
Introduction to Databases
Lectures 1 - 4

David J. Greaves

(with grateful thanks to Timothy G. Griffin)

Computer Laboratory
University of Cambridge, UK

Michaelmas Term, 2022-23

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 1 / 84

Lecture 1

What is a Database Management System (DBMS)?
In other words: what do we need beyond storing some data?
We’ll concentrate on the service provided - no implementation
details.
The diverse landscape of database systems.

I Traditional SQL-based systems
I Recent development of “NoSQL” systems.

Three data models covered in this course
I Relational,
I Document-oriented,
I Graph-oriented.

Trade-offs imply that no one model ideally solves all problems.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 2 / 84

Fields, records and CSV Data
Punched cards were used for weaving control in the Jacuqard Loom
and were an inspiration for Hollerith in the 1890 US census, leading to
the 80-column punched card.

Fixed-field record
Adam Jonathan Alexander Hawkes M20051969
David James Greaves M28111962
Peter James Greaves M28111932
Elizabeth Jane Yeti Goosecreature F02041965

Fixed-field used widely on punched cards and remains efficient for
gender and DoB etc..

Comma/character-separated value record
Adam,Jonathan,Alexander,Hawkes,M,20,05,1969
David,James,,Greaves,M,28,11,1962
Peter,James,,Greaves,M,28,11,1932
Elizabeth,Jane,Yeti,Goosecreature,F,2,4,1965

But how to store Charles Philip Arthur George Mountbatten-Windsor?
djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 3 / 84

https://www.cl.cam.ac.uk/~djg11/howcomputerswork/#Jacquard-Loom

A simple, in-core associative store
(dictionary/collection)
Implementation in ML – Irrelevant (and not lectured yet!)
let m_stored:((string * string) list ref) = ref [] // The internal representation

let store (k, v) = m_stored := (k, v) :: !m_stored // Function to store a value under
// a given key.

let retrieve k = // Function to find the value stored
let rec scan = function // under a given key or else
| [] -> None // return ’None’.
| (h, v)::tt -> if h=k then Some v else scan tt
in scan !m_stored

API formal specification – Relevant to this course.
store : string * string -> unit
retrieve : string -> string option

The application program interface (API) is defined by its two
methods/functions.
They may be freely called in any order, so no invocation ordering
constraints exist (unlike, eg. ‘open . (read|write)* . close’).
djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 4 / 84

Further Database Jargon

Value: often just a character string, but could be a number, date, or even a
polygon in a spatial database.

Field: a place to hold a value, also known as an attribute or column in an RDB
(relational database).

Record: a sequence of fields, also known as a row or a tuple in an RDB.

Schema: the specification of how data is to be arranged, specifying table and field
names and types and some rules of consistency (eg. air pressure field
cannot be negative).

Key: the field or concatenation of fields normally used to locate a record.

Index: a derived structure providing quick means to find relevant records.

Query: a retrieve or lookup function, often requiring automated planning.

Update: a modification of the data, preserving consistency and often implemented
as a transaction.

Transaction: an atomic change of a set of fields with further ACID properties.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 5 / 84

Abstractions, interfaces, and implementations

Many possible

applications

Interface

Many possible

implementations

Narrow waist model.

An interface liberates application
writers from low-level details.
An interface represents an
abstraction of resources/services
used by applications.
In a perfect world, implementations
can change without requiring
changes to applications.
Performance concerns often
challenge this idealised picture.
‘Mission-creep’ and specification
change typically ruin things too
(software misengineering!).

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 6 / 84

Standard interfaces are everywhere, for example

a national electricity network,
a landline telephone that’s 100 years old can still be plugged in
today,
even money can be thought of as an interface.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 7 / 84

Typical Database Logical Arrangement

DBMS

Screen

Keyboard

SQL
REPL

application

Transaction processing

application

(eg. holiday booking)

Internet

Disk drives

and

filesystem

Database Management

System

Read-eval-print loop

create table

insert/update/delete

run query: SELECT * FROM ...

creat()

open()

close()

read()

write()

SQL

The DBMS provides an abstraction over the secondary storage
(disks/tapes [web:Video 3b]).
It hides data storage detail using a narrow, standardised interface
(eg. SQL) shared by concurrent applications.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 8 / 84

https://www.cl.cam.ac.uk/~djg11/howcomputerswork#Video-3b

O/S View of the Logical Arrangement

D
B

M
S

S
Q

L
re

a
d
-e

v
a
l-p

rin
t lo

o
p

a
p
p
lic

a
tio

n

T
ra

n
s
a

c
tio

n
 p

ro
c
e

s
s
in

g

a
p

p
lic

a
tio

n

(e
g

. h
o

lid
a

y
 b

o
o

k
in

g
)

Internet

Disk

drives

Operating system

DevDriver

File system

DevDriver

Disk

Controller
NIC

DevDriver

Graphics

card/etc

Screen

Keyboard

User space

software

(processes)

Kernel space

software

Hardware
TCP/ HTML etc.

SQL

P
rim

a
ry

 s
to

ra
g
e
 (R

A
M

)

Secondary
storage composed

of disks, tapes,SSD...

