
Concepts in Programming Languages

Alan Mycroft1 and Anil Madhavapeddy

Department of Computer Science and Technology
University of Cambridge

CST Paper 4: 2022/23 (Easter Term)

www.cl.cam.ac.uk/teaching/2223/ConceptsPL/

1Acknowledgement: various slides are based on Marcelo Fiore’s 2013/14
course.

1 / 248

Practicalities

I Course web page:
www.cl.cam.ac.uk/teaching/2223/ConceptsPL/

with lecture slides, exercise sheet and reading material.
These slides play two roles – both “lecture notes" and
“presentation material”; not every slide will be lectured in
detail.

I There are various code examples (particularly for
JavaScript and Java applets) on the ‘materials’ tab of the
course web page.

I One exam question.
I The syllabus and course continues to evolve. I would be

grateful for comments on any ‘rough edges’ in the slides,
and also for views on material which is either over- or
under-represented.

2 / 248

Main books

I J. C. Mitchell. Concepts in programming languages.
Cambridge University Press, 2003.

I T. W. Pratt and M. V. Zelkowitz. Programming Languages:
Design and implementation (3RD EDITION).
Prentice Hall, 1999.

? M. L. Scott. Programming language pragmatics
(4TH EDITION).
Elsevier, 2016.

I R. Harper. Practical Foundations for Programming
Languages.
Cambridge University Press, 2013.

3 / 248

Context:
so many programming languages

Peter J. Landin: “The Next 700 Programming Languages”,
CACM (published in 1966!).

Some programming-language ‘family trees’ (too big for slide):
http://www.levenez.com/lang/
http://rigaux.org/language-study/diagram.html

Wikipedia’s historical summary page: https://en.
wikipedia.org/wiki/History_of_programming_languages

Plan of this course: pick out interesting programming-language
concepts and major evolutionary trends.

4 / 248

Topics
I. Introduction and motivation.

Part A: Meet the ancestors
II. The first procedural language: FORTRAN (1954–58).
III. The first declarative language: LISP (1958–62).
IV. Block-structured languages: Algol (1958–68), Pascal (1970).
V. Object-oriented languages: Simula (1964–67), Smalltalk (1972).

Part B: Types and related ideas
VI. Types in programming languages: ML, Java.

VII. Scripting Languages: JavaScript.
VIII. Data abstraction and modularity: SML Modules.
Part C: Distributed concurrency, Java lambdas, Scala, Monads
IX. Languages for concurrency and parallelism.
X. Functional-style programming meets object-orientation.
XI. Miscellaneous concepts: Monads, GADTs.

XII. Up-and-coming ideas: Rust, Effect Handlers
5 / 248

˜ Topic I ˜
Introduction and motivation

6 / 248

Goals

I Critical thinking about programming languages.
I What is a programming language!?
I Who defines it?
I How can it be changed?

I Study programming languages.
I Be familiar with basic language concepts.
I Appreciate trade-offs in language design.

I Trace history, appreciate evolution and diversity of ideas.
I Be prepared for new programming methods, paradigms.

7 / 248

Why study programming languages?

I To improve the ability to develop effective algorithms.
I To improve the use of familiar languages.
I To increase the vocabulary of useful programming

constructs.
I To allow a better choice of programming language.
I To make it easier to learn a new language.
I To make it easier to design a new language.
I To simulate useful features in languages that lack them.
I To make better use of language technology wherever it

appears.

8 / 248

What makes a good language?

I Clarity, simplicity, and unity.
I Orthogonality.
I Naturalness for the application.
I Support of abstraction.
I Ease of program verification.
I Programming environments.
I Portability of programs.
I Cost of use.

I Cost of execution.
I Cost of program translation.
I Cost of program creation, testing, and use.
I Cost of program maintenance.

9 / 248

What makes a language successful?

I Expressive power.
I Ease of use for the novice.
I Ease of implementation.
I Standardisation.
I Many useful libraries.
I Excellent compilers (including open-source)
I Economics, patronage, and inertia.

Note the recent trend of big companies to create/control their
own languages: C# (Microsoft), Hack (Facebook), Go (Google),
Objective-C/Swift (Apple), Rust (Mozilla) and perhaps even
Python (Dropbox hired Guido van Rossum).

10 / 248

? Why are there so many languages?
I Evolution.
I Special purposes.
I No one language is good at expressing all programming

styles.
I Personal preference.

? What makes languages evolve?
I Changes in hardware or implementation platform
I Changes in attitudes to safety and risk
I New ideas from academia or industry

11 / 248

Motivating purpose and language design

A specific purpose or motivating application provides focus for
language design—what features to include and (harder!) what
to leave out. E.g.
I Lisp: symbolic computation, automated reasoning
I FP: functional programming, algebraic laws
I BCPL: compiler writing
I Simula: simulation
I C: systems programming [Unix]
I ML: theorem proving
I Smalltalk: Dynabook [1970-era tablet computer]
I Clu, SML Modules: modular programming
I C++: object orientation
I Java, JavaScript: Internet applications

12 / 248

Program execution model

Good language design presents abstract machine.
I Fortran: Flat register machine; memory arranged

as linear array
I Lisp: cons cells, read-eval-print loop
I Algol family: stack of activation records; heap storage
I BCPL, C: underlying machine + abstractions
I Simula: Object references
I FP, ML: functions are basic control structure
I Smalltalk: objects and methods, communicating by

messages
I Java: Java virtual machine

13 / 248

Classification of programming languages

See en.wikipedia.org/wiki/Programming_paradigm
for more detail:

I Imperative
procedural C, Ada, Pascal, Algol, Fortran, . . .
object-oriented Scala, C#, Java, Smalltalk, SIMULA, . . .
scripting Perl, Python, PHP, JavaScript, . . .

I Declarative
functional Haskell, SML, Lisp, Scheme, . . .
logic Prolog
dataflow Id, Val
constraint-based spreadsheets
template-based XSLT

14 / 248

Language standardisation

Consider: int i; i = (1 && 2) + 3 ;

? Is it valid C code? If so, what’s the value of i?
? How do we answer such questions!?

! Read the reference manual (ISO C Standard).

! Try it and see!
Other languages may have informal standards (defined by a
particular implementation but what do we do if the
implementation is improved?) or proprietary standards.

15 / 248

Language-standards issues

Timeliness. When do we standardise a language?
Conformance. What does it mean for a program to adhere to a

standard and for a compiler to compile a standard?
Ambiguity and freedom to optimise – Machine
dependence – Undefined behaviour.

A language standard is a treaty setting
out the rights and obligations of the
programmer and the implementer.

Obsolescence. When does a standard age and how does it get
modified?
Deprecated features.

16 / 248

Language standards: unintended mis-specification

I Function types in Algol 60, see later.
I In language PL/1 the type DEC(p,q) meant a decimal

number of p digits (at most 15) with q digits after the
decimal point, so 9, 8, 3 all had type DEC(1,0).
Division was defined to so that 8/3 was DEC(15,14) with
value 2.66666666666666.
But addition was defined so that adding these two was also
of type DEC(15,14), which meant that 9 + 8/3 gave
11.66666666666666, which didn’t fit. This gave either
overflow or the wrong answer of 1.66666666666666.

I A more recent example is C++11’s “out of thin air”
behaviour, whereby the ISO specification allows the value
42 to appear as the result of a (concurrent) program only
involving assignments of 0 and 1.

Argh! Be careful how you specify a language.

17 / 248

Ultra-brief history
1951–55: Experimental use of expression compilers.
1956–60: Fortran, COBOL, Lisp, Algol 60.
1961–65: APL notation, Algol 60 (revised), SNOBOL, CPL.
1966–70: APL, SNOBOL 4, Fortran 66, BASIC, SIMULA,

Algol 68, Algol-W, BCPL.
1971–75: Pascal, PL/1 (Standard), C, Scheme, Prolog.
1976–80: Smalltalk, Ada, Fortran 77, ML.
1981–85: Smalltalk-80, Prolog, Ada 83.
1986–90: C++, SML, Haskell.
1991–95: Ada 95, TCL, Perl.

1996–2000: Java, JavaScript
2000–05: C#, Python, Ruby, Scala.

1990– : Open/MP, MPI, Posix threads, Erlang, X10,
MapReduce, Java 8 features.

For more information:
en.wikipedia.org/wiki/History_of_programming_

languages
18 / 248

Background Concepts
Modern languages generally have four storage areas
(segments):
I code – usually read-only or execute-only
I static (top-level) variables
I stack – for return addresses, local variables, and

exceptions
I heap

Notes:
I Operating systems also typically provide OS-level threads

which might execute on a separate CPU core. Each OS
thread comes with its own stack.

I Prolog doesn’t quite fit this model as its (WAM) virtual
machine tends to have: a stack for calls, a heap for
allocations, and also a trail stack which manages
backtracking.

19 / 248

Digression: Threads and Heaps
There is a choice here (we will talk a bit more about this later):
I a single heap allocator
I one allocator per thread

The former typically requires locks in the allocator (expensive),
so the second is generally preferred. So how does the allocator
find its next-allocation pointer?
I Another storage area: thread-local statics, thread_local

in C++11; or equivalently:
I A mechanism to find the thread-id for the current thread

and then use it to index a vector to give per-thread storage
areas.

If we have a shared-memory multiprocessor, then we can have
a single heap, but separate efficient per-thread allocators.

On distributed architectures we might have multiple heaps,
perhaps not even cheaply addressable from each other

20 / 248

Passing arguments to functions
We use the stack (or registers) for this. But there a separate
issue of mechanism:
I call-by-value: callee parameters are effectively local

variables initialised by values of arguments. [default in C,
Java, OCaml],

I call-by-reference: callee parameter is an alias to the
location of the caller argument. [C++ form int &x,
Pascal var, default in Fortran]

I call-by-value-result: caller argument location is read to
initialise local variable in callee (like call-by-value) but also
its final value is copied back.

Exercise: write a program which prints 0, 1 or 2 depending on
which of these is used.

I Some authors use ‘pass-by-value’ etc. rather than
‘call-by-value’.

21 / 248

Passing arguments to functions (2)

Does Java use call-by-vaue or call-by-reference?
I call-by-value (for values of all types).

But aren’t objects passed by reference in Java?
I No. An object reference (a pointer) is passed by value.

This has a similar effect to passing an object by reference
in C++.

Stackoverflow attracts questions on this.

22 / 248

Passing arguments to functions (3)

Less common nowadays are the following mechanisms:
I call-by-name: a closure (also called a ‘thunk’) is passed

and evaluating it gives the value or location of the
argument [Algol 60].

I call-by-need: a closure is passed and evaluating it gives
the value of the argument, but this value is cached and
returned on subsequent calls. Also called ‘lazy evaluation’
[Haskell].

I call-by-text: the text (or AST tree) of the argument is
passed and the caller uses eval when it needs the value
[special forms in Lisp]

23 / 248

Implementing closures

Consider code like:

let f(x) = fun y -> x+y+5
let g = f(10) and h = f(20)
in g(1) + h(2)

The result of f is a closure – a structure (often heap-allocated)
which contains the values of the free variables (here just x) of
fun y -> x+y+5, along with a pointer to code of the form

LDfree 1; LDarg 1; PLUS; LDconst 5; PLUS; RETURN

Note that (in the code above) it’s vital to copy x into the closure
as it will have been deallocated before g and h are called.

24 / 248

C++ lambdas: variable capture (value or reference)
Whether free variables are bound by value or by reference
depends on the language; C++ provides both:

// LLVM use: c++ --std=c++14 to get lambda support
#include <iostream>
int main()
{ int a=0,b=0;

// C++ use of ‘[]’ (lambda)needs to know how
// free variables are bound:
auto f = [a,&b](int x) ->int { return x+a+b; };
a++; b+=10;
std::cout << "f(42)=" << f(42) << std::endl;
// gives "f(42)=52" -- think why...
return 0; }

Notes:
I auto f = [](int x) ->int { return x+a+b;};

gives “error: variable ’a’ cannot be implicitly captured in a
lambda with no capture-default specified.”

I C++ calls the type of f a functor, a class which overloads
operator().

25 / 248

And what about lambdas in Java?

Some neat wording says that local variables used freely by a
lambda must be “effectively final”. This forbids code similar to
the previous slide by banning both assignments in

a++; b+=10;

This helps avoid subtle bugs, e.g. where the value of variable is
copied into a closure and the programmer is surprised that
subsequent updates to the variable have no effect on the
closure.

26 / 248

Programming-language phrases – reminder

[This classification arose in the Algol 60 design.]

I Expressions. A syntactic entity that may be evaluated to
determine its value.

I Statement. A command that alters the state of the machine
in some explicit way.

I Declaration. A syntactic entity that introduces a new
identifier, often specifying one or more attributes.

27 / 248

˜ Part A ˜

Meet the ancestors

Santayana 1906: “Those who cannot remember the past are
condemned to repeat it.”

28 / 248

˜ Topic II ˜
FORTRAN: A simple procedural language

Further reading:
I The History of FORTRAN I, II, and III by J. Backus. In

History of Programming Languages by R. L. Wexelblat.

Academic Press, 1981.

29 / 248

FORTRAN = FORmula TRANslator (1957)
I Developed (1950s) by an IBM team led by John Backus:

“As far as we were aware, we simply made up the
language as we went along. We did not regard language
design as a difficult problem, merely a simple prelude to
the real problem: designing a compiler which could
produce efficient programs.”

