
Example sheet 3
Frequentist inference

Data Science—DJW—2022/2023

For the questions that ask “find …’, you may give either a formula, or pseudocode. Or, if the
question gives you numerical data, you are encouraged to give actual code and a numerical answer.
For questions 4–6, a code skeleton is provided at https://github.com/damonjw/datasci/blob/
master/ex/ex3.ipynb.

Question 1. Sketch the cumulative distribution function, and calculate the density function, for
this continuous random variable:
def rx():

u = random.random()
return u * (1−u)

Question 2. We are given a dataset x1, . . . , xn which we believe is drawn from Normal(µ, σ2)
where µ and σ are unknown.
(a) Find the maximum likelihood estimators µ̂ and σ̂.
(b) Find a 95% confidence interval for σ̂, using parametric resampling.
(c) Repeat, but using non-parametric resampling.

Question 3. The number of unsolved murders in Kembleford over three successive years was 3,
1, 5. The police chief was then replaced, and the numbers over the following two years were 2,
3. We know from general policing knowledge that the number of unsolved murders in a given
year follows the Poisson distribution. Model the numbers as Poisson(µ) under the old chief and
Poisson(ν) under the new chief.
(a) Report a 95% confidence interval for ν̂ − µ̂, using parametric sampling.
(b) Conduct a hypothesis test of the hypothesis µ = ν, using parametric sampling, and using

the test statistic ν̂ − µ̂. Explain your choice between a one-sided and a two-sided test.
(c) Explain carefully the difference in sampling methods between parts (a) and (b).
[Note. The Poisson(λ) distribution takes values in {0, 1, . . . } and has probability mass function
Pr(x) = λxe−λ/x!. Its cdf can be found using scipy.stats.poisson.cdf(x, mu=λ).]

https://github.com/damonjw/datasci/blob/master/ex/ex3.ipynb
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Question 4. In section 2.2 we considered a climate model in which temperatures increase linearly.
The probabilistic version of the model is

temp ∼ α+ β1 sin(2πt) + β2 cos(2πt) + γ(t− 2000) + Normal(0, σ2).

Find a 95% confidence interval for γ̂, the maximum likelihood estimator for the rate of temperature
increase.

Question 5. I have defined a function that returns the fitted temperature at an arbitrary future
timepoint,

def pred(t): return α̂ + β̂1 sin(2πt) + β̂2 cos(2πt) + γ̂(t‐2000)

Modify this code so that in addition to predicting the temperature it also produces a 95% confidence
interval for its prediction.
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Question 6. To allow for non-linear temperature increase, Example Sheet 1 suggested a model
with a step function,

temp ∼ β1 sin(2πt) + β2 cos(2πt) + γdecade + Normal(0, σ2).

Find a 95% confidence interval for γ̂2010s − γ̂1980s. Conduct a hypothesis test of whether γ1980s =
γ2010s.

Question 7. I toss a coin n times and get the answers x1, . . . , xn. My model is that each toss is
Xi ∼ Bin(1, θ), and I wish to test the null hypothesis that θ ≥ 1/2.
(a) Find an expression for Pr(x1, . . . , xn ; θ). Give your expression as a function of y =

∑
i xi.

(b) Sketch log Pr(x1, . . . , xn ; θ) as a function of θ, for two cases: y < n/2, and y > n/2.
(c) Assuming H0 is true, what is the maximum likelihood estimator for θ?
(d) Let the test statistic be y. What is the distribution of this test statistic, when θ is equal to

your value from part (c)?
(e) Explain why a one-sided hypothesis test is appropriate. Give an expression for the p-value

of the test.

Question 8. Your attempts at a task succeed with probability θ, and fail with probability 1− θ.
How long an unbroken list of failures does it take, for you to reject “θ ≥ 1/2” at p-value 5%?
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Hints and comments
Question 1. To get started, try implementing this random variable and plotting the ecdf on
the computer. For the mathematical solution, work through exercise 4.3.3 in lecture notes, and
apply the same strategy ... Sketch a graph of u(1− u) as a function of u. For what ranges of u is
u(1− u) ≤ y? What is the probability that the random variable U ∼ U [0, 1] lies in these ranges?