This set-up is covered in the operating systems course later in the
year, so you need take no notice of this slide today.
In many simple scenarios, the application is in the same process as
the DBMS.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 9 / 84

A partial specification of computer memory

Primary storage (main RAM, typically volatile):
type address_t = integer 0 to 2^16 - 1
type word_t = integer 0 to 255
method write : address_t * word_t -> unit
method read : address_t -> word_t

Secondary storage (disk/tape/SSD/USB-stick):
type blkaddress_t = integer 0 to 2^19-1
type block_t = array [0..4095] of integer 0 to 255
method write : blkaddress_t * block_t -> unit
method read : blkaddress_t -> block_t option
method trim (*forget*) : blkaddress_t -> unit
method sync (*synchronise*) : unit -> unit

Of course, this interface specification says nothing about the
semantics of memory, which are basically what you write should be
what you read back again! Such a specification needs to take time into
account and whether reboot happened in the meantime.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 10 / 84

Variations on the previous set-up and otherwise.

Where is the data stored?
In primary store (in core, on the heap),
or in secondary store,
or distributed.

When in-core (in primary/main storage)
Ephemeral – data lost when program exits,
Persistent – data serialised to/from the O/S filesystem,
Persistent – DBMS directly makes access to secondary storage
devices.

Data size
Big data – too big to fit in primary store,
In-core – it all fits in (NB: ‘core’ is a historic term; today DRAM).

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 11 / 84

Variations continued ...

Amount of writing
Read-optimised (data never or rarely changes),
Transaction-optimised (many concurrent queries and updates),
Append-only journal (new data always added at the end, ledger
style).

Consistency Model – Lecture 5
Atomic updates (ACID transactions),
Eventual consistency (BASE).

Data Arrangement
Relational organisation (tables),
Semi-structured document (Lecture 6),
Graph (Lecture 8), or others...

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 12 / 84

Consistency

Foreign key referential integrity:
Q1: “Mr Sartre, we have your GP down as Dr. Yeti
Goosecreature, but we can’t find him/her on our database –
do we have the correct spelling of their name?”

Value range check:
Q2: “Dr. Greaves, we have your weight recorded as minus
fifteen kilograms – surely that’s not correct?”

Entity Integrity:
Q3: “Dr. Griffin, we seem to have two home addresses
recorded for you – can you clarify?”

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 13 / 84

This course and the DBMS.

Data model,

query language

programming API,

access control,

...

App 1

(updates)
App 2

(queries)

App 3

(sales

reports)

Query planner,

low-level data

representation,

index generator,

journalling,

...

Physical storage media.

D
B

M
S

This course will present
databases from an application
writer’s point of view. It will stress
data models and query
languages.
We cover how a DBMS can provide
a tidy interface to the stored data.
We will not cover programming APIs
or network APIs,
or cover low-level implementation
details,
or cover how a query engine plans
how to service each query.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 14 / 84

DBMS operations

CRUD operations:
Create: Insert new data items into the database,

Read: Query the database,
Update: Modify objects in the database,
Delete: Remove data from the database.

Management operations - mostly beyond the scope of this
course:

Create schema (we might do some of this),
Change schema (Yuck!) (eg. add a table or an attribute),
Create view (eg. for access control) (we will be using some views),
Physical re-organisation of data layout or re-index,
Backup, stats generation, paying Oracle, etc. ...

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 15 / 84

This course looks at three data models
Relational Model: Data is stored in tables. SQL is the main query

language. Optimised for high throughput of many
concurrent updates.

Document-oriented Model: Also called aggregate-oriented database.
Optimised for read-oriented databases with few updates
and using semi-structured data.

Graph-oriented Model: Much of the data is graph nodes and edges,
with extensive support for standard graph techniques.
Query languages tend to have ‘path-oriented’ capabilities.

The relational model has been the industry mainstay for the last 46 years.

The other two models are representatives of a stuttering revolution in database
systems often described under the “NoSQL” banner (Lectures 6&8).

All three primarily hold discrete data. Lent term course ‘ML & real-world data’
deals with soft/continuous decision making.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 16 / 84

This course uses three database systems

HyperSQL A Java-based relational DBMS. Query
language is SQL.

DOCtor Who A bespoke document-oriented collection of
data. We’ll just use some serialised python
dictionaries containing JSON data!

Neo4j A Java-based graph-oriented DBMS (if we
can get it to work). Query language is Cypher
(named after a character in The Matrix).

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 17 / 84

Relational Databases
A relational database consists of a number of 2-D tables. Here is one:

First name Surname Weight GP GP’s age
David Greaves -15 Dr Luna 36

Jean-Paul Sartre 94 Dr Yeti Goosecreature <null>
Timothy Griffin 105 Dr Luna 36

For each table, there is one row per record, technically known as a
tuple.
Each record has a number of fields, technically known as
attributes.
Each table may also have a schema, indicating the field names,
allowable data formats/ranges and which column(s) comprise the
key (underlined).
The ordering of columns (fields) is unimportant and often so for
rows.

[NB: A table is called a relation in some textbooks, but we shall see tables represent
entities too, so that is a confusing name.].