I The first high-level programming language to become
widely used. At the time the utility of any high-level
language was open to question(!), and complaints focused
on efficiency of generated code. This heavily influenced
the design, orienting it towards execution efficiency.

I Standards: 1966, 1977 (FORTRAN 77), 1990 (Fortran 90,
spelling change), . . . , 2018 (Fortran 2018).

I Remains main language for scientific computing.
I Easier for a compiler to optimise than C.

30 / 248

Overview: Compilation
Fortran program = main program + subprograms
I Each is compiled separately from all others.

(Originally no support for cross-module checking, still really
true for C and C++.)

I Translated programs are linked into final executable form.

Fortran program

��

Compiler

��
Incomplete machine language

**

Library routines

ww
Linker

��
Machine language program

31 / 248

Overview: Data types and storage allocation

I Numerics: Integer, real, complex, double-precision real.
I Boolean. called logical

I Arrays. of fixed declared length

I Character strings. of fixed declared length
I Files.
I Fortran 90 added ‘derived data types’ (like C structs).

Allocation:
I Originally all storage was allocated statically before

program execution, even local variables (as early Fortran
lacked recursion—machines often lacked the index
registers needed for a cheap stack—and we didn’t realise
how useful stacks and recursion would be!).

I Modern Fortran has recursion and heap-allocated storage.
32 / 248

Overview
Control structures

I FORTRAN 66
Relied heavily on statement labels and GOTO

statements, but did have DO (for) loops.
I FORTRAN 77

Added some modern control structures
(e.g., if-then-else blocks), but WHILE loops and
recursion had to wait for Fortran 90.

I Fortran 2008
Support for concurrency and objects

33 / 248

Example (Fortran 77)
PROGRAM MAIN

PARAMETER (MaXsIz=99)
REAL A(mAxSiZ)

10 READ (5,100,END=999) K
100 FORMAT(I5)

IF (K.LE.0 .OR. K.GT.MAXSIZ) STOP
READ *,(A(I),I=1,K)
PRINT *,(A(I),I=1,K)
PRINT *,’SUM=’,SUM(A,K)
GO TO 10

999 PRINT *, ’All Done’
STOP
END

C SUMMATION SUBPROGRAM
FUNCTION SUM(V,N)

REAL V(N)
SUM = 0.0
DO 20 I = 1,N

SUM = SUM + V(I)
20 CONTINUE

RETURN
END

34 / 248

Example
Commentary

I Originally columns and lines were relevant, and blanks and
upper/lower case are ignored except in strings. Fortran 90
added free-form and forbade blanks in identifiers (use the
.f90 file extension on Linux).

I Variable names are from 1 to 6 characters long
(31 since Fortran 90), letters, digits, underscores only.

I Variables need not be declared: implicit naming convention
determines their type, hence the old joke “GOD is REAL
(unless declared INTEGER)”; good programming style
uses IMPLICIT NONE to disable this.

I Programmer-defined constants (PARAMETER)
I Arrays: subscript ranges can be declared as (lwb : upb)

with (size) meaning (1 : size).

35 / 248

I Data formats for I/O.
I Historically functions are compiled separately from the

main program with no consistency checks. Failure may
arise (either at link time or execution time) when
subprograms are linked with main program.
Fortran 90 provides a module system.

I Function parameters are uniformly transmitted by
reference (like C++ ‘&’ types).
But Fortran 90 provided INTENT(IN) and INTENT(OUT)
type qualifiers and Fortran 2003 added pass-by-value for C
interoperability.

I Traditionally all allocation is done statically.
But Fortran 90 provides dynamic allocation and recursion.

I A value is returned in a Fortran function by assigning a
value to the name of a function.

36 / 248

Program consistency checks

I Static type checking is used in Fortran, but the checking is
traditionally incomplete.

I Many language features, including arguments in
subprogram calls and the use of COMMON blocks,
were not statically checked (in part because subprograms
are compiled independently).

I Constructs that could not be statically checked were often
left unchecked at run time (e.g. array bounds).
(An early preference for speed over ease-of-bug-finding
still visible in languages like C.)

I Fortran 90 added a MODULE system with INTERFACEs which
enables checking across separately compiled
subprograms.

37 / 248

Fortran lives!

I Fortran is one of the first languages, and the only early
language still in mainstream use (LISP dialects also
survive, e.g. Scheme).

I Lots of CS people will tell you about all the diseases of
Fortran based on hearsay about Fortran 66, or Fortran 77.

I Modern Fortran still admits (most) old code for backwards
compatibility, but also has most of the things you expect in
a modern language (objects, modules, dynamic allocation,
parallel constructs). There’s even a proposal for “units of
measure” to augment types.
(Language evolution is preferable to extinction!)

I Don’t be put off by the syntax—or what ill-informed people
say.

38 / 248

˜ Topic III ˜
LISP: functions, recursion, and lists

39 / 248

LISP = LISt Processing (circa 1960)

I Developed in the late 1950s and early 1960s by a team led
by John McCarthy at MIT. McCarthy described LISP as a
“a scheme for representing the partial recursive functions
of a certain class of symbolic expressions”.

I Motivating problems: Symbolic computation (symbolic
differentiation), logic (Advice taker), experimental
programming.

I Software embedding LISP: Emacs (text editor),
GTK (Linux graphical toolkit), Sawfish (window manager),
GnuCash (accounting software).

I Current dialects: Common Lisp, Scheme, Clojure.
Common Lisp is ‘most traditional’, Clojure is implemented
on JVM.

40 / 248

Some contributions of LISP

I LISP is an expression-based language.
LISP introduced the idea of conditional expressions.

I Lists – dynamic storage allocation, hd (CAR) and tl (CDR).
I Recursive functions.
I Garbage collection.
I Programs as data.
I Self-definitional interpreter (LISP interpreter explained as a

LISP program).

The core of LISP is pure functional, but impure (side-effecting)
constructs (such as SETQ, RPLACA, RPLACD) were there
from the start.

41 / 248

Overview

I Values in LISP are either atoms, e.g. X, FOO, NIL, or cons
cells which contain two values.
(Numbers are also atoms, but only literal atoms above can
be used as variables below.)

I A LISP program is just a special case of a LISP value
known as an S-expression. An S-expression is either an
atom or a NIL-terminated list of S-expressions
(syntactically written in parentheses and separated by
spaces), e.g. (FOO ((1 2) (3)) NIL (4 X 5)).

I So right from the start programs are just data, so we can
construct a value and then execute it as a program.

I LISP is a dynamically typed programming language, so
heterogeneous lists like the above are fine.

42 / 248

I Programs represented as S-expressions are evaluated to
give values, treating atoms as variables to be looked up in
an environment, and lists as a function (the first element of
the list) to be called along with its arguments (the rest of
the list).
Example:
(APPEND (QUOTE (FOO 1 Y)) (CONS 3 (CONS ’Z NIL)))

evaluates to (FOO 1 Y 3 Z).

Note: the functions CONS and APPEND behaves as in ML,
and the function QUOTE returns its argument unevaluated.
Numbers and the atoms NIL and T (also used as
booleans) evaluate to themselves.

I To ease typing LISP programs, (QUOTE e) can be
abbreviated ’e, see ’Z above.
This is done as part of the READ function which reads
values (which of course can also be programs).

43 / 248

? How does one recognise a LISP program?

(defvar x 1) val x = 1 ;
(defun g(z) (+ x z)) fun g(z) = x + z ;
(defun f(y) fun f(y)

(+ (g y) = g(y) +
(let let

((x y)) val x = y
(in

g x) g(x)
))) end ;

(f (+ x 1)) f(x+1) ;

! It is full of brackets (“Lots of Irritating Silly Parentheses”)!

44 / 248

Core LISP primitives
The following primitives give enough (Turing) power to construct
any LISP function, along with top-level DEFUN
I CONS, CAR, CDR: cons, hd, tl.
I CONSP, ATOM: boolean tests for being a cons cell or atom.
I EQ: boolean equality test for equal atoms (but beware using

it on large numbers which may be boxed, cf. Java boxing).
I QUOTE: return argument unevaluated.
I COND: conditional expression.

Example:

(defun subst (x y z)
(cond ((atom z) (cond ((eq z y) x) (T z)))

(T (cons (subst x y (car z))
(subst x y (cdr z))))

)
)

45 / 248

Static and dynamic scoping (or binding)
Consider:

(defun main () (f 1))
(defun f (x) (g 2 (lambda () x)))
(defun g (x myfn) (apply myfn ()))

The question is whether the interpreter looks up the free
variable x of the lambda in its static scope (getting 1), or in the
(dynamic) scope at the time of the call (getting 2).

Historically, LISP was a dynamically scoped language;
[Sethi pp.162] writes: when the initial implementation of Lisp
was found to use dynamic scope, its designer, McCarthy[1981],
“regarded this difficulty as just a bug”.

Newer dialects of LISP, such as Common Lisp and Scheme,
use static scoping for this situation. (Common Lisp allows
defvar to mark a variable as using dynamic binding.)

46 / 248

Programs as data

I One feature that sets LISP apart from many other
languages is that it is possible for a program to build a data
structure that represents an expression and then evaluates
the expression as if it were written as part of the program.
This is done with the function EVAL. But the environment
used is that of the caller of EVAL so problems can arise if
the expression being evaluated contains free variables
(see ‘call-by-text’ below).

I McCarthy showed how a self-definitional (or meta-circular)
interpreter for LISP could be written in LISP. See

www.cl.cam.ac.uk/teaching/current/
ConceptsPL/jmc.pdf

for Paul Graham’s article re-telling McCarthy’s
construction.

47 / 248

Parameter passing in LISP
I Function parameters are transmitted either all by value or

all by text (unevaluated expressions); only built-in functions
(such as QUOTE, LAMBDA, COND) should really use
pass-by-text. Why: because we need a special variant of
EVAL to evaluate the arguments to COND in the calling
environment, and similarly need to capture the free
variable of a LAMBDA in the environment of the caller.

I The actual parameters in a function call are always
expressions, represented as list structures.

I Note that call-by-text (using either a special form, or explicit
programmer use of QUOTE, and with EVAL to get the value
of an argument) resembles call-by-name (using LAMBDA to
pass an unevaluated expression, and with APPLY to get the
value of an argument), but is only equivalent if the EVAL

can evaluate the argument in the environment of the
function call!

48 / 248

Dangers of eval
In LISP, I can write: (eval ’(+ x 1))

If you’ve been to IB Semantics then your first question should
be “where do I lookup the value of x?” This is a real issue –
should the following give 11 or 12?

(defvar x 1)
(defvar e ’(add x 10))
(defun f (x) (eval e))
(f 2)

Unless you’re very careful any use of eval involving user input
produces a security hole. Consider: (eval (read)) and inputs
like (fire-all-missiles) or (+ 1 top-security-code).

This applies to any language with a one-argument eval. When
using Python (where eval takes a string), use the (sadly
optional) additional environment-specifying parameters.

49 / 248

˜ Topic IV ˜
Block-structured procedural languages

Algol, Pascal and Ada

50 / 248

Sample Pascal program: The keyword var indicates
call-by-reference.

program main;
begin
function f(var x, y: integer): integer;
begin
x := 2;
y := 1;
if x = 1 then f := 3 else f:= 4

end;

var z: integer;
z := 0;
writeln(f(z,z))

end

Note the begin-end brackets, later replaced by {-} brackets in
C and other descendant languages

51 / 248

Evolution of parameter-passing mechanisms
I Algol 60 supported call-by-value and call-by-name.

Call-by-name was found to be inefficient and not popular
with programmers – despite its lambda-calculus heritage of
beta-reduction.

I A parameter in Pascal is normally passed by value. It is
passed by reference, however, if the keyword var appears
before the declaration of the formal parameter.
procedure proc(x: Integer; var y: Real);

I Ada supports three kinds of parameters:
1. in parameters, corresponding to value parameters;
2. out parameters, corresponding to just the copy-out phase

of call-by-value/result; and
3. in out parameters, corresponding to either reference

parameters or value/result parameters, at the discretion of
the implementation.

I Beware of passing arrays or large structures by value!

52 / 248

Algol

HAD A MAJOR EFFECT ON LANGUAGE DESIGN

I The Algol-like programming languages evolved in parallel
with the LISP family of languages, beginning with Algol 58
and Algol 60 in the late 1950s.

I The main characteristics of the Algol family are:
I the familiar semicolon-separated sequence of statements,
I block structure,
I functions and procedures, and
I static typing.

ALGOL IS DEAD BUT ITS MANY DESCENDANTS LIVE ON!

I Ada, C, C++, Java etc.

53 / 248

Algol innovations

I Use of BNF syntax description.
I Block structure.
I Scope rules for local variables.
I Dynamic lifetimes for variables.
I Nested if-then-else expressions and statements.
I Recursive subroutines.
I Call-by-value and call-by-name arguments.
I Explicit type declarations for variables.
I Static typing.
I Arrays with dynamic bounds.
I Functions (closures) as arguments – but entertainingly not

“closures as results” as Algol 60 had no heap and so
closures were stack-allocated.

54 / 248

Algol 60
Features

I Simple statement-oriented syntax.
I Block structure.

I blocks contain declarations and executable statements
delimited by begin and end markers.

