
Example sheet 2
Bayesian inference

Data Science—DJW—2022/2023

All Bayesian questions are the same: first write out the likelihood of the observed data Pr(x|Θ = θ),
then the prior likelihood PrΘ(θ), then apply Bayes’s rule to get the posterior likelihood PrΘ(θ |X =
x). Questions 3–8 are repetitions of this idea, in progressively more complex settings. You needn’t
attempt them all: instead, work through enough of the earlier questions for you to be confident in
answering question 8.

What’s more important than the algebra is getting used to reformulating high-level questions
into mathematical questions about distributions of random variables. Even if you don’t answer a
question, read it carefully, and add it to your repertoire of “how data scientists ask questions”.

Question 1. Define a function rxy() that produces a random pair of values (X,Y ) which, when
shown in a scatterplot, produces a smiley face like this. Also plot the marginal distributions of X
and Y .
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Question 2. Consider this code for generating random variables X and Y :

x = np.random.uniform()
y = np.random.geometric(p=x)

Derive the marginal likelihood PrY (y), and the conditional likelihood PrX(x | Y = y).

Question 3. I sample x1, . . . , xn from Uniform[0, θ]. The parameter θ is unknown, and I shall
use Θ ∼ Pareto(b0, α0) as my prior, where b0 > 0 and α0 > 1 are known. This has the cumulative
distribution function

P(Θ ≤ θ) =

{
1−

(
b0/θ)

α0 if θ ≥ b0,

0 if θ < b0.

(a) Calculate the prior likelihood for Θ.
(b) Show that the posterior distribution of (Θ | x1, . . . , xn) is Pareto, and find its parameters.
(c) Find a 95% posterior confidence interval for Θ.
(d) Find a different 95% posterior confidence interval. Which is better? Why?

Question 4. I have a collection of numbers x1, . . . , xn which I take to be independent samples
from the Normal(µ, σ2

0) distribution. Here σ0 is known, and µ is unknown. Using the prior
distribution M ∼ Normal(µ0, ρ

2
0) for µ, show that the posterior density is

PrM (µ | x1, . . . , xn) = κe−(µ−c)2/2τ2

where κ is a normalizing constant, and where you should find formulae for c and τ in terms of σ0,
µ0, and ρ0, and the xi. Hence deduce that the posterior distribution is Normal(c, τ2). [Note: ‘M ’
is the upper-case form of the Greek letter ‘µ’.]

Question 5 (Leaky priors). I repeatedly attempt a task, and each time I attempt it I succeed
with probability θ and fail with probability 1 − θ. The parameter θ is unknown, so I model it as
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a random variable Θ. Ever the optimist, my prior for Θ is heavily biased in favour of large values
for θ:

PrΘ(θ) = ε1θ≤1/2 + (2− ε)1θ>1/2

for some known small value ε > 0; this implies P(Θ ≤ 1/2) = ε/2.
But I experience an unbroken run of n failures. How big does n need to be, for me to concede

there’s a 50% posterior probability that Θ ≤ 1/2? How big would it need to be, if ε = 0?

Question 6. I have a collection of numbers

[4.3, 2.8, 3.9, 4.1, 9, 4.5, 3.3]

which look like they mostly come from a Gaussian distribution, but with the occasional outlier.
Model the data as

X is
{

Normal(µ, 0.52) with probability 99%
Cauchy with probability 1%.

Use a Normal(0, 52) prior distribution for µ. Give pseudocode to plot the posterior distribution.
[Note. The Cauchy random variable occasionally generates wildly huge values. The library function
scipy.stats.cauchy.pdf(x) computes its pdf.]

Question 7. In lecture notes section 2.6 we investigated a dataset of police stop-and-search ac-
tions. Let the outcome for record i be yi ∈ {0, 1}, where 1 denotes that the police found something
and 0 denotes that they found nothing. Consider the probability model Yi ∼ Binom(1, βethi) where
ethi is the recorded ethnicity for the individual involved in record i, and where the parameters βAs,
βBlk, βMix, βOth, βWh are unknown. As a prior distribution, suppose that the five β parameters
are all independent Beta(1/2, 1/2) random variables.
(a) Write down the joint prior density for (βAs, βBlk, βMix, βOth, βWh).
(b) Find the joint posterior distribution of (βAs, βBlk, βMix, βOth, βWh) given the y data.