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 18 / 84

Distributed databases
Database held over multiple machines or over multiple datacentres.

Why distribute data?
Scalability: The data set or the workload can be too large for a
single machine.
Fault tolerance: The service can survive the failure of some
machines.
Lower Latency: Data can be located closer to widely distributed
users.

Downside of distributed data: consistency
After an update, there is a massive overhead in providing a
consistent view.
There’s a multitude of successively-relaxed consistency models
(e.g. all viewers see all updates in the same order or not).
(Exactly the same problem arise within a single chip for today’s
multi-core processors.)
djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 19 / 84

Distributed databases pose difficult challenges

CAP concepts
Consistency. All reads return data that is up-to-date.
Availability. All clients can find some replica of the data.
Partition tolerance. The system continues to operate despite
arbitrary message loss or failure of part of the system.

It is impossible, with current (pre-quantum) technology, to achieve
the CAP trio in a distributed database.
Approximating CAP is the subject of the second half of Ib
Concurrency and Distributed Systems lecture course.
Alternatively, do not invest much effort. Instead, offer a BASE
system with eventual consistency: if update activity ceases, then
the system will eventually reach a consistent state.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 20 / 84

Trade-offs often change as technology changes

Expect more dramatic changes in the coming decades ...

5 megabytes of RAM in 1956 A modern server

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 21 / 84

IMDb: Our example data source

Raw data available from IMDb plain text data files at
http://www.imdb.com/interfaces.
Extracted from this: 1480 movies made between 2000 and 2021
together with 7583 associated people (actors, directors, etc).
The same data set was used to generate three database
instances: relational, graph, and document-oriented.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 22 / 84

Course Structure and Timetable

date topics
1 11/10 L1 What is a Database Management System (DBMS)?
2 18/10 L2 Entity-Relationship (ER) diagrams
3 25/10 L3 Relational Databases ...
4 1/11 L4 ... and SQL
5 8/11 L5 Redundancy, Consistency & Throughput
6 15/11 L6 Document-oriented Database

16/11 Relational DB Help and Tick Session (1)
7 22/11 L7 Further SQL

23/11 Document DB Help and Tick Session (2)
8 29/11 L8 Graph Database

Get started on the practicals straight after L1.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 23 / 84

Recommended Text

Lemahieu, W., Broucke, S. van den, and Baesens, B. Principles of
database management. Cambridge University Press. (2018)

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 24 / 84

Guide to relevant material in textbook

1 What is a Database Management System (DBMS)?
I Chapter 2

2 Entity-Relationship (ER) diagrams
I Sections 3.1 and 3.2

3 Relational Databases ...
I Sections 6.1, 6.2.1, 6.2.2, and 6.3

4 ... and SQL
I Sections 7.2 – 7.4

5 Indexes. Some limitations of SQL ...
I 7.5,

6 ... that can be solved with Graph Database
I Sections 11.1 and 11.5

7 Document-oriented Database
I Chapter 10

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 25 / 84

Lecture 2 : Conceptual modelling with
Entity-Relationship (ER) diagrams

Peter Chen

It is very useful to have a
implementation independent
technique to describe the data that
we store in a database.
There are many formalisms for this,
and we will use a popular one —
Entity-Relationship (ER), due to
Peter Chen (1976).
The ER technique grew up around
relational databases systems but it
can help document and clarify
design issues for any data model.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 26 / 84

Entities (should) model things in the real world.

Movie

title
year

movie_id Person

birthYear
name

person_id

Entities (squares) represent the nouns of our model
Attributes (ovals) represent properties
A key is an attribute whose value uniquely identifies an entity
instance (here underlined)
The scope of the model is limited — among the vast number of
possible attributes that could be associated with a person, we are
implicitly declaring that our model is concerned with only three.
Very abstract, independent of implementation.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 27 / 84

Entity Sets (instances)
Instances of the Movie entity

movie_id title year
tt1454468 Gravity 2013
tt0440963 The Bourne Ultimatum 2007

Instances of the Person entity
person_id name birthYear

nm2225369 Jennifer Lawrence 1990
nm0000354 Matt Damon 1970

Keys must be unique.
They might be formed from some algorithm, like your CRSID. Q: Might some
domains have natural keys (National Insurance ID)? A: Beware of using keys
that are out of your control.
In the real-world, the only safe thing to use as a key is something that is
automatically generated in the database and only has meaning within that
database.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 28 / 84

Relationships

Movie

title
year

movie_id Directed Person

birthYear
name

person_id

Relationships (diamonds) represent the verbs of our domain.
Relationships are between entities.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 29 / 84

Relationship instances

Instances of the Directed relationship (ignoring entity attributes)
Kathryn Bigelow directed The Hurt Locker
Kathryn Bigelow directed Zero Dark Thirty
Paul Greengrass directed The Bourne Ultimatum
Steve McQueen directed 12 Years a Slave
Karen Harley directed Waste Land
Lucy Walker directed Waste Land
João Jardim directed Waste Land

Relationship Cardinality
Directed is an example of a many-to-many relationship.