Question 2. For part (a) you should learn these formulae by heart, and be able to derive them
without thinking: µ̂ is the sample mean x̄, and σ̂ is

√
n−1

∑
i(xi − x̄)2. For part (b), use the

general method of example 8.2.1 from lecture notes, but remember this question is asking you for
a confidence interval for σ̂ not for µ̂. For part (c), see example 8.6.1.

Question 3. For part (a), follow example 8.2.3 from lecture notes. For the maximum likelihood
calculation, see your answers to Example Sheet 1. For part (b), follow example 8.3.1 (though you
need to think about what test statistic to use; a sensible choice is ν̂ − µ̂).

In questions where you’re given a parametric model, and asked to test a hypothesis that restricts
the parameters, and it’s left to you to choose a test statistic, it’s a good strategy to (i) find
the maximum likelihood estimators under the general model, (ii) invent some plausible-looking
function based on those maximum likelihood estimators. Ask yourself how your statistic would
differ between the scenario where H0 is true, and the scenario where H0 isn’t true. This will tell
you what “more extreme” means, in the definition of p-value, and hence whether to use a one-sided
or two-sided test.

Question 4. Follow the general strategy from section 8.2 of lecture notes. In your answers for
this question, it’s a good idea to use sklearn wherever reasonable—there’s no point going through
lots of algebra, when there are fast easy routines that you can use. You can generate a synthetic
dataset with np.random.normal(loc=pred, scale=σ̂), as in exercise 8.2.4 lines 14–15, and you
can compute the predicted temperatures pred as in section 2.1 line 13.

Question 5. First work out how to produce a confidence interval for the prediction at a fixed
instant, e.g. pred(t=2050). To find this, we want to generate a multiverse of synthetic datasets,
and we canvas the opinion of data scientists across this multiverse. If a parallel-universe data
scientist sees dataset X∗, what value would they produce for pred(t=2050)? You just need to
assemble a large collection of these predictions, then find a 95% confidence interval in the usual
way.

Next, refactor your code so it accepts a vector of t values, and doesn’t resample for every value
in the t vector. (In the illustration, I have drawn the confidence ribbon artificially wide. You
should get a confidence interval that’s barely visible.)

Question 6. Follow the general strategies from sections 8.2 and 8.3 of lecture notes.
For hypothesis testing, you’ll need a test statistic. A sensible idea is to use γ̂2010s−γ̂1980s. You’ll

also need to create synthetic datasets generated under the null hypothesis that γ1980s = γ2010s.
You should first fit the null hypothesis model, which can be written in linear model form as

temp ≈ β1 sin(2πt) + β2 cos(2πt)
+ γ1990s1decade=1990s + γ2000s1decade=2000s + γ2020s1decade=2020s + α1decade∈{1980s,2010s}.

Question 7. Parts (a)–(c) are plain old maximum likelihood estimation. The only novelty here
is that we need to find the value of θ that maximizes the likelihood function, under the restriction
θ ≥ 1/2. You should get the answer

θ̂ = max
( y

n
,
1

2

)
.

In lectures we only went through numerical computation of p-values. In this question, the distri-
bution of y(X∗) is so simple that you can write out an explicit expression for the p-value.

Question 8. Use your expression for the p-value from question 7 part (e), with the observed data
y = 0. Let the value of this expression be ≤ 0.05 and solve for n.
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Supplementary questions
These questions are not intended for supervision (unless your supervisor directs you otherwise).
Some require careful maths, some are best answered with coding, some are philosophical.

Question 9. A point lightsource at coordinates (0, 1) sends out a ray of light at an angle Θ
chosen uniformly in (−π/2, π/2). Let X be the point where the ray intersects the horizontal line
through the origin. What is the density of X?