I May be nested, declaration visibility: scoping follows
lambda calculus (Algol had no objects so no richer O-O
visibility from inheritance as well as nesting).

I Recursive functions and stack storage allocation.
I Fewer ad-hoc restrictions than previous languages

(e.g., general expressions inside array indices, procedures
that could be called with procedure parameters).

I A primitive static type system, later improved in Algol 68
and Pascal.

55 / 248

Algol 60
Some trouble-spots

I The Algol 60 type discipline had some shortcomings.
For instance:

I The type of a procedure parameter to a procedure does not
include the types of parameters.
procedure myapply(p, x)
procedure p; integer x;
begin p(x);
end;

I An array parameter to a procedure is given type array,
without array bounds.

I Algol 60 was designed around two parameter-passing
mechanisms, call-by-name and call-by-value.
Call-by-name interacts badly with side effects; call-by-value
is expensive for arrays.

56 / 248

Algol 68

I Algol 68 contributed a regular, systematic type system.
The types (referred to as modes in Algol 68) are either
primitive (int, real, complex, bool, char, string, bits,
bytes, semaphore, format, file) or compound (array,
struct, union, procedure, set, pointer).
Type constructors could be combined without restriction –
a more systematic type system than previous languages.

I Algol 68 used a stack for local variables and heap storage.
Heap data are explicitly allocated, and are reclaimed by
garbage collection.

I Algol 68 parameter passing is by value, with
pass-by-reference accomplished by pointer types. (This is
essentially the same design as that adopted in C.)

I Too complicated (both linguistically and to compile) for its
time.

57 / 248

Pascal (1970)

I Pascal is a quasi-strong, statically typed programming
language.
An important contribution of the Pascal type system is the
rich set of data-structuring concepts: e.g. enumerations,
subranges, records, variant records, sets, sequential files.

I The Pascal type system is more expressive than the
Algol 60 one (repairing some of its loopholes), and simpler
and more limited than the Algol 68 one (eliminating some
of the compilation difficulties).

I Pascal was the first language to propose index checking.
The index type (typically a sub-range of integer) of an array
is part of its type.

I Pascal lives on (somewhat) as the Delphi language.

58 / 248

Pascal variant records

Variant records have a part common to all records of that type,
and a variable part, specific to some subset of the records.

type kind = (unary, binary) ;
type | datatype
UBtree = record | UBtree = mkUB of
value: integer ; | int * UBaux
case k: kind of | and UBaux =
unary: ^UBtree ; | unary of UBtree option
binary: record | | binary of
left: ^UBtree ; | UBtree option *
right: ^UBtree | UBtree option;

end
end ;

We use UBaux because ML datatype can only express variants
at its top level. Note the use of option to encode NULL.

59 / 248

Pascal variant records introduced weaknesses into its type
system.
I Compilers do not usually check that the value in the tag

field is consistent with the state of the record.
I Tag fields are optional. If omitted, no checking is possible

at run time to determine which variant is present when a
selection is made of a field in a variant.

C still provides this model with struct and union. Modern
languages provide safe constructs instead (think how a
compiler can check for appropriate use):
I ML provides datatype and case to express similar ideas.

In essence the constructor names provide the
discriminator k but this is limited to being the first
component of the record.

I Object-oriented languages provide subclassing to capture
variants of a class.

See also the ‘expression problem’ discussion (slide 196).

60 / 248

˜ Topic V ˜
Object-oriented languages: concepts and origins

SIMULA and Smalltalk

Further reading for the interested:
I Alan Kay’s “The Early History Of Smalltalk”
http://worrydream.com/EarlyHistoryOfSmalltalk/

61 / 248

Basic concepts in object-oriented languages

Four main language concepts for object-oriented languages:
1. Dynamic lookup.
2. Abstraction.
3. Subtyping.
4. Inheritance.

62 / 248

Dynamic lookup
I Dynamic lookup2 means that when a method of an object

is called, the method body to be executed is selected
dynamically, at run time, according to the implementation
of the object that receives the message (as in Java or C++
virtual methods).

I For the idea of multiple dispatch (not on the course), rather
than the Java-style (or single) dispatch, see
http://en.wikipedia.org/wiki/Multiple_dispatch

Abstraction

I Abstraction means that implementation details are hidden
inside a program unit with a specific interface. For objects,
the interface usually consists of a set of methods that
manipulate hidden data.

2Also called ‘dynamic dispatch’ and occasionally ‘dynamic binding’ (but
avoid the latter term as ‘dynamic scoping’ is quite a different concept).

63 / 248

Subtyping

I Subtyping is a relation on types that allows values of one
type to be used in place of values of another. Specifically, if
an object b has all the functionality of another object a,
then we may use b in any context expecting a.

I The basic principle associated with subtyping is
substitutivity: If B is a subtype of A, then any expression of
type B may be used without type error in any context that
requires an expression of type A.

Subtlety: just because the type system allows us to use a B

where an A is expected, doesn’t generally mean such a B

behaves in the way that we expect of A objects. See
Behavioural Subtyping (two slides on).

64 / 248

Inheritance
I Inheritance is the ability to reuse the definition of one kind

of object to define another kind of object.
I The importance of inheritance is that it saves the effort of

duplicating (or reading duplicated) code and that, when
one class is implemented by inheriting from another,
changes to one affect the other. This has a significant
impact on code maintenance and modification.

NB: although Java treats subtyping and inheritance as
synonyms, it is quite possible to have languages which have
one but not the other.
I A language might reasonably see int as a subtype of
double but there isn’t any easy idea of inheritance here.

I One can simulate inheritance (avoiding code duplication)
with C-style #include, but this doesn’t add subtyping to C.

I Cook et al. write in Inheritance is not subtyping:
“Subtyping is a relation on interfaces, inheritance is a
relation on implementations”

65 / 248

Behavioural Subtyping – ‘good subclassing’

Consider two classes for storing collections of integers:

class MyBag {
protected ArrayList<Integer> xs;
public void add(Integer x) { xs.add(x); }
public int size() { return xs.size(); }
// other methods here...

}
class MySet extends MyBag

@override
public void add(Integer x) { if (!xs.contains(x))

xs.add(x); }
}

Questions: Is MySet a subclass of MyBag? A subtype?

Java says ‘yes’. But should it?

66 / 248

Behavioural Subtyping – ‘good subclassing’ (2)
It shouldn’t really be a subtype, because it violates behavioural
subtyping – members of a subtype should have the same
behaviour as the members of the supertype. Consider:

int foo(MyBag b) { int n = b.size();
b.add(42);
return b.size() - n; }

For every MyBag this returns 1. However if I pass it a MySet

already containing 42, then it returns 0.
So MySet shouldn’t be a subtype of MyBag as its values behave
differently, e.g. results of foo. So properties and invariants of
MyBag which I’ve proved to hold may no longer hold when an
MyBag object is actually an upcasted MySet!!! We say that
MySet is not a behavioural subtype of MyBag.
[Liskov and Wing’s paper “A Behavioral Notion of Subtyping”
(1994) gives more details.]

67 / 248

Behavioural Subtyping – ‘good subclassing’ (3)
OK, so but perhaps it works the other way? Perhaps MyBag is a
behavioural subtype of MySet?
I Yes? foo gives 0 or 1 for supertype and 1 for subtype.
I No: e.g. add is idempotent for MySet but not for MyBag.
I It’s a good idea to document the invariants classes expect

their subclasses to maintain.
OK, so how do I code it?
I Good design would have MyBag and MySet separately

inheriting from a common superclass (or separately
implementing a common interface).

Java 16 adds sealed classes to allow programmers to specify
which other classes can extend them (this is more powerful
than final which is all-or-none). This is useful to forbid a
(rogue) distant piece of code from extending class C to give
behaviours which the coder of class C and its planned
subclasses did not anticipate.

68 / 248

History of object-oriented languages
SIMULA and Smalltalk

I Objects were invented in the design of SIMULA and
refined in the evolution of Smalltalk.

I SIMULA: The first object-oriented language.
I Extremely influential as the first language with classes,

objects, dynamic lookup, subtyping, and inheritance. Based
on Algol 60.

I Originally designed for the purpose of simulation by Dahl
and Nygaard at the Norwegian Computing Center, Oslo,

I Smalltalk: A dynamically typed object-oriented language.
Many object-oriented ideas originated or were popularised
by the Smalltalk group, which built on Alan Kay’s
then-futuristic idea of the Dynabook (Wikipedia shows
Kay’s 1972 sketch of a modern tablet computer).

69 / 248

I A generic event-based simulation program (pseudo-code):
Q := make_queue(initial_event);
repeat
select event e from Q
simulate event e
place all events generated by e on Q

until Q is empty

naturally requires:
I A data structure that may contain a variety of kinds

of events. subtyping
I The selection of the simulation operation according to

the kind of event being processed. dynamic lookup
I Ways in which to structure the implementation of

related kinds of events. inheritance

70 / 248

SIMULA: Object-oriented features

I Objects: A SIMULA object is a (heap-allocated) activation
record produced by call to a class.

I Classes: A SIMULA class is a procedure that returns a
pointer to its activation record. The body of a class may
initialise the objects it creates.

I Dynamic lookup: Operations on an object are selected
from the activation record of that object.

I Abstraction: Hiding was not provided in SIMULA 67; it was
added later and inspired the C++ and Java designs.

I Subtyping: Objects are typed according to the classes that
create them. Subtyping is determined by class hierarchy.

I Inheritance: A SIMULA class could be defined, by class
prefixing, to extend an already-defined class including the
ability to override parts of the class in a subclass.

71 / 248

SIMULA: Sample code

CLASS POINT(X,Y); REAL X, Y;
COMMENT***CARTESIAN REPRESENTATION

BEGIN
BOOLEAN PROCEDURE EQUALS(P); REF(POINT) P;

IF P =/= NONE THEN
EQUALS := ABS(X-P.X) + ABS(Y-P.Y) < 0.00001;

REAL PROCEDURE DISTANCE(P); REF(POINT) P;
IF P == NONE THEN ERROR ELSE

DISTANCE := SQRT((X-P.X)**2 + (Y-P.Y)**2);
END***POINT***

72 / 248

CLASS LINE(A,B,C); REAL A,B,C;
COMMENT***Ax+By+C=0 REPRESENTATION

BEGIN
BOOLEAN PROCEDURE PARALLELTO(L); REF(LINE) L;

IF L =/= NONE THEN
PARALLELTO := ABS(A*L.B - B*L.A) < 0.00001;

REF(POINT) PROCEDURE MEETS(L); REF(LINE) L;
BEGIN REAL T;

IF L =/= NONE and ~PARALLELTO(L) THEN
BEGIN

...
MEETS :- NEW POINT(...,...);

END;
END;***MEETS***

COMMENT*** INITIALISATION CODE (CONSTRUCTOR)
REAL D;
D := SQRT(A**2 + B**2)
IF D = 0.0 THEN ERROR ELSE

BEGIN
A := A/D; B := B/D; C := C/D;

END;
END***LINE***

[Squint and it’s almost Java!]

73 / 248

SIMULA: Subclasses and inheritance
SIMULA syntax: POINT CLASS COLOUREDPOINT.
Java syntax: class COLOUREDPOINT extends POINT.

Example:

POINT CLASS COLOUREDPOINT(C); COLOUR C; << note arg
BEGIN

BOOLEAN PROCEDURE EQUALS(Q); REF(COLOUREDPOINT) Q;
...;

END***COLOUREDPOINT***

REF(POINT) P; // example point
P :- NEW POINT(1.0, 2.5);
REF(COLOUREDPOINT) CP; // example colouredpoint
CP :- NEW COLOUREDPOINT(2.5, 1.0, RED); << note args

NB: SIMULA 67 did not hide fields. Thus anyone can change
the colour of the point referenced by CP:

CP.C := BLUE;

74 / 248

SIMULA: Object types and subtypes

I All instances of a class are given the same type. The name
of this type is the same as the name of the class.

I The class names (types of objects) are arranged in a
subtype hierarchy corresponding exactly to the subclass
hierarchy.

I The Algol-60-based type system included explicit REF
types to objects.

75 / 248

Subtyping Examples – essentially like Java:
1. CLASS A; A CLASS B;

REF(A) a; REF(B) b;

a :- b; COMMENT***legal since B is

***a subclass of A
...

b :- a; COMMENT***also legal, but checked at

***run time to make sure that

***a points to a B object, so

***as to avoid a type error

2. inspect a
when B do b :- a
otherwise ...

76 / 248

Smalltalk

I Extended and refined the object metaphor.
I Used some ideas from SIMULA; but it was a completely

new language, with new terminology and an original syntax.
I Abstraction via private instance variables (data associated

with an object) and public methods (code for performing
operations).

I Everything is an object; even a class. All operations are
messages to objects. Dynamically typed.

I Objects and classes were shown useful organising
concepts for building an entire programming environment
and system. Like Lisp, easy to build a self-definitional
interpreter.

I Very influential, one can regard it as an object-oriented
analogue of LISP: “Smalltalk is to Simula (or Java) as Lisp
is to Algol”.

77 / 248

Smalltalk Example
Most implementations of Smalltalk are based around an IDE
environment (“click here to add a method to a class”). The
example below uses GNU Smalltalk which is terminal-based
with st> as the prompt.
st> Integer extend [

myfact [
self=0 ifTrue: [^1] ifFalse: [^((self-1) myfact) * self]

]]
st> 5 myfact
120

I Send an extend message to (class) Integer containing
myfact and its definition.