Every person can direct multiple movies and every movie can
have multiple directors.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 30 / 84

A many-to-many relationship

No arrows:

S R T

Any S can be related to zero or more T ’s,
Any T can be related to zero or more S’s.
The relation can also be symmetric and/or relate an entity domain
to itself (eg. is_sibling), but these terms have slightly different
meanings compared with a mathematical relation.

Crow’s foot etc.: There are numerous arrowheads and other diagram
annotations for denoting non-symmetric relations and the allowable
cardinalities of a relationship. We can mostly leave them out when
designing a model since we know what makes sense.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 31 / 84

Relationships can also have attributes

Movie

title
year

movie_id Acted_In

role

Person

birthYear
name

person_id

Attribute role indicates the role played by a person in the movie.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 32 / 84

Instances of the relationship Acted_In

(ignoring entity attributes)
Ben Affleck played Tony Mendez in Argo
Julie Deply played Celine in Before Midnight
Bradley Cooper played Pat in Silver Linings Playbook
Jennifer Lawrence played Tiffany in Silver Linings Playbook
Tim Allan played Buzz Lightyear in Toy Story 3

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 33 / 84

Have we made a modelling mistake?
Attributes exist at-most once for any entity or relation.
So our model is restrictive in that an actor plays a single role in
every movie. This may not always be the case!

Jennifer Lawrence played Raven in X-Men: First Class
Jennifer Lawrence played Mystique in X-Men: First Class
Scarlett Johansson played Black Widow in The Avengers
Scarlett Johansson played Natasha Romanoff in The Avengers

So could we allow the role to be a comma-separated list of roles — a
multi-valued attribute (but not a composite attribute)?

More-than-likely we’ll need to break up that list at some point in
the future.
Perhaps fair enough to do this in an E/R design model,
But when stored in a real database, text processing at that level is
an unspeakable data modelleing sin (it violates the rule of value
atomicity).
djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 34 / 84

Acted_In can be modelled as a Ternary Relationship

Let’s consider having ‘role’ as an entity.

Movie

Title
Year

movie_id Acted_In Person

birthYear
name

person_id

Role

description

Acted_In is now a ternary relationship, but
is a role a real-world entity in its own right,
and are ternary relations sensible?

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 35 / 84

Can a ternary relationship be modelled with multiple
binary relationships?

MovieHasCastingCastingActsInPerson

RequiresRole

Role

Yes, but is the Casting entity too artificial? [Let’s hold a referendum.]

[NB: See textbook 3.2.6 (pen example) consequent data loss.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 36 / 84

Attribute or entity with new relationship?

Movie

title
id

Released MovieRelease

country
date

year

month

day

note

Should the release date be a composite attribute or an entity?
The answer may depend on the scope of your data model.
If all movies within your scope have at most one release date,
then an attribute will work well.
However, if you scope is global, then a movie can have different
release dates in different countries.
Is the MovieRelease entity too artificial?
djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 37 / 84

Many-to-one relationships

Suppose that every employee is related to at most one department.
We are going to denote with an arrow:

Employee Works_In Department

Does our movie database have any many-to-one relationships?
Do we need some annotation to indicate that every employee
must be assigned to a department?

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 38 / 84

One-to-many, many-to-one and one-to-one.

Suppose every member of T is related to at most one member of S.
We will draw this as

T R S

The relation R is many-to-one between T and S
The relation R is one-to-many between S and T

On the other hand, if R is both many-to-one between S and T and
one-to-many between S and T , then it is one-to-one between S and
T . We’ll see two arrows. (These seldom occur in reality – why?)

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 39 / 84

A “one-to-one cardinality” does not mean a "1-to-1
correspondence”

T X

Y

R

U

SZ

W

This database instance is OK
S R T

Z W
z1 w1
z2 w2
z3 w3

Z X U
z1 x2 u1

X Y
x1 y1
x2 y2
x3 y3
x4 y4

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 40 / 84

Diagrams can be annotated with cardinalities in many
strange and wonderful ways ...

Various diagrammatic notations used to indicate a one-to-many
relationship [Wikipedia: E/R model].

[NB: None of these detailed notations is examinable, but the concept of a relationship’s cardinality is important.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 41 / 84

https://en.wikipedia.org/wiki/Entity-relationship_model

Weak entities

Movie

Title
movie_id

Year Has_Alternative AlternativeTitle

Title
Country

Language
alt_id

AlternativeTitle is an example of a weak entity
The attribute alt_id is called a discriminator.
The existence of a weak entity depends on the existence of
another entity. In this case, an AlternativeTitle exists only in
relation to an existing movie. (This is what makes MovieRelease
special!)
Discriminators are not keys. To uniquely identify an
AlternativeTitle, we need both a movie_id and an alt_id.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 42 / 84

Entity hierarchy (OO-like)

Sometimes an entity can have “sub-entities”. Here is an example:

Employee

Name employee_id

IsA

Temporary_Employee

hourly_rate

Contract_Employee

contract_id

Sub-entities inherit the attributes (including keys) and relationships of
the parent entity. [Multiple inheritance is also possible.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 43 / 84

E/R Diagram Summary

Forces you to think clearly about the model you want to implement
in a database without going into database-specific details.
Simple diagrammatic documentation.
Easy to learn.
Can teach it to techno-phobic clients in less than an hour.
Very valuable in developing a model in collaboration with
clients who know nothing about database implementation
details.
With the following slide, imagine you are a data modeller working
with a car sales/repair company. The diagram represents your
current draft data model. What questions might you ask your client
in order to refine this model?

