

* = An historic term for data being entirely stored in primary memory.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 82 / 88

https://stm.sciencemag.org/content/7/285/285ra62

Social networks

From Building Social Network Visualizations [web:sfm-ui].
Graph algorithms are used to recommend new friend links.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 83 / 88

https://gwu-libraries.github.io/sfm-ui/posts/2017-09-08-sna

Neo4j: Example of path-oriented query in Cypher
MATCH path=allshortestpaths((m:Person {name : ’Jennifer Lawrence’})

-[:ACTED_IN*]-
(n:Person {name : ’Matt Damon’}))

RETURN path

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 84 / 88

Let’s count Bacon numbers with Neo4j/Cypher
MATCH paths=allshortestpaths(

(m:Person {name : "Kevin Bacon"})
-[:ACTED_IN*]-

(n:Person))
WHERE n.person_id <> m.person_id
RETURN length(paths)/2 AS bacon_number,

COUNT(distinct n.person_id) AS total
ORDER BY bacon_number;

bacon_number total
------------ -----

1 12
2 110
3 614
4 922
5 381
6 123
7 86
8 16

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 85 / 88

Graph-oriented DBMS optimisations:
In-core∗ databases can use pointers to implement referential links.
Big-data implementations will stream the edges past processing
elements (Pregel).

Convergence: Many SQL systems are optimising in-core table sets in
the same similar ways (fighting back) and users typically want SQL-like
access to node data.

[NB: This ‘Graph Algorithms’ book
is available via the course web site.
Many algorithms overlap with Ia
Algorithms, but most content is
irrelevant for this course.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 86 / 88

Last Slide!
What have we learned?

Having a conceptual model of data is very useful, no matter which
implementation technology is employed.
Investment in data model planning pays off well.
There is a trade-off between fast reads and fast writes.
There is no database system that satisfies all possible
requirements.
Staging between a principle storage model used for updates and
optimised views, clones or other alternatives for rapid query is
commonly used.
It is best to understand pros and cons of each approach and
develop integrated solutions where each component database is
dedicated to doing what it does best.
The future will see enormous churn and creative activity in the
database field!

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 87 / 88

End of the course.

Some declarations do not quite hold for all time:

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 5 - 8 Ia DB 2022 88 / 88