I The body of myfact sends the two-named-parameter
message ([^1], [^((self-1) myfact) * self]) to the
boolean resulting from self=0, which has a method to
evaluate one or the other.

I ‘^’ means return and (self-1) myfact sends the
message myfact to the Integer given by self-1.

78 / 248

Reflection, live coding and IDEs
Above, I focused on Smalltalk’s API, e.g. the ability to
dynamically add methods to a class.
Note that objects and classes are often shared (via reflection)
between the interpreter and the executing program, so
swapping the ‘add’ and ‘multiply’ methods in the Integer class
may have rather wider effects than you expect!
While the API is of interest to implementers, often a user
interface will be menu-driven using an IDE:
I click on a class, click on a method, adjust its body, etc.
I the reflective structure above gives us a way to control the

interpreter and IDE behaviour by adjusting existing
classes.

I this is also known as ‘live coding’, and gives quite a
different feel to a system than (say) the concrete syntax for
Smalltalk.

Remark: Sonic Pi is a live-coding scripting language for musical
performance.

79 / 248

˜ Part B ˜

Types and related ideas

Safety, static and dynamic types, forms of polymorphism,
modules

80 / 248

˜ Topic VI ˜
Types in programming languages

Additional Reference:
I Sections 4.9 and 8.6 of Programming languages:

Concepts & constructs by R. Sethi (2ND EDITION).

Addison-Wesley, 1996.

81 / 248

Types in programming

I A type is a collection of computational entities that share
some common property.

I Three main uses of types in programming languages:
1. naming and organising concepts,
2. making sure that bit sequences in computer memory are

interpreted consistently,
3. providing information to the compiler about data

manipulated by the program.
I Using types to organise a program makes it easier for

someone to read, understand, and maintain the program.
Types can serve an important purpose in documenting the
design and intent of the program.

I Type information in programs can be used for many kinds
of optimisations, and warnings about suspicious code.

82 / 248

Type systems

I A type system for a language is a set of rules for
associating a type with phrases in the language.

I Terms strong and weak refer to the effectiveness with
which a type system prevents errors. A type system is
strong if it accepts only safe phrases. In other words,
phrases that are accepted by a strong type system are
guaranteed to evaluate without type error. A type system is
weak if it is not strong.

I Perhaps the biggest language development since the days
of Fortran, Algol, Simula and LISP has been how type
systems have evolved to become more expressive (and
perhaps harder to understand)—e.g. Java generics and
variance later in this lecture.

83 / 248

Type safety
A programming language is type safe if no program is allowed
to violate its type distinctions.

Safety Example language Explanation
Not safe C, C++ Type casts,

pointer arithmetic
Almost safe Pascal Explicit deallocation;

dangling pointers
Safe LISP, SML, Smalltalk, Java Type checking;

garbage collection

Non-examinable subtlety: Amin and Tate in 2016 reported
“Java and Scala’s Type Systems are Unsound: The Existential
Crisis of Null Pointers", which perhaps shows that complex
interactions of features in a language can be hard for even
expert users and designers to follow.

84 / 248

Type checking

A type error occurs when a computational entity is used in a
manner that is inconsistent with the concept it represents.
Type checking is used to prevent some or all type errors,
ensuring that the operations in a program are applied properly.
Some questions to be asked about type checking in a
language:
I Is the type system strong or weak?
I Is the checking done statically or dynamically?
I How expressive is the type system; that is, amongst safe

programs, how many does it accept?

85 / 248

Static and dynamic type checking
Run-time (dynamic) type checking:
I Compiler generates code, typically adding a ‘tag’ field to

data representations, so types can be checked at run time.
I Examples: LISP, Smalltalk.

(We will look at dynamically typed languages more later.)
Compile-time (static) type checking:
I Compiler checks the program text for potential type errors

and rejects code which does not conform (perhaps
rejecting code which would execute without error).

I Examples: SML, Java.
I Pros: faster code, finds errors earlier (safety-critical?).
I Cons: may restrict programming style.

NB: It is arguable that object-oriented languages use a mixture
of compile-time and run-time type checking, see the next slide.

86 / 248

Java Downcasts
Consider the following Java program:

class A { ... }; A a;
class B extends A { ... }; B b;

I Variable a has Java type A whose valid values are all those
of class A along with those of all classes subtyping class A

(here just class B).
I Subtyping determines when a variable of one type can be

used as another (here used by assignment):
a = b;

√
(upcast)

a = (A)b;
√

(explicit upcast)
b = a; ×(implicit downcast—illegal Java)
b = (B)a;

√
(but needs run-time type-check)

I Mixed static and dynamic type checking!

See also the later discussion of subtype polymorphism.

87 / 248

Type equality

When type checking we often need to know when two types are
equal. Two variants of this are structural equality and nominal
equality.

Let t be a type expression (e.g. int * bool in ML) and make
two type definitions

type n1 = t; type n2 = t;

I Type names n1 and n2 are structurally equal.
I Type names n1 and n2 are not nominally equal.

Under nominal equality a name is only equal to itself.

We extend these definitions to type expressions using structural
equivalence for all type constructors not involving names.

88 / 248

Examples:
I Type equality in C/C++. In C, type equality is structural for
typedef names, but nominal for structs and unions;
note that in
struct { int a; } x; struct { int a; } y;

there are two different (anonymously named) structs so x

and y have unequal types (and may not be assigned to
one another).

I Type equality in ML. ML works very similarly to C/C++,
structural equality except for datatype names which are
only equivalent to themselves.

I Type equality in Pascal/Modula-2. Type equality was left
ambiguous in Pascal. Its successor, Modula-2, avoided
ambiguity by defining two types to be compatible if

1. they are the same name, or
2. they are s and t, and s = t is a type declaration, or
3. one is a subrange of the other, or
4. both are subranges of the same basic type.

89 / 248

Type declarations

We can classify type definitions type n = t similarly:
Transparent. An alternative name is given to a type that can

also be expressed without this name.
Opaque. A new type is introduced into the program that is

not equal to any other type.
In implementation terms, type equality is just tree equality,
except when we get to a type name in one or both types, when
we either (transparently) look inside the corresponding
definition giving a structural system, or choose insist that both
nodes should be identical types names giving a nominal
system.

90 / 248

Type compatibility and subtyping

I Type equality is symmetric, but we might also be interested
in the possibly non-symmetric notion of type compatibility
(e.g. can this argument be passed to this function, or be
assigned to this variable).

I This is useful for subtyping, e.g. given Java A a; B b; a

= b; which is valid only if B is a subtype of (or equal to) A.

Similarly we might want type definitions to have one-way
transparency. Consider

type age = int; type weight = int;
var x : age, y : weight, z : int;

We might want to allow implicit casts of age to int but not int
to age, and certainly not x := y;.

91 / 248

Polymorphism
Polymorphism [Greek: “having multiple forms”] refers to
constructs that can take on different types as needed. There
are three main forms in contemporary programming languages:
I Parametric (or generic) polymorphism. A function may

be applied to any arguments whose types match a type
expression involving type variables.
Subcases: ML has implicit polymorphism, other languages
have explicit polymorphism where the user must specify
the instantiation (e.g. C++ templates, and the type system
of “System F”).

I Subtype polymorphism. A function expecting a given
class may be applied to a subclass instead. E.g. Java,
passing a String to a function expecting an Object.

[Not covered:] bounded subtype polymorphism combines
aspects of these (e.g. allowing us to restrict the argument to a
polymorphic class to being a subclass or superclass of some
given class).

92 / 248

I Ad-hoc polymorphism or overloading. Two or more
implementations with different types are referred to by the
same name. E.g. Java, also addition is overloaded in SML
(which is why fn x => x+x does not type-check).
(Remark 1: Haskell’s type classes enable rich overloading
specifications. These allow functions be to implicitly
applied to a range of types specified by a Haskell type
constraint.)
(Remark 2: the C++ rules on how to select the ‘right’
variant of an overloaded function are arcane.)

Although we’ve discussed these for function application, it’s
important to note that Java generics and ML parameterised
datatypes (e.g. Map<Key,Val> and ’a list) use the same
idea for type constructors.

93 / 248

Type inference

I Type inference is the process of determining the types of
phrases based on the constructs that appear in them.

I An important language innovation.
I A cool algorithm.
I Gives some idea of how other static analysis algorithms

work.

94 / 248

Type inference in ML – idea

Idea: give every expression a new type variable and then emit
constraints α ≈ β whenever two types have to be equal.
These constraints can then be solved with Prolog-style
unification.
For more detail see Part II course: “Types”.

Typing rule (variable):

Γ ` x : τ
if x : τ in Γ

Inference rule:

Γ ` x : γ
γ ≈ α if x : α in Γ

95 / 248

Typing rule (application):
Γ ` f : σ −> τ Γ ` e : σ

Γ ` f (e) : τ

Inference rule:
Γ ` f : α Γ ` e : β

Γ ` f (e) : γ
α ≈ β −> γ

Typing rule (lamda):
Γ, x : σ ` e : τ

Γ ` (fn x => e) : σ −> τ

Inference rule:
Γ, x : α ` e : β

Γ ` (fn x => e) : γ
γ ≈ α −> β

96 / 248

Example:

√

f : α1, x : α3 ` f : α5

√

f : α1, x : α3 ` f : α7

√

f : α1, x : α3 ` x : α8

f : α1, x : α3 ` f (x) : α6

f : α1, x : α3 ` f (f (x)) : α4

f : α1 ` fn x => f (f (x)) : α2

` fn f => fn x => f (f (x)) : α0

α0 ≈ α1−> α2 , α2 ≈ α3−> α4 , α5 ≈ α6−> α4 , α5 ≈ α1
α7 ≈ α8−> α6 , α7 ≈ α1 , α8 ≈ α3

Solution: α0 = (α3−> α3)−> α3−> α3

97 / 248

let-polymorphism

I The ‘obvious’ way to type-check let x = e in e′

is to treat it as (fun x -> e′)(e).
I But Milner invented a more generous way to type

let-expressions (involving type schemes—types qualified
with ∀ which are renamed with new type variables at every
use).

I For instance
let f = fun x -> x in f(f);;

type checks, whilst
(fun f -> f(f)) (fun x -> x);;

does not.
I Exercise: invent OCaml expressions e and e′ above so

that both forms type-check but have different types.

98 / 248

Surprises/issues in ML typing
The mutable type ’a ref seemingly(!) has three operators
ref : ’a -> ’a ref
(!) : ’a ref -> ’a
(:=) : ’a ref * ’a -> unit

Seems harmless. But think about:
let x = ref [];; (* x : (’a list) ref *)
x := 3 :: (!x);;
x := true :: (!x);;
print x;;

We expect it to type-check, but it doesn’t and trying to execute
the code shows us it mustn’t type-check!

I ML type checking needs tweaks around the corners when
dealing with non-pure functional code. See also the
exception example on the next slide.

I This is related to the issues of variance in languages which
mix subtyping with generics (e.g. Java).

99 / 248

Polymorphic exceptions – sometimes OK
datatype (* finitely branching trees of ’a *)

’a FBtree = node of ’a * ’a FBtree list ;
fun dfs P (t: ’a FBtree)

= let
exception Ok of ’a;
fun auxdfs(node(n,F))

= if P n then raise Ok n
else foldl (fn(t,_) => auxdfs t) NONE F ;

in
auxdfs t handle Ok n => SOME n

end ;

type-checks in SML to give:

val dfs = fn : (’a -> bool) -> ’a FBtree -> ’a option

This use of a polymorphic exception is OK.

[Remark: This code is harder to express in OCaml, as type
variables are faulted in exceptions; the manual (Chapter 12)
suggests using “locally abstract types”.]

100 / 248

Polymorphic exceptions – sometimes not OK

But what about the following nonsense:
exception Poly of ’a ; (*** ILLEGAL!!! ***)
(raise Poly true) handle Poly x => x+1 ;

When a polymorphic exception is declared, SML ensures that it
is used with only one type (and not instantiated at multiple
types). OCaml simply bans polymorphic exceptions at top level.
A similar rule is applied to the declaration

let x = ref [];;

SML (originally) forbade it (the ‘value restriction’); Ocaml uses
so-called ‘weak type variables’. Both forbid the code on
Slide 99.

I This is related to the issue of variance in languages like
Java to which we now turn.

101 / 248

Interaction of subtyping and generics—variance

In Java, we have that String is a subtype of Object.
I But should String[] be a subtype of Object[]?
I And should ArrayList<String> be a subtype of
ArrayList<Object>?

I What about Function<Object,String> being a subtype
of Function<String,Object>?

Given generic G we say it is
I covariant if G<String> is a subtype of G<Object>.
I contravariant if G<Object> is a subtype of G<String>.
I invariant or non-variant if neither hold.
I variance is a per-argument property for generics taking

multiple arguments .
But what are the rules?

102 / 248

Java arrays are covariant

The Java language decrees so. Hence the following code
type-checks.

String[] s = new String[10];
Object[] o;
o = s; // decreed to be subtype
o[5] = "OK so far";
o[4] = new Integer(42); // whoops!