Question 8. I am prototyping a diagnostic test for a disease. In healthy patients, the test result
is Normal(0, 2.12). In sick patients it is Normal(µ, 3.22), but I have not yet established a firm value
for µ. In order to estimate µ, I trialled the test on 30 patients whom I know to be sick, and the
mean test result was 10.3. I subsequently apply the test to a new patient, and get the answer 8.8.
I wish to know whether this new patient is healthy or sick.
(a) In this question there are two unknown quantities: µ, and h ∈ {healthy, sick} the status of the

new patient. Model the former as a random variable M with prior distribution Normal(5, 32)
and the latter as a random variable H with prior distribution

PrH(h) = 0.99× 1h=healthy + 0.01× 1h=sick.

Write down the joint prior likelihood for (M,H).
(b) In this question the data consists of 31 values, test results x1, . . . , x30 from the known

sick patients and test result y from the new patient. Write down the data likelihood
Pr(x1, . . . , x30, y | µ, h).

(c) Find the posterior density of (M,H). Leave your answer as an unnormalized density function.
It should simplify to be a function of x̄ and y, where x̄ is the mean test result for the known
sick patients.

(d) Give pseudocode to compute the posterior distribution of H, i.e. compute P(H = h | data)
for both h = healthy and h = sick.

Question 9. In the lecture notes on linear modelling, we proposed a linear model for temperature
increase:

temp ≈ α+ β1 sin(2πt) + β2 cos(2πt) + γ(t− 2000).

Suggest a probability model for temp. Suggest Bayesian prior distributions for the unknown
parameters α, β1, β2, and γ. Give pseudocode to find a 95% confidence interval for γ.
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Hints and comments

Question 1. Try extending the Gaussian mixture model from section 1. For plotting, here’s some
code. It assumes that you have stored your samples in a numpy array of shape n× 2, one row per
sample point, columns for x and y.

fig,((ax_x,dummy),(ax_xy,ax_y)) = plt.subplots(2,2, figsize=(4,4),
sharex='col', sharey='row', gridspec_kw='height_ratios':[1,2], 'width_ratios':[2,1])

dummy.remove()
ax_xy.scatter(xy[:,0], xy[:,1], s=3, alpha=.1)
ax_x.hist(???, density=True, bins=60) # fill in the ???
ax_y.hist(???, density=True, bins=60, orientation='horizontal') # fill in the ???
plt.show()

Question 2. There are two versions of the Geometric distribution; look up the numpy help page
to see which one is being used here. For the marginal likelihood, write out the joint likelihood and
integrate. For the conditional likelihood, the calculation is similar to exercise 4.2.2 from lecture
notes.

Question 3. For part (a), just differentiate the cdf to get the pdf, i.e. the likelihood. Write it
out using indicator function notation, 1θ≥b0 . This is often a good idea, when we’re working with
parameters that affect boundaries.

For the rest: all Bayesian calculations start in exactly the same way. First write out
the likelihood of the observed data Pr(x1, . . . , xn |Θ = θ), then (1) write down the prior likelihood
PrΘ(θ), (2) apply Bayes’s rule which says that the posterior likelihood is

PrΘ(θ | x1, . . . , xn) = κPrΘ(θ)Pr(x1, . . . , xn |Θ = θ).

In this question, write out the likelihood of the data using indicator notation, as in example sheet
1 question 4. Once you have the posterior density, gather together the θ terms, and you should
end up with the density of another Pareto.

For the posterior confidence interval: the definition of a posterior confidence interval is in
lecture notes section 7.4. You just have to solve the equations for lo and hi, using the cumulative
distribution function for the Pareto.

Question 4. All Bayesian calculations start in exactly the same way. First write out the
likelihood of the observed data Pr(x1, . . . , xn | M = µ), then (1) write down the prior likelihood
PrM (µ), (2) apply Bayes’s rule which says that the posterior likelihood is

PrM (µ | x1, . . . , xn) = κPrM (µ)Pr(x1, . . . , xn |M = µ).