Note: This random variable is known as the Cauchy distribution. It is unusual in that it has
no mean.

X
Θ

Question 10. We are given a dataset x1, . . . , xn which we believe is drawn from Uniform[0, θ]
where θ is unknown. Recall from Example Sheet 1 that the maximum likelihood estimator is
θ̂ = maxi xi. Find a 95% confidence interval for θ̂, both using parametric resampling and using
non-parametric resampling.

Question 11. I implement the two resamplers from question 10. To test them, I generate 1000
values from Uniform[0, θ] with θ = 2, and find a 95% confidence interval for θ̂. I repeat this 20
times. Not once does my confidence interval include the true value, θ = 2, for either resampler.
Explain.

Naive resampling (based on mle parameter estimates or on empirical distributions) is an heuristic,
not a perfect procedure. It works well for ‘central’ statistics like averages or sums. It doesn’t work
well for certain types of extreme statistics (like the maximum of a dataset) nor for certain types of
distribution (like the uniform).

The idea of resampling is that we want to simulate novel unseen versions of the dataset. The best
way to do this is to use a model that we think is a good description for novel unseen data—in other
words, to use a model that fits a holdout dataset well. (See section 9 of lecture notes for a longer
discussion of generalization. That section of notes is non-examinable.) One ad hoc way to get better
generalization in this case is to use an unbiased estimator for θ rather than a maximum likelihood
estimator; though this is happenstance, not a general principle!

Question 12. Test the hypothesis that temperatures in Cambridge have not been changing, using
a non-parametric test.

In lectures we looked at several examples of tests using parametric resampling. We also looked at one
example of a test with non-parametric resampling, namely Fisher’s permutation test. Example 8.6.2
in lecture notes gives another illustration of non-parametric sampling for hypothesis tests.

For this dataset, it’s blindingly obvious that there is an annual cycle in temperatures, so your
resampling strategy must respect this. If there were no global warming, and you wanted to simulate a
January, how could you simulate it using the data in this dataset?

Second, the test statistic. You are at liberty to use any test statistic at all; it doesn’t have to be
linked to the resampling strategy. You might as well use γ̂ from question 4.

Question 13. We have a dataset x1, x2, . . . , xn, and we wish to model it as Normal(µ, σ2) where
µ and σ are unknown. How different are Bayesianist and frequentist confidence intervals for the
mean? To be concrete, let’s work with the first 10 values for temp in the climate dataset.
(a) Plot the log likelihood function log Pr(x1, . . . , xn|µ, σ) as a function of µ and σ. (A code

skeleton is provided in https://github.com/damonjw/datasci/blob/master/ex/ex3.
ipynb.)

(b) Using frequentist resampling, generate 50 resampled datasets, find the maximum likelihood
estimators µ̂ and σ̂ for each, and show these 50 points on your plot.

https://github.com/damonjw/datasci/blob/master/ex/ex3.ipynb
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(c) Using computational Bayesian methods, with priors µ ∼ Normal(0, 102) and σ ∼ Γ(k =
2, θ = 1) (where k and θ are as in the numpy documentation), sample 500 pairs from the
prior distribution and show them on your plot. Then compute the posterior weights of these
sampled pairs, and show the weighted pairs on your plot by setting the size of the plot marker
in proportion to weight.

(d) Find the 95% confidence interval (for µ̂ in the frequentist case, and for (µ | data) in the
Bayesianist case), and show them on your plot.

(e) Repeat the exercise, using the first 100 values from the climate dataset.

You should see broadly similar outcomes, whether you’re plotting frequentist samples of (µ̂, σ̂) or
whether you’re plotting the Bayesianist samples that get non-negligible weight. When there are more
datapoints, then the results are even more similar: there’s a very narrow peak in the log likelihood plot,
and the samples from both Bayesianist and frequentist approaches are heavily concentrated arount this
peak. (Though the naive computational Bayesian procedure we learnt in this course doesn’t work very
well when the log likelihood has such a sharp spike.)