However, it surely can’t run! Indeed it raises exception
ArrayStoreException at the final line. Why?
I The last line would be unsound, so all writes into a Java

array need to check that the item stored is a subtype of the
array they are stored into. The type checker can’t help.

I Note that there is no problem with reads.
I this is like the ML polymorphic ref and exception issue.

103 / 248

Java generics are invariant (by default)

The Java language decrees so. Hence the following code now
fails to type-check.

ArrayList<String> s = new ArrayList(10);3

ArrayList<Object> o;
o = s; // fails to type-check
o.set(5,"OK so far"); // type-checks OK
o.set(4, new Integer(42)); // type-checks OK

So generics are safer than arrays. But covariance and
contravariance can be useful.
I What if I have an immutable array, so that writes to it are

banned by the type checker, then surely it’s OK for it to be
covariant?

3Legal note: it doesn’t matter here, but to exactly match the previous
array-using code I should populate the ArrayList with 10 NULLs. Real code
would of course populate both arrays and ArrayLists with non-NULL values.

104 / 248

Java variance specifications

In Java we can have safe covariant generics using syntax like:
ArrayList<String> s = new ArrayList(10);
ArrayList<? extends Object> o;
o = s; // now type checks again

But what about reading and writing to o?
s.set(2,"Hello");
System.out.println((String)o.get(2)+"World"); //fine
o.set(4,"seems OK"); //faulted at compile-time

The trade is that the covariant ArrayList o cannot have its
elements written to, in exchange for covariance.

105 / 248

Java variance specifications (2)

Yes, there is a contravariant specification too (which allows
writes but not reads):

ArrayList<? super String> ss;

So ss can be assigned values of type ArrayList<String> and
ArrayList<Object> only.

For more information (beyond the current course) see:
I en.wikipedia.org/wiki/Generics_in_Java

I en.wikipedia.org/wiki/Covariance_and_
contravariance_(computer_science)

106 / 248

Java variance specifications (3)
[Non-examinable]
I Java has use-site variance specifications: we can declare

variance at every use of a generic.
I Some other languages instead have declaration-site

variance which many find simpler.
Scala has declaration-site variance: the Scala definition

class Array[A] {
def apply(index: Int): A // OK
def update(index:Int , elem: A) // see below
... }

is invariant, but could be specified to be covariant (at its
declaration site) by writing:

class Array[+A] { .. }

But doing so would fault argument elem of update.

Similarly, contravariant subtyping is specified with “[-A]”.
Kotlin uses in for + and out for +.

107 / 248

˜ Topic VII ˜
Scripting Languages and Dynamic Typing

108 / 248

Scripting languages

“A scripting language is a programming language that supports
scripts; programs written for a special run-time environment
that automate the execution of tasks that could alternatively be
executed one-by-one by a human operator. Scripting
languages are often interpreted (rather than compiled).
Primitives are usually the elementary tasks or API calls, and
the language allows them to be combined into more complex
programs.” [Wikipedia]

From this definition it’s clear that many (but not all) scripting
languages will have a rather ad-hoc set of features – and
therefore tend to cause computer scientists to have strong
views about their design (indeed it’s arguable that we don’t
really teach any scripting languages on the Tripos).

109 / 248

Scripting languages (2)

I A script is just a program written for a scripting language,
indeed the usage seems to be ‘respectability driven’: we
write a Python program (respectable language) but a shell
script or a Perl script.

I The definition is a bit usage-dependent: ML is a ‘proper’
stand-alone language, but was originally was the scripting
language for creating proof trees in the Edinburgh LCF
system (history: ML was the meta-language for
manipulating proofs about the object language PPλ).

I Similarly, we’ve seen Lisp as a stand-alone language, but
it’s also a scripting language for the Emacs editor.

I But it’s hard to see Java or C as a scripting language. (But
note the recent “Java Shell” – Java not to be ‘outdone’??)
Let’s turn to why.

110 / 248

Scripting languages (3)

I scripting language means essentially “language with a
REPL (read-evaluate-print loop)” as interface, or “language
which can run interactively” (otherwise it’s not so good for
abbreviating a series of manual tasks, such API calls, into
a single manual task).

I interactive convenience means that scripting languages
generally are dynamically typed or use type inference, and
execution is either interpretation or JIT compilation.

Incidentally, CSS and HTML are generally called mark-up
languages to reflect their weaker (non-Turing powerful)
expressivity.

111 / 248

Dynamically typed languages

We previously said:
I Using types to organise a program makes it easier

for someone to read, understand, and maintain the
program. Types can serve an important purpose in
documenting the design and intent of the program.

So why would anyone want to lose these advantages?
I And why is JavaScript one of the most-popular

programming languages on surveys like RedMonk?
Perhaps there is a modern-politics metaphor here, about elites
using Java and ordinary programmers using JavaScript to be
free of the shackles of types?

112 / 248

Questions on what we teach vs. real life

I why the recent rise in popularity of dynamically typed
languages when they are slower and can contain type
errors?

I why C/C++ still used when its type system is unsafe?
I why language support for concurrency is so ‘patchwork’

given x86 multi-core processors have existed since 2005?

Chatley, Donaldson and Mycroft (“The next 7000 programming
languages”) explore these questions in more detail:
https://doi.org/10.1007/978-3-319-91908-9_15

We start by looking at a recent survey (by RedMonk,
considering GitHub projects and StackOverflow questions) on
programming language popularity.

113 / 248

RedMonk language rankings 2022

Rank RedMonk (2022)
1 JavaScript
2 Python
3 Java
4 PHP
5 C#
6 CSS

7= C++
7= TypeScript

9 Ruby
10 C

Rank RedMonk (2022)
11 Swift

12= R
12= Objective-C

14 Shell
15= Scala
15= Go
17= PowerShell
17= Kotlin
19= Rust
19= Dart

Note 1. CSS (Cascading Style Sheets) not really a language.
Note 2. Swift is Apple’s language to improve on Objective C.
Note 3. Don’t trust such surveys too much.

114 / 248

What are all these languages?

I Java, C, C++, C#, Objective-C, Scala, Go, Swift, Haskell
These are small variants on what we already teach in
Tripos; all are statically typed languages.

I JavaScript, Python, PHP, TypeScript, Ruby, R
These are all dynamically typed languages (but notably
TypeScript is an optionally typed version of JavaScript)

I Most of the dynamically typed languages have a principal
use for scripting.

I Some static languages (Scala, Haskell, ML) are also used
for scripting (helpful to have type inference and lightweight
top-level phrase syntax).

Let’s look at some of them.

115 / 248

JavaScript

I Originally called Mocha, shares little heritage with Java
(apart from curly braces), but renamed ‘for advertising
reasons’.

I Designed and implemented by Brendan Eich in 10 days
(see fuller history on the web).

I Dynamically typed, prototype-based object system (there
was a design requirement not to use Java-like classes).

I Has both object-oriented and functional language features
(including higher-order functions)

I Implemented within browsers (Java applets did this first,
but security and commercial reasons make these almost
impossible to use nowadays).

I callback-style approach to scheduling within browsers.

116 / 248

Browsers: Java Applets and JavaScript

There are two ways to execute code in a browser:
I [Java Applets] compile a Java application to JVM code and

store it on a web site. A web page references it via the
<applet> tag; the JVM code is run in a browser sandbox.
In principle the best solution, but historically beset with
security holes, and unloved by Microsoft and Apple for
commercial reasons. Effectively dead by 2017.

I [JavaScript] the browser contains a JavaScript interpreter.
JavaScript programs are embedded in source form in a
web page with the <script> tag, and interpreted as the
page is rendered (now sometimes JIT compiled).
Interaction between browser and program facilitated with
the DOM model. Questionable confidentiality guarantees.

https://en.wikipedia.org/wiki/Java_applet
https://en.wikipedia.org/wiki/JavaScript

117 / 248

The JavaScript language

Three language inspirations [quoting Douglas Crockford]:
I Java (for its syntax)
I Scheme (a Lisp dialect for its lexical closures)
I Self (a Smalltalk dialect with prototypes instead of classes)

What’s ‘wrong’ with classes? Java has:
I Classes to define the basic qualities and behaviours of

objects.
I Object instances as particular manifestations of a class.

So has Smalltalk.

118 / 248

Problems with classes

I When designing a system with the waterfall design
method, then classes and objects are natural.

I In more flexible design styles (spiral and agile), then we
might want to change the classes during program
evolution.

I In Smalltalk this can be achieved by changing the structure
of a class, or the class an object belongs to, by
assignment.

I But it’s not quite so simple, in that users inheriting a class
may be surprised by the behaviour change of the
superclass (the fragile base class problem)

I One partial solution is to use prototypes . . .

119 / 248

Prototypes instead of classes
I In JavaScript (and Self), there are no classes.
I When a constructor function is defined, it acquires a

prototype property (the JS for ‘field’ and ‘method’) initially
an empty object.

I When a constructor is called, created objects inherit from
the prototype (i.e. field and method lookup look first in the
object and then in the prototype).

I You can add properties to the prototype object, or indeed
replace the it entirely with another object.

I This gives a prototype inheritance chain similar to a class
inheritance chain.

I The Self community argue that this is a more flexible style
of programming, but many JavaScript systems start by
defining prototypes which play the role of classes, and
copying from these plays the role of new.

120 / 248

Prototypes example

[Taken from the ‘prototype’ section of
https://www.w3schools.com/js/]

function Person(first, last, age, eye) {
// Constructor: caller needs to use ‘new’
this.firstName = first;
this.lastName = last;
this.age = age;
this.eyeColor = eye;

}
Person.prototype.nationality = "English";
var myFather = new Person("John", "Doe", 50, "blue");

After this, then myFather.nationality gives "English".

Note the difference between updating a field in the prototype
and replacing the prototype with a new object.

121 / 248

Duck typing
If we have classes, we can use Java-style type-testing:

if (x instanceof Duck} { ... }

This is a form of nominal property. But what do we do without
classes? One answer is Duck Typing:

“In other words, don’t check whether it IS-a duck: check
whether it QUACKS-like-a duck, WALKS-like-a duck, etc,
etc, depending on exactly what subset of duck-like
behaviour you need to play your language-games with.”
[Alex Martelli, comp.lang.python (2000)]

More precisely, we take a structural rather than nominal view of
being a duck: if an object has sufficiently many methods and
fields (perhaps walks() and quacks() to be considered a
Duck) then it is a Duck.
[Beware: JavaScript also has instanceof but this is merely
shorthand for a test on an object’s prototype.]

122 / 248

The JavaScript DOM model

JavaScript is most often used in browsers, so needs to be
tightly connected with web pages. This is done by:
I The DOM (Document Object Model), a W3C standard.
I The browser converts the HTML into a tree of objects

representing the HTML page structures. This is made
available as the JavaScript variable document.

I Executing JavaScript code reads and modifies document
which the browser renders on-screen.

I Example button-click2 on ‘materials’ tab on course web
page
(view the source as well as clicking).

123 / 248

JavaScript interaction within the browser

I Uses event-based GUI programming, based on callbacks,
just like the Swing library for Java.

124 / 248

WebAssembly – turning full circle?

Because JavaScript is the only language universally supported
by browsers (we’re not counting plug-ins because of lack of
ubiquitous support and security risks), we find that various
compilers have developed JavaScript-targeting back-ends.
I E.g. js_of_ocaml, ghcjs, Scala.js.
I Try out OCaml in a browser: http://ocsigen.org/js_
of_ocaml/2.8.3/files/toplevel/index.html

I But JavaScript is a terrible compiler target language (a
Java Applet compiled to JVM would be more effective).

I Upcoming answer: WebAssembly. Machine-agnostic,
safety-checked assembly language JIT’ted in the browser.

I Isn’t this just a variant of applets?

125 / 248

Some other scripting Languages

I Python: popular for scripting scientific package API calls.
I Ruby: popularised by Heinemeier Hansson’s Rails

framework (server-side web-application programming and
easy database integration).

I Clojure: Lisp meets the JVM.
I Typescript: Microsoft’s typed version of JavaScript.
I R: a statistical scripting package.
I Lua: original for scripting for game engines.
I Matlab.

126 / 248

Gradual type systems
Dynamically typed languages are great (at least for small
programs):
I “You can write your whole prototype application in Python

while a Java programmer is still writing his/her class
hierarchy”

Statically typed languages are better for large programs, due to
the documentation and cross-module static checks, provided by
types.
I Imagine the discussions at Facebook when management

started to confront the issue that they had one million lines
of PHP in their system.

So what you might want is:
I a language in which small programs can be written without

types, but the IDE encourages you to add types faster than
software rust overtakes your system – gradual types.

127 / 248

Gradual type systems (2)
“Gradual typing is a type system in which some variables and
expressions may be given types and the correctness of the
typing is checked at compile-time (which is static typing) and
some expressions may be left untyped and eventual type errors
are reported at run-time (which is dynamic typing). Gradual
typing allows software developers to choose either type
paradigm as appropriate, from within a single language. In
many cases gradual typing is added to an existing dynamic
language, creating a derived language allowing but not
requiring static typing to be used. In some cases a language
uses gradual typing from the start.” [Wikipedia]
Example languages:
I Microsoft’s TypeScript
I Facebook’s Hack (for PHP)
I Cython and mypy (for Python)
I C#’s dynamic type.