Remember, this is a density function for a random variable M , and the argument is µ. Write your
answer to gather together all the µ terms as much as you can. This involves expanding quadratic
terms and completing the square. Any terms that don’t involve µ can be amalgamated with the
constant factor κ. What you end up with should look like a Normal density function, as a function
of µ, and this lets you conclude that the posterior distribution is Normal.

When a question asks “find the posterior distribution”, you should start by calculating the
posterior density, leaving it unnormalized i.e. including a constant factor, call it κ. Then (a) if you
recognize this as a standard density function, as in this case, just give its name; (b) if it’s easy to
find κ using “densities sum to one” then do so; (c) otherwise leave your answer as an unnormalized
density function.

Question 5. Let x be the number of successes, modelled as X ∼ Bin(n, θ). We observe x = 0.
Use the usual Bayesian method to find the posterior likelihood PrΘ(θ |X = 0); you can find the
normalizing constant κ with simple integration, splitting the integral over 0 ≤ θ ≤ 1 into two
parts, 0 ≤ θ ≤ 1/2 and 1/2 < θ ≤ 1. Once you’ve calculated the posterior likelihood, the posterior
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probability that the question is referring to is P(Θ ≤ 1/2 |X = x), which you can find by integrating
the posterior likelihood.

Question 6. All Bayesian computations start in exactly the same way. First write out
the likelihood of the data, Pr(x1, . . . , xn |M = µ). The probability model here is very similar to
a Gaussian mixture model, which we analysed in mock exam question 1. You’ll need the cdf for
the Cauchy, but you don’t actually need to know a formula for it: just write cdfCauchy(x) and
pdfCauchy(x). Then, (1) take a sample µ1, . . . , µn from the prior distribution, (2) compute weights
by evaluating the likelihood of the data at each one of these sampled µ-values, and rescaling so
they sum to one.

For plotting the posterior distribution, see the examples in section 7.3.

Question 7. This is a Bayesian question with multiple unknown parameters. You need to start
with a joint prior density for all of them,

Pr(βAs, βBlk, βMix, βOth, βWh).

See the mathematical solution to exercise 7.3.2 in lecture notes.
Bayes’s rule, in its general form, says that

PrΘ(θ | x) = κPrΘ(θ)PrX(x|Θ = θ)

where θ denotes all the unknown parameters and x denotes all the dataset. Again, see exercise
7.3.2 in lecture notes. Leave your answer with κ.

After you’ve found the joint posterior density function, see if you can recognize it from the list
of standard random variables.

Question 8. This is a question about multiple unknowns, using both the mathematical
and the computational solutions. See exercise 7.3.2 from lecture notes.

For part (b), for the likelihood PrY (y | µ, h), see the Gaussian mixture model in exercise 4.3.5
in lecture notes.

For part (c), your formula for the posterior distribution will involve equations very similar to
question 4.

Part (d) is a question about using marginalization to ignore nuisance parameters. See exer-
cise 7.3.2 from lecture notes for an example of marginalization, and exercise 7.3.3 for a similar
calculation about posteriors over binary outcomes.

Question 9. You should implement your proposed Bayesian model, and find a numerical value
for the confidence interval. You can find a code skeleton at https://github.com/damonjw/
datasci/blob/master/ex2.ipynb.

It’s up to you to invent whatever probability distribution you like for temp; the simplest choice
is to assume Gaussian errors as in section 2.4, and to pluck the noise parameter out of thin air. If
you truly are uncertain about the noise parameter, then treat it as a random variable and invent
a prior distribution for it.

It’s up to you to invent whatever priors you like for the unknown parameters. It may seem
totally arbitrary, but that’s Bayesianism for you.
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Supplementary question sheet 2
Bayesian inference

Data Science—DJW—2021/2022

These questions are not intended for supervision (unless your supervisor directs you otherwise). Some of
require careful maths, some are best answered with coding, some are philosophical.