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 44 / 84

Employee

Name
Number

IsA

Mechanic SalespersonDoes

RepairJobNumber

Description

CostParts

Work

Repairs Car

Number Plate

Model
Year

Manufacturer

Buys

Price

Date

Value

Sells

Date

Value

Commission

Client ID

Name Phone
Address

buyerseller

Example due to Pável Calado, author of the tikz-er2.sty package.
djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 45 / 84

Lectures 3 and 4 - The Relational Database

Lecture 3
The relational model,
SQL and the relational algebra (RA).

Lecture 4
Representing an E/R model,
Update anomalies,
Avoid redundancy.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 46 / 84

The dominant approach: Relational DBMSs

In the 1970s you could not write a
database application without knowing a
great deal about the data’s low-level
representation.
Codd’s radical idea: give users a model of
data and a language for manipulating that
data which is completely independent of
the details of its
representation/implementation. That
model is based on mathematical
relations.
This decouples development of the DBMS
from the development of database
applications.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 47 / 84

Let’s start with mathematical relations
Suppose that S and T are sets. The Cartesian product, S × T , is the
set

S × T = {(s, t) | s ∈ S, t ∈ T}

EG: {A,B} × {3,4,5} = {(A,3), (A,4), (A,5), (B,3), (B,4), (B,5)}

A (binary) relation over S × T is any set R with

R ⊆ S × T .

Database parlance
S and T are referred to as domains.
We are interested in finite relations R that are explicitly stored.
(ie. We shall not be solving integer linear programming puzzles or
the like.)

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 48 / 84

n-ary relations
If we have n sets (domains),

S1, S2, . . . ,Sn,

then an n-ary relation R is a set

R ⊆ S1 × S2 × · · · × Sn = {(s1, s2, . . . , sn) | si ∈ Si}

Tabular presentation

1 2 · · · n
x y · · · w
u v · · · s
...

...
...

n m · · · k

All data in a relational database is stored in tables. However, referring
to columns by number can quickly become tedious!

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 49 / 84

Mathematical vs. database relations

Use named columns
Associate a name, Ai (called an attribute name) with each domain
Si .
Instead of tuples, use records — sets of pairs each associating an
attribute name Ai with a value in domain Si .

Column order does not matter
A database relation R is a finite set

R ⊆ {{(A1, s1), (A2, s2), . . . , (An, sn)} | si ∈ Si}

We specify R’s schema as R(A1 : S1, A2 : S2, · · · An : Sn).

NB: We’ll often say ‘field name’ instead of ‘attribute name’, Row order
often does not matter but sometimes we will sort using order by.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 50 / 84

Example: One table (a relational instance).
The relational schema for the table:
Students(name: string, sid: string, age : integer)

An instance of this schema:
Students = {

{(sid, fm21), (name, Fatima), (age, 20)},
{(name, Eva), (sid, ev77), (age, 18)},
{(age, 19), (name, James), (sid, jj25)}
}

Two equivalent renderings of the table:

name sid age
Fatima fm21 20
Eva ev77 18
James jj25 19

sid name age
fm21 Fatima 20
ev77 Eva 18
jj25 James 19

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 51 / 84

What is a (relational) database query language?

Input : a collection of Output : a single
relation instances relation instance

R1, R2, · · · , Rk =⇒ Q(R1, R2, · · · , Rk)

How can we express Q?
In order to meet Codd’s goals we want a query language that is
high-level and independent of physical data representation.

There are many possibilities ...

[NB: RA is primarily used for queries. SQL suports other CRUD
aspects that we’ll hardly mention.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 52 / 84

The Relational Algebra (RA) abstract syntax

Q ::= R base relation
| σp(Q) selection
| πX(Q) projection
| Q ×Q product
| Q −Q difference
| Q ∪Q union
| Q ∩Q intersection
| ρM(Q) renaming

p is a [simple] boolean predicate over attributes values.
X = {A1, A2, . . . , Ak} is a set of attributes.
M = {A1 7→ B1, A2 7→ B2, . . . , Ak 7→ Bk} is a renaming map.
A query Q must be well-formed: all column names of result are
distinct. So in Q1 ×Q2, the two sub-queries cannot share any
column names while in in Q1 ∪Q2, the two sub-queries must
share all column names.
djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 53 / 84

SQL: a vast and evolving language
Origins at IBM in early 1970’s.
SQL has grown and grown through many rounds of
standardization :

I ANSI: SQL-86
I ANSI and ISO : SQL-89, SQL-92, SQL:1999, SQL:2003,

SQL:2006, SQL:2008, SQL:2008
SQL is made up of many sub-languages, including

I Query Language
I Data Definition Language
I System Administration Language

SQL will inevitably absorb many “NoSQL” features ...