Sometimes gradual types are called optional types.
128 / 248

Object-orientation: static vs dynamic, compiled vs
interpreted

I Java and Scala are probably sweet-spots for ahead-of-time
compilation for object-oriented languages, due to their
static type systems.

I The dynamic features of Self and JavaScript (and indeed
Smalltalk) mean that these languages need to be
interpreted or JIT’ed.

I You might (non-examinably) think about what makes a nice
type system possible and what is nice about a type system
to enable ahead-of-time compilation.

129 / 248

˜ Topic VIII ˜
Data abstraction and modularity

SML Modules

Additional Reference:

I Chapter 7 of ML for the working programmer (2ND

EDITION) by L. C. Paulson. CUP, 1996.
May also be useful:
I Purely Functional Data Structures by Chris Okasaki,

Cambridge University Press. [Clever functional data
structures, implemented in Haskell and SML Modules.]

I Previous versions of this course (available on the teaching
pages) had more information on SML Modules.

I http://www.standardml.org/

130 / 248

Need for modules
I We want control over name visibility in large systems.
I Name visibility is important because it expresses

large-scale architecture (which components can use which
other components). Excessive visibility increases the
attack surface for malevolent use.

I Traditional Java does quite well on class-level visibility
(private, protected, public) – but less well on package-level
visibility (no formal way to control who might use a
package-level export, or malevolent uses of reflection).

I Java 9 added a module system in 2017.
I We focus on the SML module system (seminal and

well-designed). OCaml’s module system is similar.

There are also issues (only briefly mentioned) concerning
versioning, when modules evolve over time and multiple
versions are available, e.g. Linux packages or Windows DLLs.

131 / 248

The Core and Modules languages

SML consists of two sub-languages:
I The Core language is for programming in the small, by

supporting the definition of types and variables denoting
values of those types.

I The Modules language is for programming in the large, by
grouping related Core definitions of types and variables
into self-contained units, with descriptive interfaces.

The Core expresses details of data structures and algorithms.
The Modules language expresses software architecture. Both
languages are largely independent.

132 / 248

The Modules language

Writing a real program as an unstructured sequence of Core
definitions quickly becomes unmanageable.

type nat = int
val zero = 0
fun succ x = x + 1
fun iter b f i =

if i = zero then b
else f (iter b f (i-1))

...
(* thousands of lines later *)
fun even (n:nat) = iter true not n

The SML Modules language lets one split large programs into
separate units with descriptive interfaces.

133 / 248

SML Modules
Signatures and structures

An abstract data type is a type equipped with a set of
operations, which are the only operations applicable to that
type.
Its representation can be changed without affecting the rest of
the program.

I Structures let us package up declarations of related types,
values, and functions.

I Signatures let us specify what components a structure
must contain.

I Structures are like Core ML records {a = 3, b = [4,5]}

but can contain definitions of types (and exceptions) in
addition to definitions of values.

Signatures are to structures what types are to values.

134 / 248

Structures

In Modules, one can encapsulate a sequence of Core type and
value definitions into a unit called a structure.
We enclose the definitions in between the keywords

struct . . . end.
Example: A structure representing the natural numbers, as
positive integers:
struct
type nat = int
val zero = 0
fun succ x = x + 1
fun iter b f i = if i = zero then b

else f (iter b f (i-1))
end

(Slide 138 shows how to name this as IntNat)

135 / 248

Concrete signatures
Signatures specify the ‘types’ of structures by listing the
specifications of their components.

A signature consists of a sequence of component
specifications, enclosed in between the keywords sig . . . end.

sig type nat = int
val zero : nat
val succ : nat -> nat
val ’a iter : ’a -> (’a->’a) -> nat -> ’a

end

This signature fully describes the ‘type’ of IntNat on the
previous slide.
(We’ll later see signatures which restrict the names visible in a
structure.)

The specification of type nat is concrete: it must be int.

136 / 248

Opaque signatures

On the other hand, the following signature
sig type nat

val zero : nat
val succ : nat -> nat
val ’a iter : ’a -> (’a->’a) -> nat -> ’a

end

specifies structures that are free to use any implementation for
type nat (perhaps int, or word, or some recursive datatype).

This specification of type nat is opaque.

137 / 248

Naming structures and signatures

The structure keyword binds a structure to an identifier:
structure IntNat =
struct type nat = int

...
fun iter b f i = ...

end

The signature keyword similarly names signatures:
signature NAT =
sig type nat

...
val ’a iter : ’a -> (’a->’a) -> nat -> ’a

end

In OCaml structure is written module and signature is
written module type.

138 / 248

Modules and dot notation

Dot notation accesses components of structures and
signatures, e.g.

fun even (n : IntNat.nat) = IntNat.iter true not n

NB: Type IntNat.nat is statically equal to int.
Value IntNat.iter dynamically evaluates to a closure.

There is an OCaml convention of having each module export a
type t which names the principal representation type defined
by the module.
Hence e.g. List.t is the type of lists, and we have:

List.cons 1 [2] : int List.t

139 / 248

Example: Polymorphic functional stacks.

signature STACK =
sig

exception E
type ’a reptype (* <-- opaque *)
val new: ’a reptype
val push: ’a -> ’a reptype -> ’a reptype
val pop: ’a reptype -> ’a reptype
val top: ’a reptype -> ’a

end ;

structure MyStack: STACK =
struct

exception E ;
type ’a reptype = ’a list ; (* <-- varied later *)
val new = [] ;
fun push x s = x::s ;
fun split(h::t) = (h , t) (* <-- not exported *)

| split _ = raise E ;
fun pop s = #2(split s) ;
fun top s = #1(split s) ;

end ;

140 / 248

val e = MyStack.new ;
val s0 = MyStack.push 0 e ;
val s01 = MyStack.push 1 s0 ;
val s0’ = MyStack.pop s01 ;
MyStack.top s0’ ;

Gives:

val e = [] : ’a MyStack.reptype
val s0 = [0] : int MyStack.reptype
val s01 = [1,0] : int MyStack.reptype
val s0’ = [0] : int MyStack.reptype
val it = 0 : int

141 / 248

Signature matching
Q: When does a structure satisfy a signature?

A: The type of a structure matches a signature whenever it
implements at least the components of the signature.
I The structure must realise (i.e. define) all of the opaque

type components in the signature.
I The structure must enrich this realised signature,

component-wise:
? every concrete type must be implemented equivalently;
? every value must have a more general type scheme;
? every structure must be enriched by a substructure.

Signature matching supports a form of subtyping not found in
the Core language:
I A structure with more type, value, and structure

components may be used where fewer components are
expected.

I A value component may have a more general type scheme
than expected.

142 / 248

Properties of signature matching

I The components of a structure can be defined in a different
order than in the signature; names matter but ordering
does not.

I A structure may contain more components, or components
of more general types, than are specified in a matching
signature.

I Signature matching is structural. A structure can match
many signatures and there is no need to pre-declare its
matching signatures (unlike “interfaces” in Java and C#).

I Although similar to record types, signatures actually play a
number of different roles.

143 / 248

Using signatures to restrict access

We can use a signature constraint to provide a restricted view
of a structure. E.g. (restricting IntNat from slide 135)

structure SubIntNat =
IntNat : sig type nat

val succ : nat->nat
val iter : nat->(nat->nat)->nat->nat

end

Here the constraint str:sgn prunes the structure str

according to the signature sgn. So:
I SubIntNat.zero is faulted (“not a member”)
I SubIntNat.iter is less polymorphic than IntNat.iter.

144 / 248

Transparency of “_ : _”

I Although the _:_ operator can hide names, it does not
conceal the definitions of opaque types. It is an
transparent signature constraint.

I Thus, the fact that SubIntNat.nat = IntNat.nat = int

remains transparent.
I For instance the application SubIntNat.succ(˜3) is still

well-typed, because ˜3 has type int . . . but ˜3 is negative,
so not a valid representation of a natural number!

I There is also an opaque signature constraint operator:
“_ :> _”

145 / 248

Opaque signature constraints: “_ :> _”

Using the ‘:>’ syntax, instead of the ‘:’ syntax used earlier,
signature matching can also be used to enforce data
abstraction by hiding the identity of types:

structure AbsNat = IntNat :> sig
type nat
val zero: nat
val succ: nat->nat
val ’a iter: ’a->(’a->’a)->nat->’a

end

The constraint str:>sgn prunes str but also generates a
new, abstract type for each opaque type in sgn.

146 / 248

I The actual implementation of AbsNat.nat by int is
hidden, so that AbsNat.nat 6= int.
AbsNat is just IntNat, but with a hidden type
representation.

I AbsNat defines an abstract datatype of natural numbers:
the only way to construct and use values of the abstract
type AbsNat.nat is through the operations, zero, succ,
and iter.
E.g., the application AbsNat.succ(˜3) is ill-typed: ˜3 has
type int, not AbsNat.nat. This is what we want, since ˜3

is not a natural number in our representation.
In general, abstractions can also prune and specialise
components.

I Remark: abstractions generalise the expressive power of
the Core SML abstype declaration (this works like
datatype, but does not export its constructors, and so
also hides the representation of a type).

147 / 248

Information hiding
Opaque signature constraints

structure MyOpaqueStack :> STACK = MyStack ;

val e = MyOpaqueStack.new ;
val s0 = MyOpaqueStack.push 0 e ;
val s01 = MyOpaqueStack.push 1 s0 ;
val s0’ = MyOpaqueStack.pop s01 ;
MyOpaqueStack.top s0’ ;

Gives:

val e = - : ’a MyOpaqueStack.reptype
val s0 = - : int MyOpaqueStack.reptype
val s01 = - : int MyOpaqueStack.reptype
val s0’ = - : int MyOpaqueStack.reptype
val it = 0 : int

[Compare slide 141 which exposes reptype as list.]
148 / 248

Datatype and exception specifications

Signatures can also specify datatypes and exceptions:

structure PredNat =
struct datatype nat = zero | succ of nat
fun iter b f i = ...
exception Pred
fun pred zero = raise Pred
| pred (succ n) = n

end :> sig datatype nat = zero | succ of nat

val iter: ’a->(’a->’a)->(nat->’a)
exception Pred
val pred: nat -> nat (* raises Pred *)

end

This means that clients can still pattern-match on datatype
constructors, and handle exceptions.

149 / 248

Structures and signatures can be nested
structure IntNatAdd =

struct
structure Nat = IntNat
fun add n m = Nat.iter m Nat.succ n

end
...

signature Add =
sig structure Nat: NAT

val add: Nat.nat -> Nat.nat -> Nat.nat
end

Then IntNatadd: Add holds (slide 138 defines IntNat and
NAT).

To avoid nesting, it is also possible to directly include a
signature identifier:

sig include NAT
val add: nat -> nat -> nat

end

150 / 248

Parameterised Modules
Functors – not currently examinable

I An SML functor is a structure that takes other structures as
parameters.
Functors are to structures what (first-order) functions are to
values.

I Functors can be applied to structures. The actual
argument must match the signature of the formal
parameter—so it can provide more components, of more
general types but these are not available to the body of the
functor.

I Functors let us write program units that can be combined
in different ways. Functors can also express generic
algorithms.

I In OCaml a similar effect is achieved by allowing a module

to take another module as a parameter (this allows
higher-order modules).

151 / 248

Functors

The functor AddFun below takes any implementation, N, of
naturals and re-exports it with an addition operation.

functor AddFun(N:NAT) =
struct
structure Nat = N
fun add n m = Nat.iter n (Nat.succ) m

end

AddFun can be applied:
structure IntNatAdd = AddFun(IntNat)
structure AbsNatAdd = AddFun(AbsNat)

This definition of IntNatAdd evaluates to the same
implementation as IntNatAdd seen earlier.
Above, AddFun is applied twice, but to arguments that differ in
their implementation of type nat (AbsNat.nat 6= IntNat.nat).

152 / 248

Example: Generic imperative stacks.

signature STACK =
sig
type itemtype
val push: itemtype -> unit
val pop: unit -> unit
val top: unit -> itemtype

end ;

exception E ;
functor Stack(T: sig type atype end) : STACK =
struct
type itemtype = T.atype
val stack = ref([]: itemtype list)
fun push x

= (stack := x :: !stack)
fun pop()

= case !stack of [] => raise E
| _::s => (stack := s)

fun top()
= case !stack of [] => raise E

| t::_ => t
end ;

153 / 248

structure intStack
= Stack(struct type atype = int end) ;

intStack.push(0) ;
intStack.top() ;
intStack.pop() ;
intStack.push(4) ;

Gives:

structure intStack : STACK

val it = () : unit
val it = 0 : intStack.itemtype
val it = () : unit
val it = () : unit

154 / 248

Why functors ?

Functors support:
Code reuse.
AddFun may be applied many times to different
structures, reusing its body.

Code abstraction.
AddFun can be compiled before any
argument is implemented.

Type abstraction.
AddFun can be applied to different types N.nat.

But there are various complications:
I Should functor application be applicative or generative?
I We need some way of specifying types as being shared.

155 / 248

Functors: generative or applicative?
The following functor is almost the identity functor, but
re-abstracts its argument:

functor GenFun(N:NAT) = N :> NAT

Now, suppose we apply it twice to the same argument:
structure X = GenFun(IntNat)
structure Y = GenFun(IntNat)

Question: are the types X.nat and Y.nat compatible?
I The applicative interpretation of functor application (used

in OCaml) says “yes”.
I The generative interpretation (used in SML) says “no”.

