
Example sheet 4
Random processes

Data Science—DJW—2022/2023

Question 1. Draw the state space diagram for this Markov chain.

1 def rw():
2 MAX_STATE = 9
3 x = 0
4 while True:
5 yield x
6 d = numpy.random.choice([−1,0,1], p=[1/4,1/2,1/4])
7 x = min(MAX_STATE, max(0, x + d))

Question 2. For the Cambridge weather simulator, example 10.2.1 in lecture notes, show that

P(X3 = r |X0 = g) =
∑
x1,x2

Pgx1Px1x2Px2r.

Question 3. Here is the state space diagram for a Markov chain with state space {0, 1, ..., N}. States
0 and N are absorbing states. At any other state x we jump to x + 1 with probability α, and to x − 1
with probability β. Assume α > 0 and β > 0 and α+ β ≤ 1. Let hx = P(hit 0 | start at x).
• For N = 3, calculate hx for all x ∈ {0, 1, 2, 3}.
• For arbitrary N , give code to compute the vector [h0, h1, . . . , hN ].
[Note. In a prior version, the text didn’t match the state space diagram. Fixed 2022-12-01.]
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Question 4. Consider a random walk on the vertices of this undirected graph, as follows: each timestep
we take one of the edges chosen at random, each edge from our current vertex equally likely. Find the
stationary distribution.
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Question 5. Let Xn be a mean-reverting random walk,

Xn+1 = µ+ λ(Xn − µ) +N(0, σ2) where − 1 < λ < 1.

The stationary distribution for this process is a Normal distribution. Find its parameters.

Question 6. The Internet uses an algorithm called TCP to manage congestion. For every data flow,
the sender maintains a congestion window Wn ∈ R. It keeps roughly Wn packets in flight, thus the
transmission rate is Wn/RTT packets per second where RTT is the round trip time (‘ping latency’) between
sender and receiver. The sender updates Wn every time it receives an acknowledgement of a packet, by

Wn+1 =

{
Wn + 1/Wn if the packet didn’t experience congestion
Wn/2 if the packet did experience congestion.

Suppose that packets experience congestion with probability p, independently. Write down a drift model
for Wn and find the fixed point.
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Question 7. We’re given a sequence (x0, x1, . . . , xn) starting at x0 = 0, and we decide to model it as a
mean-reverting random walk as in question 5. Explain how to estimate λ, µ, and σ.

Question 8. Consider a moving object with noisy location readings. Let Xn be the location at timestep
n ≥ 0, and Yn the reading. Here’s the simulator.

1 def hmm():
2 MAX_STATE = 9
3 x = numpy.random.randint(low=0, high=MAX_STATE+1) # initial location X0

4 while True:
5 e = numpy.random.choice([−1,0,1])
6 y = min(MAX_STATE, max(0, x + e)) # noisy reading of location
7 yield y
8 d = numpy.random.choice([−1,0,1], p=[1/4,1/2,1/4])
9 x = min(MAX_STATE, max(0, x + d)) # new location at next timestep

We’d like to infer the location Xn, given readings y0, . . . , yn.
(a) Give justifications for the following three equations, which give an inductive solution. First the

base case,

Pr(x0 | y0) = const × Pr(x0)Pr(y0 | x0),

and next two equations for the induction step,

Pr(xn | h) =
∑
xn−1

Pr(xn−1 | h)Pr(xn | xn−1)

Pr(xn | h, yn) = const × Pr(xn | h)Pr(yn | xn).

In these two equations, h stands for (y0, . . . , yn−1), and we’ll assume we’ve already found Pr(xn−1|h).
(b) Give pseudocode for a function that takes as input a list of readings (y0, . . . , yn) and outputs the

probability vector [
π0, . . . , πMAX_STATE

]
, πx = P(Xn = x | y0, . . . , yn).

(c) If your code is given the input (3, 3, 4, 9), it should fail with a divide-by-zero error. Give an
interpretation of this failure.

Question 9 (Stoat-finding challenge, not for supervision). Work through the notebook at https:
//www.cl.cam.ac.uk/teaching/2223/DataSci/datasci/ex/ex4.html, in which you will implement
a ‘particle filter’ to solve question 8 on a larger map, using computational methods rather than exact
calculations. Submit your answer on Moodle.
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Hints and comments
Question 1. First identify the state space, i.e. the set of possible values for x. Looking at the code,
we see that x can only ever be an integer in {0, 1, . . . , 9}, so this is the state space. Next, draw arrows
to indicate transitions between states. Make sure that at every node you draw, the probabilities on all
outgoing edges sum up to one. You don’t need to draw every state in your state space diagram: just
show a typical state, and also the edge cases.