Why talk about the Relational Algebra?
Due to the RA’s simple syntax and semantics, it can often help us
better understand complex queries.
Tradition.
(The RA lends itself to endlessly amusing Tripos questions.)

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 54 / 84

Selection operator (σ)

R

A B C D
20 10 0 55
11 10 0 7
4 99 17 2

77 25 4 0

=⇒

Q(R)

A B C D
20 10 0 55
77 25 4 0

Q
RA σA>12(R)

SQL SELECT DISTINCT * FROM R WHERE R.A > 12

[NB: Asterisk denotes all fields, so no projection going on.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 55 / 84

Projection operator (π)

R

A B C D
20 10 0 55
11 10 0 7
4 99 17 2
77 25 4 0

=⇒

Q(R)

B C
10 0
99 17
25 4

Q
RA πB,C(R)

SQL SELECT DISTINCT B, C FROM R

[NB: No ‘where’ clause, so no selection going on, despite the ‘SELECT’.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 56 / 84

Renaming operator (ρ)

R

A B C D
20 10 0 55
11 10 0 7
4 99 17 2

77 25 4 0

=⇒

Q(R)

A E C F
20 10 0 55
11 10 0 7
4 99 17 2
77 25 4 0

Q
RA ρ{B 7→E , D 7→F}(R)

SQL SELECT A, B AS E, C, D AS F FROM R

[NB: SQL implements renaming with the ‘AS’ keyword.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 57 / 84

Union operator (∪)

R

A B
20 10
11 10
4 99

S

A B
20 10
77 1000

=⇒

Q(R, S)

A B
20 10
11 10
4 99
77 1000

Q
RA R ∪ S

SQL (SELECT * FROM R) UNION (SELECT * FROM S)

[NB: This is union of records. We’ll also use/abuse ∪ for field concatenation in
another slide.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 58 / 84

Intersection operator (∩)

R

A B
20 10
11 10
4 99

S

A B
20 10
77 1000

=⇒

Q(R)

A B
20 10

Q
RA R ∩ S

SQL (SELECT * FROM R) INTERSECT (SELECT * FROM S)

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 59 / 84

Difference operator (-)

R

A B
20 10
11 10
4 99

S

A B
20 10
77 1000

=⇒

Q(R)

A B
11 10
4 99

Q
RA R − S

SQL (SELECT * FROM R) EXCEPT (SELECT * FROM S)

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 60 / 84

Product operator (×)

R
A B
20 10
11 10
4 99

S
C D
14 99
77 100 =⇒

Q(R, S)
A B C D
20 10 14 99
20 10 77 100
11 10 14 99
11 10 77 100
4 99 14 99
4 99 77 100

Q
RA R × S

SQL SELECT A, B, C, D FROM R CROSS JOIN S

SQL SELECT A, B, C, D FROM R, S

[NB: The RA product is not precisely the mathematical Cartesian product
which would return pairs of tuples.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 61 / 84

Natural Join (augmented ×)
First, some bits of notation:

We will often ignore domain types and write a relational schema
as R(A), where A = {A1, A2, · · · , An} is a set of attribute names.
When we write R(A, B) we mean R(A ∪ B) and implicitly assume
that A ∩ B = φ (ie. disjoint fields).
u.[A] = v .[A] abbreviates u.A1 = v .A1 ∧ · · · ∧ u.An = v .An.

Natural Join (SQL replace CROSS with NATURAL):
Given R(A, B) and S(B, C), we define the natural join, denoted
R on S, as a relation over attributes A,B,C defined as

R on S ≡ {t | ∃u ∈ R, v ∈ S, u.[B] = v .[B] ∧ t = u.[A] ∪ u.[B] ∪ v .[C]}

In the Relational Algebra:

R on S = πA,B,C(σB=B′(R × ρ~B 7→ ~B′(S)))

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 62 / 84

Natural join example

Students
name sid cid
Fatima fm21 cl
Eva ev77 k
James jj25 cl

Colleges
cid cname
k King’s
cl Clare
q Queens’

=⇒

Students on Colleges
name sid cid cname
Fatima fm21 cl Clare
Eva ev77 k King’s
James jj25 cl Clare

Explicit join predicates are commonly used: replace
NATURAL(=equality) with a WHERE clause.
When NULL values exist, there are further join variations you
should know (left/right/inner/outer), but not taught in these slides
(Lemahieu 7.3.1.5).
djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 63 / 84

Lecture 4: How can we implement an E/R model
relationally?

Movie

title
year

movie_id Directed Person

birthYear
name

person_id

The ER model does not dictate implementation.
There are many options.
We will discuss some of the trade-offs involved.

Remember, we only have tables to work with!

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 64 / 84

How about one big table?