Question 10. Consider this code for generating random variables X → Y → Z:

x = np.random.uniform()
y = np.random.binomial(n=1, p=x)
z = np.random.normal(loc=y, scale=ε)

Show that
PrY (1 | X = x, Z = z) =

x

x+ (1− x)e(1−2z)/2ε2
.

How does PrY (1 |X = x,Z = z) depend on x and z when ε ≈ 0? What if ε is very large?

[If we want to predict Y , and we have x and z available, should we use PrY (y | X = x,Z = z), or
PrY (y |X = x), or PrY (y | Z = z)? The obvious answer is that we should use the first, since it uses all
available data.

[But suppose we’re interested in predicting Y , and we’ve trained a predictor on (x, y, z) data generated
according to the code above, but in deployment the data comes from a slightly different model – which of
the three predictors is robust to this change in environment? If the first line of code is different for the
new data environment, then the first and second predictors still work correctly. If the second line of code
is different, then all bets are off. If the third line of code is different, only the second predictor still works.
So, for robust prediction, we might prefer the second predictor. It’s called the ‘causal predictor’ since it
only uses the input variable that directly causes the response we’re interested in.

[The challenge is that, in typical machine learning tasks, we don’t know which of our predictor variables
are causal and which aren’t.]

Question 11. Suppose we’re given a function f(x) ≥ 0 and we want to evaluate∫ b

x=a

f(x) dx.

Here’s an approximation method: (i) draw a box that contains f(x) over the range x ∈ [a, b], (ii) scatter
points uniformly at random in this box, (iii) return A × p where A is the area of the box and p is the
fraction of points that are under the curve. Explain why this is a special case of Monte Carlo integration.

a b
0

f(x)

Do NOT give a wishy-washy qualitative argument along the lines of “there are random points, and
we’re evaluating an integral, so it’s a type of Monte Carlo”. Monte Carlo has a precise meaning:
Eh(X) ≈ n−1

∑
i h(xi). In your answer you should (a) explain the random variable in question, (b)

specify the h function, (c) give an explanation along the lines of section 5.1 of lecture notes.

Question 12 (Sequential Bayes). I have a biased coin, with unknown probability of heads θ. I toss
it n times, with outcomes x1, x2, . . . , xn where xn = 1 indicates heads and xn = 0 indicates tails. My
prior belief is Θ ∼ Uniform[0, 1]. Here are two approaches to applying Bayes’s rule:
• One-shot Bayes. Use Bayes’s rule to compute the posterior of Θ, given data (x1, . . . , xn), using prior

Θ ∼ Uniform[0, 1], and assumimg that coin tosses are independent.
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• Sequential Bayes. Use Bayes’s rule to compute the posterior of Θ given data x1, using the uniform
prior; let the posterior density be p1(θ). Apply Bayes’s rule again to compute the posterior of Θ
given data x2, but this time using p1(θ) as the prior; let the posterior density be p2(θ). Continue
applying Bayes’s rule in this way, until we have found pn(θ).

State the posterior distribution found by one-shot Bayes. Prove by induction on n that sequential Bayes
gives the same answer.

Sequential Bayes and one-shot Bayes give the same answer for any inference problem, not just this
coin-tossing example. Can you prove the general case?

Question 13. In the setting of question 7, I wish to measure the amount of police bias. Given a 5-tuple
of parameters β = (βAs, βBlk, βMix, βOth, βWh), I define the overall bias score to be

d(β) = max
e,e′

∣∣βe − βe′
∣∣.

If d(β) is large, then there is some pair of ethnicities with very unequal treatment.
As a Bayesian I view β as a random variable taking values in [0, 1]5, therefore d(β) is a random

variable also. To investigate its distribution, I sample β from the posterior distribution that I found in
question 7, I compute d(β), and I plot a histogram. The output, shown on the left, is bizarre. To help
me understand what’s going on, I plot histograms of each of the individual βe coefficients, shown on the
right.

Explain the results. [Hint. Explore the Beta distribution numerically. For what parameters does it
have a bimodal distribution? What are the posterior distributions in this question?]
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Question 14. Consider the outlier model from question 6. How likely is it that the datapoint with
value 9 is an outlier? [Hint. Treat this as a two-parameter problem, like question 8.]