Question 2. There’s a brute force solution, very similar to example 10.2.1 from lecture notes: first
use the law of total probability to condition on X1 AND X2, giving us an expression that includes
P(X2 = x2, X1 = x1 | X0 = g), and then break this expression down further using the definition of
conditional probability with baggage {X0 = g}.

There’s also a more elegant solution based on a more sophisticated use of memorylessness, which says
in its most general form that “conditional on the present, the past and the future are independent”. This
includes the sort of equation stated at the top of section 10.2 of lecture notes,

P(X3 = x3 |X2 = x2, X1 = x1, X0 = x0) = P(X3 = x3 |X2 = x2),

but it also includes situations where there are gaps in the future e.g.

P(X3 = x3 |X1 = x1, X0 = x0) = P(X3 = x3 |X1 = x1) (present is x1)

and situations where there are gaps in the past, e.g.

P(X3 = x3 |X2 = x2, X0 = x0) = P(X3 = x3 |X2 = x2) (present is x2).

Can you use the gaps-in-the-past version to answer this question? Can you prove the gaps-in-the-past
and the gaps-in-the-future versions of memorylessness?

Question 3. This is like example 10.3.1 from notes. The edge cases are h0 = 1 and hN = 0. For the
maths part: write down two equations, one for h1 and one for h2, and solve them simultaneously. (Or,
if you’re good at solving recurrence relations, write down the equations for arbitrary N and solve!) For
the code part: write down the equations for arbitrary N , and convert to code as in example 10.3.1.

Supplementary question 12 looks at a Markov chain model for an epidemic, and asks you to find the
probability of hitting state 0, i.e. the probability that the epidemic dies out.

Question 4. First write out the transition probability: Pxy = 0 if there’s no x ↔ y edge, and Pxy = 1/nx

otherwise, where nx is the number of edges incident at vertex x. In indicator notation, Pxy = 1x↔y/nx.
In general it’s a good idea to try to solve the detailed balance equations first, and only if that fails

is it worth trying to solve the full stationarity equations. In this case the detailed balance equations do
indeed work.

Can you find the solution for a general connected undirected graph?

Question 5. The state space is R which is not countable, so all the sum-based equations from lectures
don’t work. We have to go right back to the definition of stationarity: a distribution π is a stationary
distribution if

X0 ∼ π =⇒ X1 ∼ π.

Review the calculations in section 10.4 where we derived π = πP for discrete state-space Markov chains,
and think: can I use similar reasoning to derive the parameters of the Normal distribution that the
question tells us is stationary?

Question 6. See section 10.6. The calculation is very simple.
The average transmission rate is ŵ/RTT packets per second, where ŵ is the fixed point you found.

This should roughly agree with the famous TCP throughput equation

throughput = packet size
√

3/2

RTT√p
bytes/sec

which is in widespread use in network engineering. This famous formula involves slightly different as-
sumptions (it assumes periodic losses rather than random) so your answer won’t be exactly the same.
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Question 7. Follow the same pattern as example 11.1.1. You should conclude that you need to solve a
least-squares problem for the model

xi ≈ µ(1− λ)− λxi−1.

This isn’t a proper linear model, because proper linear models have to be “sum of unknown coefficient
times feature vector”. Rewrite it with different parameters (as we did in section 2.2.4 for a different
model), use sklearn to compute those parameters, and translate back to get the parameters we want.

Question 8. This is a hidden Markov model, as mentioned in section 11.3:

X0 X1 X2 · · ·

Y0 Y1 Y2

Part (a). The second equation requires the law of total probability (with baggage), and the third equation
requires Bayes’s rule (with baggage h). ‘With baggage’ is described in section 10.2. The idea of these
manipulations is to put the probability expressions into a form where you can leverage memorylessness:
“Xn is generated based only on Xn−1, and Yn is generated based only on Xn”.

Part (b). Let π(n) be the probability vector at timestep n. Compute π(0) from the first equation. Then,
iteratively apply the next two equations, to compute π(n) from π(n−1). Your implementation should use
two matrices, Pij = P(Xn = j | Xn−1 = i) and Qxy = P(Yn = y | Xn = x). The first is the transition
matrix that we’re used to from Markov Chains, and the second is called the emission matrix.
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Supplementary questions
These questions are not intended for supervision (unless your supervisor directs you otherwise).