DirectedComplete
MOVIE_ID TITLE YEAR PERSON_ID NAME BIRTHYEAR
---------- ----------------------------- ---- --------- ---------------- ---------
tt0126029 Shrek 2001 nm0011470 Andrew Adamson 1966
tt0126029 Shrek 2001 nm0421776 Vicky Jenson
tt0181689 Minority Report 2002 nm0000229 Steven Spielberg 1946
tt0212720 A.I. Artificial Intelligence 2001 nm0000229 Steven Spielberg 1946
tt0983193 The Adventures of Tintin 2011 nm0000229 Steven Spielberg 1946
tt4975722 Moonlight 2016 nm1503575 Barry Jenkins 1979
tt5012394 Maigret Sets a Trap 2016 nm0668887 Ashley Pearce
tt5013056 Dunkirk 2017 nm0634240 Christopher Nolan 1970
tt5017060 Maigret’s Dead Man 2016 nm1113890 Jon East
tt5052448 Get Out 2017 nm1443502 Jordan Peele 1979
tt5052474 Sicario: Day of the Soldado 2018 nm1356588 Stefano Sollima 1966
.....

What’s wrong with this approach?

[Later we’ll be asking ourselves, ‘What is the key to this table and does all the
data stored in it naturally depend on the key?’]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 65 / 84

Problems with data redundancy

Data consistency anomalies:
Insertion: How can we tell if a newly-inserted record is consistent with existing

records? We may want to insert a person without knowing if they are a
director. We might want to insert a movie without knowing its
director(s).

Deletion: We lose information about a Director if we delete all of their films from
the table.

Update: What if a director’s name is mis-spelled? We may update it correctly
for one film, but not for another.

Performance issue:
A transaction implementing a conceptually simple update has a lot of work to do,

it could even end up locking the entire table.

Lesson: In a database supporting many concurrent updates, we see that data
redundancy can lead to complex transactions and low write throughput.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 66 / 84

A better idea: break tables down in order to reduce
redundancy (1)

movies
MOVIE_ID TITLE YEAR
---------- ----------------------------- ----
tt0126029 Shrek 2001
tt0181689 Minority Report 2002
tt0212720 A.I. Artificial Intelligence 2001
tt0983193 The Adventures of Tintin 2011
tt4975722 Moonlight 2016
tt5012394 Maigret Sets a Trap 2016
tt5013056 Dunkirk 2017
tt5017060 Maigret’s Dead Man 2016
tt5052448 Get Out 2017
tt5052474 Sicario: Day of the Soldado 2018
.....

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 67 / 84

A better idea: break tables down in order to reduce
redundancy (2)

people
PERSON_ID NAME BIRTHYEAR
--------- ---------------- ---------
nm0011470 Andrew Adamson 1966
nm0421776 Vicky Jenson
nm0000229 Steven Spielberg 1946
nm1503575 Barry Jenkins 1979
nm0668887 Ashley Pearce
nm0634240 Christopher Nolan 1970
nm1113890 Jon East
nm1443502 Jordan Peele 1979
nm1356588 Stefano Sollima 1966
.....

[Later we’ll again ask, ‘What is are the keys for out new tables and does all
the data stored in a table naturally depend on its key?’]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 68 / 84

Now use a third table to hold the relationship.

Directed
MOVIE_ID PERSON_ID
---------- ---------
tt0126029 nm0011470
tt0126029 nm0421776
tt0181689 nm0000229
tt0212720 nm0000229
tt0983193 nm0000229
tt4975722 nm1503575
tt5012394 nm0668887
tt5013056 nm0634240
tt5017060 nm1113890
tt5052448 nm1443502
tt5052474 nm1356588
.....

What is the key to this table? Is it ‘all key’? Can films now have
multiple directors?

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 69 / 84

Computing DirectedComplete with SQL

SELECT movie_id, title, year,
person_id, name, birthYear

FROM movies
join directed on directed.movie_id = movies_id
join people on people.person_id = person_id

Note: the relation directed does not exist in our database (more on
that later). We have to write something like this:

SELECT movie_id, title, year,
person_id, name, birthyear

FROM movies as m
join has_position as hp on hp.movie_id = m.movie_id
join people as p on p.person_id = hp.person_id
WHERE hp.position = ’director’;

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 70 / 84

We can recover all information for the plays_role
relation
The SQL query

SELECT movies.movie_id AS mid, title, year,
people.person_id AS pid, name, role

FROM movies
JOIN plays_role ON movies.movie_id = plays_role.movie_id
JOIN people ON people.person_id = plays_role.person_id;

might return something like

MID TITLE YEAR PID NAME ROLE
---------- -------------------- ---- ---------- ------------------- ------------
tt0118694 In the Mood for Love 2000 nm0504897 Tony Chiu-Wai Leung Chow Mo-wan
tt0118694 In the Mood for Love 2000 nm0803310 Siu Ping-Lam Ah Ping
tt0120630 Chicken Run 2000 nm0000154 Mel Gibson Rocky
tt0120630 Chicken Run 2000 nm0200057 Phil Daniels Fetcher
tt0120630 Chicken Run 2000 nm0272521 Lynn Ferguson Mac
tt0120630 Chicken Run 2000 nm0768018 Julia Sawalha Ginger
tt0120679 Frida 2002 nm0000161 Salma Hayek Frida Kahlo
tt0120679 Frida 2002 nm0000547 Alfred Molina Diego Rivera
...

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 71 / 84

Observations

Both ER entities and ER relationships are implemented as tables.
We call them tables rather than relations to avoid confusion!
Good: we avoid many update anomalies by breaking tables into
smaller tables.
Bad: we have to work hard to combine information in tables (joins)
to produce interesting results.