(Abstract types from the body of a functor are replaced by
fresh types at each application. This is consistent with
inlining the body of a functor at applications.)

This question is the tip of a very large iceberg (many papers).

156 / 248

Modules in other languages

Java also provides various structuring and hiding features:
I classes
I interfaces (with default implementations in Java 8)
I packages
I modules (from Java 9)

These offer independently developed, but overlapping,
facilities—beyond this current course.

A separate issue is versioning. Linux packages (informal
modules) come with versions, e.g. libtest.so.1.0.1 and
meta-information says which versions of a package are
compatible for use within another versioned package. The
similar Windows problem is ‘DLL hell’. There is little linguistic
support for this.

157 / 248

Java 9 Modules – non-examinable summary

I Java classes are good at encapsulation (private, protected,
public). Java packages and .jar files are not – they are
just naming/grouping conventions!

I Java 9 modules provide proper encapsulation. According
to Oracle a module is “a uniquely named, reusable group
of related packages . . . and a module descriptor"

I A module descriptor must be in file module-info.java
and be of the form
module modulename
{

// optional sequence of declarations
}

158 / 248

Java 9 Modules – non-examinable summary (2)

The module-info.java file names a module and specifies its
dependencies (on other modules) (requires keyword) and
public API (exports keyword) which exports packages for use
by other modules.
There’s lots of rich syntax for specifying access control, e.g.
I exports to exporting a package for use only within

another module.
I open for allowing reflective access. Modules by default

disallow this. (Prior to the addition of modules all Java
encapsulation could be circumvented by reflection!)

Remark: designing module systems (especially to fit in existing
systems) is hard. Project Jigsaw (Java’s module system) was
originally planned to be part of Java 7 (2011) but didn’t appear
until Java 9 (2017). There are whole books on the Java Module
System.

159 / 248

˜ Part C ˜

Linguistic ideas beyond Java and ML

Distributed concurrency, Monads, Rust, Resumable Exceptions

160 / 248

˜ Topic IX ˜
Languages for Concurrency and Parallelism

161 / 248

Sources of parallel computing

Five main sources:
1. Theoretical models: PRAM, BSP (complexity theory),

CSP, CCS, π-calculus (semantic theory),
Actors (programming model).

2. Multi-core CPUs (possibly heterogeneous—mobile
phones).

3. Graphics cards (just unusual SIMD multi-core CPUs).
4. Supercomputers (mainly for scientific computing).
5. Cluster Computing, Cloud Computing.

NB: Items 2–5 conceptually only differ in processor-memory
communication.

162 / 248

Language groups

1. Theoretical models (PRAM, π-calculus, Actors, etc.).
2. C/C++ and roll-your-own using pthreads.
3. Pure functional programming (‘free’ distribution).
4. [Multi-core CPUs] Open/MP, Java (esp. Java 8), Open/MP,

Cilk, X10.
5. [Graphics cards] CUDA (Nvidia), OpenCL (open standard).
6. [Supercomputers] MPI.
7. [Cloud Computing] MapReduce, Spark, Dryad, Naiad.
8. [On Chip] Verilog, Bluespec.

NB: Language features may fit multiple architectures.

163 / 248

Painful facts of parallel life

1. Single-core clock speeds have stagnated at around 3GHz
for the last twenty years. Moore’s law continues to give
more transistors (hence multi-core, many-core, giga-core).

2. Inter-processor communication is far far far more
expensive than computation (executing an instruction).

3. Can’t the compiler just take my old C/Java/Fortran (or
ML/Haskell) program and, you know, parallelise it? Just
another compiler optimisation? NO! (Compiler
researchers’ pipe-dream/elephants’ graveyard.)

Takeaway: optimising performance requires exploiting
parallelism, you’ll have to program this yourself, and getting it
wrong gives slow-downs and bugs due to races.

New programming frameworks for clusters/cloud computing.

164 / 248

A programmer’s view of memory and timings

�
�

�
�CPU -

1 cycle

�
�

�
�MEMORY

(This model was pretty accurate in 1985.)

�
�

�
�CPU -

2

�
�

�
�L1 cache -

10

�
�

�
�L2 cache -

200

�
�

�
�MEMORY

(This model was pretty accurate in 2003.)

165 / 248

Multi-core-chip memory models

Today’s model (cache simplified to one level):

�
�

�
�CPU 0 -

2

�
�

�
�CACHE 0

�
�

�
�CPU 1–15 -

2
�
�

�
�CACHES

1–15

�
�

�
�other CPU

or GPU etc
-

2

�
�

�
�FAST

MEMORY

?

-6
?

coherency

6
?

incoherency � DMA

�
���

@
@@R

200

200�
�

�
�MEMORY

166 / 248

A Compute Cluster or Cloud-Computing Server

�
�

�
�Multicore

CPU 0
-

�
�

�
�MEMORY

0
-

�
�

�
�NIC

0

�
�

�
�Multicore

CPU 1
-

�
�

�
�MEMORY

1
-

�
�

�
�NIC

1

�
�

�
�Multicore

CPU 999,999
-

�
�

�
�MEMORY

999,999
-

�
�

�
�NIC

999,999

6
?

no connection

6
?

no connection

6
?

Network e.g. Ethernet

6
?

Network e.g. Ethernet

(The sort of thing which Google uses.)

167 / 248

Lecture focus: what programming abstractions?

I We’ve got a large (and increasing) number of processors
available for use within each ‘device’

I This holds at multiple levels of scale (from on-chip to
on-cloud). “Fractal” or “self-similar”.

I Memory is local to processor units (at each scale)
I Communication (message passing) between units is much

slower than computation.

Question: what are good programming abstractions for a
system containing lots of processors?
Answer: no complete answer, rest of this lecture gives
fragmentary answers.

168 / 248

What hardware architecture tells us

I Communication latency is far higher than instruction
execution time (2–6 orders of magnitude)

I So, realistically a task needs to have need at least 104

instructions for it to be worth moving to another CPU.
I Long-running independent computations fit the hardware

best.
I “Shared memory” is an illusion. At the lowest level it is

emulated by message passing in the cache-coherency
protocol.

I Often best to think of multi-core processors as distributed
systems.

169 / 248

Communication abstractions for programming

I “Head in sand”: What communication – I’m just using a
multi-core CPU?

I “Principled head in sand”: the restrictions in my
programming language means I can leave this to someone
else (or even the compiler).

I Just use TCP/IP.
I Shared memory, message passing, RMI/RPC?
I Communication is expensive, expose it to programmer

(no lies about ‘shared memory’).

Reflection: does a language implicitly create a programmer
mental model of communication?

170 / 248

Concurrent, Parallel, Distributed

These words are often used informally as near synonyms.
I Distributed systems have separate processors connected

by a network, perhaps on-chip (multi-core)?
I ‘Parallel’ suggests multiple CPUs or even SIMD, but

“parallel computation" isn’t clearly different from
“concurrency”.

I Concurrent behaviour can happen on a single-core CPU
(e.g. Operating System and threads), Theorists often
separate ‘true concurrency’ (meaning parallel behaviour)
from ‘interleaving concurrency’.

171 / 248

SIMD, MIMD

I Most parallel systems nowadays are MIMD.
I GPUs (graphical processor units) are a bit of an exception;

several cores execute the same instructions, perhaps
conditionally based on a previous test which sets
per-processor condition codes.

I Programming Languages for GPUs (OpenCL, CUDA)
emphasise the idea of a single program which is executed
by many tasks. A program can enquire to find out the
numerical value of its task identifier, originally its (x , y)
co-ordinate, to behave differently at different places (in
addition to having separate per-task pixel data).

172 / 248

Theoretical model – process algebra

I CCS, CSP, Pi-Calculus (calculus = “simple programming
language"). E.g.

I Atomic actions α, α, can communicate with each other or
the world (non-deterministically if multiple partners
offered). Internal communication gives special internal
action τ .

I Behaviour p ::= 0 | α.p | p + p | p|p | X | rec X .p
(Deadlock, prefixing, non-determinism, parallelism,
recursive definitions, also (not shown)
parameterisation/hiding and value-passing.)

I Typical questions: “is α.0|β.0 the same as α.β.0 + β.α.0"
and
“what does it mean for two behaviours to be equal"

Part II course: ‘Topics in Concurrency’.

173 / 248

Theoretical model – PRAM model

I PRAM: parallel random-access machine.
I N shared memory locations and P processors (both

unbounded); each processor can access any location in
one cycle.

I Execute instructions in lock-step (often SIMD, but MIMD
within the model): fetch data, do operation, write result.

I Typical question: “given n items can we sort them in O(n)
time, or find the maximum in O(1) time"

I BSP (bulk-synchronous parallel) model refines PRAM by
adding costs for communication and synchronisation.

Part II course: ‘Advanced Algorithms’.

174 / 248

Oldest idea: Threads

Java threads – either extend Thread or implement Runnable:

class PrimeRun implements Runnable {
long minPrime;
PrimeRun(long m) { minPrime = m; }
public void run() {

// compute primes larger than minPrime
}

}
...
p = new PrimeRun(143); // create a thread
new Thread(p).start(); // run it

Posix’s pthreads are similar.

175 / 248

Threads, and what’s wrong with them

I Need explicit synchronisation. Error prone.
I Because they’re implemented as library calls, the compiler

(and often users) cannot work out where they start and
end.

I pthreads as OS-level threads. Need context switch.
Heavyweight.

I Various lightweight-thread systems. Often non-preemptive.
Blocking operations can block all lightweight operations
sharing the same OS thread.

I Number of threads pretty hard-coded into your program.
I Nice IBM article:
https://www.ibm.com/developerworks/library/

j-nothreads/

176 / 248

Language support: Cilk

Cilk [example from Wikipedia]

cilk int fib (int n)
{ int x,y;

if (n < 2) return n;
x = spawn fib (n-1);
y = spawn fib (n-2);
sync; // wait for both spawns to finish
return x+y;

}

Compiler/run-time library can manage threads. Neat
implementation by “work stealing”. Can adapt to hardware.
X10 (IBM) adds support for partitioned memory.

177 / 248

Language support: OpenMP

OpenMP [example from Wikipedia]

int main(int argc, char *argv[]) {
const int N = 100000;
int i, a[N];
#pragma omp parallel for
for (i = 0; i < N; i++)

a[i] = 2 * i;
return 0;

}

The directive “omp parallel for" tells the compiler “it is safe to do
the iterations in parallel".
Fortran “FORALL INDEPENDENT".

178 / 248

Threads and the like don’t work on clusters and clouds

I Memory support for threads, Cilk, OpenMP centres around
a shared address space. (Even if secretly multi-core
machines behave like distributed machines.)

I What about clusters? Cloud Computing?
I Need message-passing (either in the language or behind

the scenes).

179 / 248

Software support for message passing: MPI

I MPI = Message Passing Interface [nothing to do with
OpenMP]

I “de-facto standard for communication among processes
that model a parallel program running on a distributed
memory system.” [no shared memory].

I Standardised API calls for transferring data and
synchronising iterations. Message passing is generally
synchronous, suitable for repeated sweeps over scientific
data.

I Emphasis on message passing (visible and
expensive-looking to user) means that MPI programs can
work surprisingly well on multi-core, because they
encourage within-core locality.

180 / 248

Software support for message passing: Erlang

I Shared-nothing language based on the actor model
(asynchronous message passing).

I Dynamically typed, functional-style (no assignment).
I Means tasks can just commit suicide if they feel there’s a

problem and someone else fixes things, including
restarting them.

I Relatively easy to support hot-swapping of code.

181 / 248

Cloud Computing
Can mean either any of:
I Doing one computer’s worth of work on a server instead of

locally. Google Docs.
I A glorified backed-up virtual disk or file server. Google

Drive, OneDrive, iCloud.
I Distributing computation across many remote computers,

and managing scheduling and dependency management
from within a programming framework:
Example frameworks: MapReduce (seminal), Spark,
Dryad, Naiad.
These have different levels of expressivity for different
algorithms (static vs dynamic data dependency graphs).

The first two are really only commercial special cases!
I Note the need for error resiliancy (errors happen often in

big computation), so need checkpoints or idempotent
(functional-like) computation.

Part II course: ‘Cloud Computing’.
182 / 248

Embarrassingly Parallel

Program having many separate sub-units of work (typically
more than the number of processors) which
I do not interact (no communication between them, not even

via shared memory)
I are large

Example: the map part of MapReduce.

183 / 248

Functional Programming

In pure functional programming every tuple (perhaps an
argument list to an application) can be evaluated in parallel.
So functional programming is embarrassingly parallel?
Not in general (i.e. not enough for compilers to be able to
choose the parallelism for you). Need to find sub-executions
with:
I little data to transfer at spawn time (because it needs

copying, even if memory claims to be shared);
I a large enough unit of work to be done before return

Probably only certain stylised code.

184 / 248

Garbage Collection

While we’re talking about functional programming, and as
garbage collection has previously been mentioned . . .
Just how do we do garbage collection across multiple cores?
I Manage data so that data structures do not move from one

processor to another?
I “Stop the world" GC with one big lock doesn’t look like it

will work.
I Parallel GC: use multiple cores for GC.

Concurrent GC: do GC while the mutator (user’s program)
is running. Hard?