Question 10. Here is the state space diagram for a Markov chain. Find a stationary distribution. Is it
unique?

a b

α

β

1− α 1− β

Question 11. Here is the state space diagram for a Markov chain, with state space {0, 1, 2, . . . }. It is
parameterized by α and β, with 0 < α < β and α + β < 1. Let πn = (1− α/β)(α/β)n, n ≥ 0. Show that
π is a stationary distribution.

0 1 2 · · ·
α α α

ββ β

1− α

1− α− β 1− α− β

Question 12. Let Xn ∈ N be the number of infectious people on day n of an epidemic, and consider
the Markov chain model

Xn+1 = Xn + Poisson(rXn/d)− Bin(Xn, 1/d).

We would like to compute the probability that, starting from state X0 = x, the epidemic dies out i.e.
hits state 0. In order to solve this by computer, we’ll cut the state space down to {0, . . . , N}, for some
sufficiently large N , by amalgamating all the states with ≥ N infected and letting the transition from
state N back to itself have probability 1.
(a) Give pseudocode to compute the transition matrix. You should give your answer in terms of

binom.pmf and poisson.pmf, the likelihood functions for the two distributions in question.
(b) Give pseudocode to compute the probability that the epidemic dies out, starting from any initial

state x ∈ {0, . . . , N}. (For r = 1.1 and d = 14, for X0 = 50, the probability is 0.7%.)

Question 13 (Google PageRank). Consider a directed acyclic graph representing the web, with one
vertex per webpage, and an edge v → w if page v links to page w. Consider a random web surfer who
goes from page to page according to the algorithm

1 d = 0.85
2 def next_page(v):
3 neighbours = list of pages w such that v → w
4 a = random.choice(['follow_link','teleport'], p=[d,1−d])
5 if a=='follow_link' and len(neighbours) > 0:
6 return random.choice(neighbours)
7 else:
8 V = list of all web pages
9 return random.choice(V )

This defines a Markov chain. Explain why the chain is irreducible. Show that the stationary distribution
π solves

πv =
1− d

|V |
+ d

∑
u:u→v

πu

|Γu|

where |V | is the total number of web pages in the graph, and |Γu| is the number of outgoing edges from
u.

Compute the stationary distribution for this random web surfer model, for the graph in lecture notes
example 10.3.1. Repeat with d = 0.05. What do you expect as d → 0? What do you expect if d = 1?

The equation for πv defines a scaled version of PageRank, Google’s original method for ranking
websites.



Question 14 (Hitting times). Consider the random web surfer model, for the graph in lecture notes
example 10.3.1. Let tx be the expected time, starting from vertex x, until the surfer reaches Twitter
(vertex 5). Derive the equations

tx = 1 +
∑
y

Pxyty for all x ̸= 5, t5 = 0

and solve with numpy.
Expected answer: [6.67, 5.25, 6.17, 5.08, 6.08, 0].

Question 15. The code from question 8(c) can fail with a divide-by-zero error. This is undesirable
in production code! One way to fix the problem is to modify the Markov model to include a ‘random
teleport’—to express the idea ‘OK, our inference has gone wrong somewhere; let’s allow our location
estimate to reset itself’. We can achieve this mathematically with the following model: with probability 1−
ε generate the next state as per line 9, otherwise pick the next state uniformly from {0, 1, . . . , MAX_STATE}.
Modify your code from question (b) to reflect this new model, with ε = 0.01.

Alternatively, we could fix the problem by changing the model to express ‘OK, this reading is glitchy;
let’s allow the code to discard an impossible reading’. How might you change the Markov model to achieve
this?

Question 16. The Markov model for motion from question 1 is called a simple random walk (with
boundaries); it chooses a direction of travel independently at every timestep. This is not a good model
for human movement, since people tend to head in the same direction for a while before changing direction.
(a) Let Vn ∈ {−1, 0, 1} be a Markov chain: let Vn+1 = Vn with probability 0.9, and let Vn+1 be chosen

uniformly at random from {−1, 0, 1} with probability 0.1. Draw a state space diagram for this
Markov chain.

Interpret Vn as the velocity of our moving object at timestep n, and let Xn+1 = max(0,min(9, Xn+Vn)).
(b) Draw the state space diagram for (Xn, Vn).
(c) Give pseudocode to compute the stationary distribution.
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