Question 14. In hypothesis testing, what p-value would you expect if H0 is true?

This is a mindbender! At first glance it’s surprising that this question even has an answer that applies
to any sort of hypothesis testing. And it’s tricky to even work out what it’s asking us to prove. Think
of it this way ...

In frequentist inference, we decide on a sampling distribution X∗ that tells us what the dataset
might have been if H0 were true. We then compute the p-value by an operation on t(x) and on the
histogram of t(X∗).

Now, if H0 were true, then the actual dataset x will look like a sample from X∗. If we perform
the p-value operation not on the actual value t(x) but on a typical value t(X∗), what’s the distribution
we’ll get for the p-value?

You can find the answer at https://en.wikipedia.org/wiki/Fisher's_method. The page
also describes how the answer can be used to combine the results of several independent tests.

Question 15. We are given a dataset x1, . . . , xn. Our null hypothesis is that these values are
drawn from Normal(0, σ2), where σ is an unknown parameter. Let

F̂ (x) =
1

n

n∑
i=1

1[xi/σ̂ ≤ x]

where σ̂ =
√

n−1
∑

i x
2
i is the maximum likelihood estimator for σ. If the null hypothesis is

true, we’d expect F̂ (x) to be reasonably close to Φ(x), the cumulative distribution function for
Normal(0, 1), for all x. Suggest how to test the hypothesis that the dataset is indeed drawn from
Normal(0, σ2), using a test statistic based on F̂ and Φ.

This question is asing you to be creative in inventing a test statistic. If you don’t feel creative, look
up the Kolmogorov-Smirnov test on Wikipedia.

When we fit a linear model, there’s an assumption that the residuals are normally distributed (as
discussed in section 2.4). After fitting a linear model, it’s always worth testing whether the residuals
are indeed normally distributed, and this question gives you a way to do this test.

Question 16 (Cardinality estimation).
(a) Let T be the maximum of m independent Uniform[0, 1] random variables. Show that P(T ≤

t) = tm. Find the density function PrT (t). Hint. For two independent random variables U
and V ,

P
(
max(U, V ) ≤ x

)
= P(U ≤ x and V ≤ x) = P(U ≤ x)P(V ≤ x).

(b) A common task in data processing is counting the number of unique items in a collection.
When the collection is too large to hold in memory, we may wish to use fast approximation
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methods, such as the following: Given a collection of items a1, a2, . . . , compute the hash of
each item x1 = h(a1), x2 = h(a2), . . . , then compute t = maxi xi.
If the hash function is well designed, then each xi can be treated as if it were sampled from
Uniform[0, 1], and unequal items will yield independent samples..
The more unique items there are, the larger we expect t to be. Given an observed value t,
find the maximum likelihood estimator for the number of unique items. [Hint. This is about
finding the mle from a single observation, as in lecture notes example 1.3.1.]

http://blog.notdot.net/2012/09/Dam‐Cool‐Algorithms‐Cardinality‐Estimation

Question 17. A recent paper Historical language records reveal a surge of cognitive distortions in
recent decades by Bollen et al., https://www.pnas.org/content/118/30/e2102061118.full,
claims that depression-linked turns of phrase have become more prevalent in recent decades. This
paper reports both confidence intervals and null hypotheses. Explain how it is computes them, in
particular (1) the readout statistic, (2) the sampling method.

Skim-read the whole paper, and read the Materials and Methods section closely. Note that the word
‘bootstrapping’ is another name for ‘non-parametric resampling’. You can find a definition of z-score
on Wikipedia, but it doesn’t add anything to the explanation given in the paper.

In the notation used in this course, the dataset used in the paper is (x1, y1), . . . , (xk, yk) where yk
is a vector

yi =
[
yi,1855, . . . , yi,2020

]
giving the prevalence of n-gram i in each year, and xi ∈ {1, 2, 3, 4, 5} is the number of words in that
n-gram.

The readout statistic t(x1, . . . , xk) is well hidden, and you will have to dig through the whole paper
to find it.
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