Question 15. I have a coin, which might be biased. I toss it n times and get x heads.
I am uncertain whether or not the coin is biased. Let m ∈ {fair,biased} indicate which of the two

cases is correct; and if it is biased let θ be the probability of heads. The probabilty of observing x heads
is thus

Pr(x |m, θ) =

{(
n
x

)
θx(1− θ)n−x if m = biased(

n
x

)
(1/2)x(1− 1/2)n−x if m = unbiased

As a Bayesian I shall represent my uncertainty about m with a prior distribution, PrM (fair) = p,
PrM (biased) = 1− p. If it is biased, my prior belief is that the probability of heads is Θ ∼ Uniform[0, 1].
(a) Write down the prior distribution for the pair (M,Θ), assuming independence as usual.
(b) Find the posterior distribution of (M,Θ) given x.
(c) Find P(M = unbiased | x), i.e. the posterior probability that the coin is unbiased.

This is a Bayesian question, and it’s answered in the same way as any other Bayesian question: write
down the prior density PrM,Θ(m, θ), write down the data density Pr(x |m, θ), and multiply them together
(times a constant factor) to get the posterior PrM,Θ(m, θ | x). To keep track of all the cases, it may be
helpful to use indicator functions, both for PrM and for Pr(x |m, θ).

Part (c) is about nuisance parameters, as in exercise 7.4 in lecture notes (look at the mathematical
solution of that exercise). Once we’ve found the posterior density, say PrM,Θ(m, θ) = κf(m, θ) where κ is
the normalizing constant, we have to integrate out θ to find the marginal distribution, as in exercise 7.4:

P(M = fair | x) =
∫
θ

κf(fair, θ) dθ P(M = biased | x) =
∫
θ

κf(biased, θ) dθ.

Then solve for κ, using the “densities sum to one” rule, as in exercise 7.5 from lecture notes.
This question is an illustration of Bayesian model selection, which you can read about in section 7.4

of lecture notes.
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Question 16. (a) Suppose we have a single observation x, drawn from Normal(µ + ν, σ2), where µ
and ν are unknown parameters, and σ2 is known. Explain why the maximum likelihood estimates
for µ and ν are non-identifiable.

(b) For µ use Normal(µ0, ρ
2
0) as prior, and for ν use Normal(ν0, ρ20), where µ0, ν0, and ρ0 are known.

Find the posterior density of (µ, ν). Calculate the parameter values (µ̂, ν̂) where the posterior
density is maximum. (These are called maximum a posteriori estimates or MAP estimates.)

(c) An engineer friend tells you “Bayesianism is the Apple of inference. You just work out the pos-
terior, and everything Just Works™, and you don’t need to worry about irritating things like
non-identifiability.” What do you think?

Question 17. Here’s my answer to question 1:

1 k = np.random.choice(4, p=[.6,.3,.05,.05], size=n)
2 t = np.random.uniform(size=n)
3 x = np.column_stack([np.sinπ(2**t), 0.55*np.sinπ(2**(0.4*t+0.3)), −0.3*np.ones(n), 0.3*np.ones(n)])
4 y = np.column_stack([np.cosπ(2**t), 0.55*np.cosπ(2**(0.4*t+0.3)), 0.3*np.ones(n), 0.3*np.ones(n)])
5 xy = np.column_stack([x[np.arange(n), k], y[np.arange(n), k]])
6 xy = np.random.normal(loc=xy, scale=.08)

Compute the distribution of (X | Y = 0.3). Give your answer as a histogram.

You will need to derive your own method for sampling, along the lines of the derivation of computational
Bayes in section 5.2. The difference here is that instead of using Bayes’s rule

PrX(x | Y = y) = κPrX,Y (x, y) = κPrX(x)PrY (y |X = x)

you will need to use a version more suited to the generation method used here,

PrX,Y (x, y) =
∑
k

∫
t

Pr(x, y, k, t) dt =
∑
k

∫
t

PrK(k)PrT (t)PrX(x | k, t)PrY (y | k, t) dt .

You should end up with a Monte Carlo integration that uses (K,T,X) samples.
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