What about consistency/integrity of our relational
implementation?
How can we ensure that the table representing an ER relation really
implements a relationship? Answer : we use keys and foreign keys.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 72 / 84

Key: conceptual and formal definitions.

One aspect of a key should already be conceptually clear: a unique
handle on a record (table row).

Relational key – a definition from set theory:
Suppose R(X) is a relational schema with Z ⊆ X. If for any records u
and v in any instance of R we have

u.[Z] = v .[Z] =⇒ u.[X] = v .[X],

then Z is a superkey for R. If no proper subset of Z is a superkey, then
Z is a key for R. We write R(Z, Y) to indicate that Z is a key for
R(Z ∪ Y).

The other aspect (we’ll study in L5) is that, in a normalised schema, all
row data semantically depends on the key.
[NB: A table/relation can have multiple keys, in either sense.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 73 / 84

Foreign keys and Referential integrity

Foreign key
Suppose we have R(Z, Y). Furthermore, let S(W) be a relational
schema with Z ⊆W. We say that Z represents a Foreign Key in S for R
if for any instance we have πZ(S) ⊆ πZ(R). Think of these as (logical)
pointers!

Referential integrity
A database is said to have referential integrity when all foreign key
constraints are satisfied.

Q1: “Mr Sartre, we have your GP down as Dr. Yeti Goosecrea-
ture, but we can’t find him/her on our database – do we have the
correct spelling of their name?”

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 74 / 84

Referential integrity example.

The schema/table

Has_Genre(movie_id ,genre_id)

will have referential integrity constraints

πmovie_id(Has_Genre) ⊆ πmovie_id(Movies)

πgenre_id(Has_Genre) ⊆ πgenre_id(Genres)

[NB: Has_Genre is said to be ‘all key’, which is quite common for
schemas/tables representing relations.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 75 / 84

Schema and key definitions in SQL.

A schema with a simple key:

create table genres (
genre_id integer NOT NULL,
genre varchar(100) NOT NULL,
PRIMARY KEY (genre_id));

A schema that is all-key and that has two foreign keys:

create table has_genre (
movie_id varchar(16) NOT NULL

REFERENCES movies (movie_id),
genre_id integer NOT NULL

REFERENCES genres (genre_id),
PRIMARY KEY (movie_id, genre_id));

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 76 / 84

Relationships in tables (the “clean” approach).

T X

Y

R

U

SZ

W

Relation R is Schema

many to many (M : N) R(X , Z , U)

one to many (1 : M) R(X , Z , U)

many to one (M : 1) R(X , Z , U)

[NB. Copy out three times and add arrows if you are eager.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 77 / 84

Implementation can differ from the “clean” approach

T X

Y

R

U

SZ

W

Suppose R is one-to-many (reading left to right)
Rather than implementing a new table R(X , Z , U) we could expand
table T (X , Y) to T (X , Y , Z , U) and allow the Z and U columns to be
NULL for those rows in T not participating in the relationship.

Pros and cons?

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 78 / 84

Implementing multiple relationships with a single
table?
Suppose we have two many-to-many relationships:

T X

Y

SZ

W R

U

Q

V

Our two relationships are called R and Q.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 79 / 84

Implementing multiple relationships with one table is
possible.
Rather than using two tables

R(X , Z , U)

Q(X , Z , V)

we might squash them into a single table

RQ(X , Z , type, U, V)

using a tag domain(type) = {r,q} (for some constant values r and q).

represent an R-record (x , z,u) as an RQ-record (x , z, r,u,NULL)
represent an Q-record (x , z, v) as an RQ-record (x , z,q,NULL, v)

Redundancy alert!
If we know the value of the type column, we can compute the value of
either the U column or the V column (one must be NULL).

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 80 / 84

We have stuffed 5 relationships into the
has_position table!

SELECT position, COUNT(*) as total
FROM has_position
GROUP BY position
ORDER BY total DESC;

Using our database, this query produces the output

POSITION TOTAL
-------- -----
actor 4950
producer 2300
writer 2215
director 1422
self 293

Was this a good idea?
Discuss!

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 81 / 84

Implementing weak entities.

T DISC

Y

R

U

SZ

W

One (clean) approach:
S(Z , W)

R(Z , DISC, U) with πZ (R) ⊆ πZ (S)

T (Z , DISC, Y) with πZ (T) ⊆ πZ (S)

A more concise (clean) approach:
S(Z , W)

R(Z , DISC, U, Y) with πZ (R) ⊆ πZ (S)

This is how Has_Alternative is implemented.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 82 / 84

A 3-table implementation of entity hierarchy.

S

W Z

IsA

T

Y

U

V

One (clean) approach:
S(Z , W)

T (Z , Y) with πZ (T) ⊆ πZ (S)

U(Z , V) with πZ (U) ⊆ πZ (S)

Could we combine these tables into one with type tags? Yes but
unclean. Try it yourself.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 83 / 84

End of the first half (L5-8 are a separate file).

(http://xkcd.com/327)

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 4 Ia DB 2022 84 / 84