I Incremental? Track imported/exported pointers?

185 / 248

How have languages adapted to parallel hardware?

I Hardware change (multi-core parallelism in 2005) is one of
the major changes ever, comparable with adding index
registers and interrupts from the 1960s.

I It took many years between the early languages we
discussed to get to the globals-stack-heap model from the
1970s to today (for sequential processors).

I Programming language support for parallelism today
seems rather fragmentary in comparison. Several
incomparable solutions.
Is 2005 too recent for languages to have got the full
answer? Or . . . ?

186 / 248

Partial language evolution: functional programming
ideas

I Concurrency and mutable data structures seem too hard
for programmers to correctly use together in large
programs.

I Pure functional languages can feel too ‘hair shirt’ for
commercial use.

I Observation: languages have evolved to use ideas from
functional programming such as higher-order functions and
reduced exposure of mutable data structures in APIs used
concurrently. Let’s look at Streams in Java 8.

187 / 248

Java 8: Internal vs. External iteration

Can’t trust users to iterate over data. Consider traditional
external iteration. It’s easy to start by writing

for (i : collection)
{ // whatever
}

and then get lazy. Do we really want to write this?

for (k = 0; k<NUMPROCESSORS; k++}
{ spawn for (i : subpart(collection,k))

{ // whatever
}

}
sync;
// combine results from sub-parts here

And what about the maintenance load?

188 / 248

Internal vs External iteration (2)

I Previous slide was external iteration. It’s hard to parallelise
(especially in Java where iterators have shared mutable
state).

I The Java 8 Streams library encourages internal iteration –
keep the iterator in the library, and use ML-like stream
operation to encode the body of the loop

maxeven = collection.stream().parallel()
.filter(x -> x%2 == 0)
.max();

I The library can optimise the iteration based on the number
of threads available (and do a better job than users make!).

189 / 248

Java Collections vs Streams
Collections
I ‘Trusty old Java looping’; for-loops, internally using

mutable state (Iterators).
I Note that Java 8 did not add map and filter to the

Collections classes. Why?
Streams
I Almost ML-style understanding. Items need not be in

memory all at the same time (lazy).
I But additional laziness: a stream pipeline, e.g.
.filter().max() above, traverses the stream only once.

I .parallel() authorises parallel/arbitrary order of calls to
the stream pipeline. Good for parallelism, beware if you
use side-effecting functions on stream elements!

It’s quite practical to use .stream on a collection and then
process it as a stream and then convert back.

190 / 248

˜ Topic X ˜
Functional-style programming meets

object-orientation

191 / 248

Big picture
Historically, object-oriented and functional languages were
seen as disjoint programming paradigms.

en.wikipedia.org/wiki/Programming_paradigm

I Recently, mainstream OO languages have acquired
functional features (Java, C++, C#).

I Why?
I Influences of JavaScript and, more directly, Scala.
I Multi-core parallelism: we just saw how internal iteration

can move iteration code into a library, which receives the
‘body of the loop’ as a lambda expression. The run-time
system can then schedule separate iterations of the loop
body according to the number of available tasks.

I Other programming paradigms like futures, reactive
programming can be added to a language as library
features once lambdas are present.

192 / 248

The ‘billion-dollar mistake’
Java (and the JVM) allow any reference type to be NULL.
I In 2009, Tony Hoare described his (1965) invention of the

NULL value as his “billion-dollar mistake”.
I many modern languages, e.g. Scala, C#, Kotlin, forbid

reference types from including NULL
I How? Why?
I Most uses of reference types are only NULL due to

programmer error (e.g. failed initialiation, creaky old APIs
using NULL instead of exceptions).

I If you really want NULL values then use Optional<t> in
Java or t option in OCaml. E.g. tree option which has
values None and Some x where x is of type tree.

I In Kotlin (JVM language used by Android) type String

only refers to non-NULL JVM strings, but type String?

includes NULL. This is a good default.

193 / 248

Java lambdas and closures
Single-argument lambdas in Java implement the Function

interface:
public interface Function<T,R> {

public <R> apply(T argument);
}

A lambda expression (Int x) -> x+1 allocates an object of a
compiler-generated class (only) containing method

public Int apply(Int x) { return x+1; }

This implements Function<Int,Int> as required.

But it’s too simple to show the idea of closure. So instead
consider:

Function<Int,Int> foo(int fv) { return (Int x) -> x+fv; }

Now we need another compiler-generated class whose
instances can hold a copy of the value of fv after foo has
returned, and which also implements Function<Int,Int>.

194 / 248

Function types in Java
Above we saw a unary function Function<Int,Int>. But what
about n-ary functions?

In Scala it’s easy: ML t1*...*tk -> t0 encodes as

Functionk[t1,...,tk,t0]

for example: function2[Int, Array[Int], Bool].

In Java it’s similar but ad-hoc: e.g. Function1 is spelt
Function and Function2 is spelt BiFunction.

Worse still in Java, there’s the boxed/unboxed issue for
generics:you can write Function<Integer,Boolean>, but not
Function<Integer,boolean>. So for efficiency the latter has
a special ‘function’ type

Predicate<Integer>

It’s even more ad hoc as you don’t .apply a Predicate,
you .test it!!

195 / 248

Data structures in functional and object-oriented style

Question: how do we write to code print and evaluate
expressions such as

Times(Plus(Number(1),Number(2)), Number(3))

Logically there are six (3× 2) cases:

eval(Num(n)) = n
eval(Plus(t1,t2)) = eval(t1) + eval(t2)
eval(Times(t1,t2)) = eval(t1) * eval(t2)
prin(Num(n)) = string_of_int(n)
prin(Plus(t1,t2)) = "(" + prin(t1) + "+" + prin(t2) + ")"
prin(Times(t1,t2)) = "(" + prin(t1) + "*" + prin(t2) + ")"

How do we program this in OCaml or Java?

196 / 248

Expr in OCaml

The above six cases are practically SML code already – we just
have to bundle the cases into two function definitions, each of
which considers three cases. (In OCaml we have to use
function or match for this.)
Additionally we need to define type Expr and three constructors
for expressions:

type Expr =
| Num of int
| Plus of Expr * Expr
| Times of Expr * Expr;;

197 / 248

Expr in Java
We define abstract class Expr subclassing it three times, each
subclass having two methods eval and prin. In principle just
(omitting some access qualifiers):

abstract class Expr { int eval(); String prin(); }
class Num extends Expr {
private int n; public Num(x) { n = x; }
int eval() { return n; }
String prin() { return Integer.toString(n); }

}
class Plus extends Expr {
private Expr t1, t2; public Plus(x1,x2) {t1=x1; t2=x2;}
int eval() { t1.eval() + t2.eval(); }
String prin() { return "(" + t1.prin() + "+" +

t2.prin() + ")"; }
}
class Times extends Expr {
private Expr t1, t2; public Times(x1,x2) {t1=x1; t2=x2;}
int eval() { return t1.eval() * t2.eval(); }
String prin() { return "(" + t1.prin() + "*" +

t2.prin() + ")"; }
}

198 / 248

Expr in Java (2)

Non-examinable digression: Java 15 added a record keyword
to Java which behaves like class but automatically generates
constructors for Num, Plus etc., and this makes the code tidier.

However, Java records cannot extend other classes; this
requires Expr to be an interface not a class. While this seems
harmless, it allows Num, Plus etc. (which are now classes) to
implement other interfaces beyond Expr.

199 / 248

Expr in OCaml vs. Java

Are there any differences, apart from the Java code feeling
more clumsy?

For a small fixed program, these appear to be simple
alternatives. But consider a larger program, possibly split over
multiple files and subject to ongoing maintenance

Adding a new form of data, e.g. Divide to Expr is:
I easy in Java, we just add a subclass to Expr

I hard in OCaml, we need to find every match or function
involving Expr.

Adding a new operation, e.g. compile to Expr is:
I hard in Java, every subclass of Expr needs a method

added
I easy in OCaml, just add a new top-level function.

200 / 248

Expr in OCaml vs. Java – the expression problem
The language-design problem of allowing a data-type definition
where one can add new cases to the datatype and new
functions over the datatype (without requiring ubiquitous
changes) is known as the “expression problem”:

en.wikipedia.org/wiki/Expression_problem

In passing, note that

Times(Plus(Number(8),Number(9)), Number(10))

is represented by essentially the same data structure at
machine-code level in both OCaml and Java – even the
discriminator tags (recall the Pascal lecture) are present.
OCaml implements these as numeric case tags, and Java as
pointers to the run-time-type information (virtual method table).
Using C types, in both, constructor Plus returns a pointer to a

struct { LanguageDependentTag t0; Expr *t1, *t2; }

201 / 248

Value types
A value type is a type representing an a pure value – such
values can be copied, compared and subfields extracted but
subfields cannot be mutated. Complex numbers and immutable
arrays are examples, but mutable arrays are not. Strings of
course should be values, but C and C++ historically have had
issues as to whether they are char[] or const char[].

I In Java, every value is either of primitive type (spelt with
lower case) or is a reference to an object. Assignment ‘=’
copies bit patterns for primitives, but only copies
references for object types. Equality ‘==’ differs similarly.

I Worse, every reference-type object has identity, so that
new Complex(1.0,2.0) allocates a new distinguishable
object.

I This also explains why we are encouraged (given int i;

Integer x;) to write x = Integer.valueOf(i);

instead of x = new Integer(i);.

202 / 248

Value types and languages
When talking about value types, we want a type which only
admits functional update (copy but changing a field), not
mutability and no identity.

Why are value types useful? Increasing use of functional-style
APIs (partly due to the need to exploit parallelisms).

Think about defining a class Complex and note that every
arithmetic operation is likely to do an allocation. What we want
is the equivalent of struct { double re,im; } in C. C#
(Microsoft’s Java-style language) provides such values:

“Variables [of value type] directly contain values.
Assigning one value-type variable to another copies
the contained value. This differs from the assignment
of reference-type variables, which copies a reference
to the object but not the object itself.” [C# reference
manual]

203 / 248

Modelling value types in Java

We can model a value type in Java in two ways
I use final to stop modification; or
I use deep copy to snapshot values on operations.

Both of these are fragile during program enhancement.

For example a routine may copy an object to another object, but
program enhancement may change a value type into a
reference type, resulting in code elsewhere getting a value
which is part copied from, and part aliased with, a source
object.
I An object-copy routine which simply copies the fields of an

object is known as shallow copy
I An object-copy routine which recursively copies the fields

of an object is known as deep copy

204 / 248

Value types and inefficient representation
Think how we might represent an array of size 100 of complex
values in Java.
I We’ll have an array of 100 pointers (around 800 bytes) and

100 complex values (perhaps 24 bytes each).
I But at machine level we really just want to store 200
double values (only 1600 bytes).

This costs Java programs in memory use, cache effects and
instructions executed.
I Java would benefit from C#-like value types.

Value types form part of the ‘Valhalla project’ originally planned
for Java 10:

http://en.wikipedia.org/wiki/Project_Valhalla_
(Java_language)

Incidentally, the Wikipedia entry on value types needs
improving (April 2018):

https://en.wikipedia.org/wiki/Value_type

205 / 248

Aliasing and mutability

Mixing aliasing and mutability – as Java does – can enable
subtle bugs. Adding concurrency enables more subtle bugs
(and more-subtle bugs!).

There appear to be two ‘easy-to-use’ sweet spots to use
current languages:
I use mutability freely, but use deep copy so that mutations

don’t accidentally update some other data structure.
I use aliasing freely, but make data structures immutable.

Ideally, future languages will allow these two techniques to be
mixed and perhaps also allow aliasing and mutability to be
used together locally without impacting whole-program
maintainability. Rust (see later) incorporates a notion of
‘ownership’ into its type system to address some of these
issues.

206 / 248

˜ Topic XI ˜
Miscellaneous (entertaining) concepts

I Monadic I/O
I Generalised Algebraic Data Types (GADTs)
I Continuation-passing style (CPS) and call/cc
Wikipedia:Call-with-current-continuation

I Dependent types (Coq, Agda, Idris)

207 / 248

I/O in functional languages

The ML approach: “evaluation is left-right, just let side-effecting
I/O happen as in C or Java”.
I Breaks referential transparency (‘purity’), e.g. that e + e

and let x = e in x + x should be equal.
I Not an appropriate solution for lazy languages (order of

side effects in arguments in a function call would depend
on the detail of the called function).

I Haskell is a lazy function language (“laziness keeps us
pure”).

Everything I say about I/O applies to other side-effecting
operations, e.g. mutable variables, exceptions, backtracking . . .

208 / 248

Giving different types to pure and impure functions

Suppose we have two types A→ B for functions with no
side-effects and A B for impure functions.
I Then everything with a side effect would be visible in its

type (contagious).
I (Later we might have ways of hiding “locally impure”

functions within a pure function, but this doesn’t apply to
I/O.)

I Instead of writing A B we write A→ B M where M is a
unary type constructor called a monad.
Factors the idea of ‘call a function’ and ‘do the resulting
computation’.

Syntax: ML type constructors are postfix so we write t list or
B M whereas Haskell writes M B and perhaps List t .

209 / 248

So, how does I/O work?

In ML we might read from and write to stdin/stdout with
(writing for emphasis):

MLrdint: unit int
MLwrint: int unit

Using monads (either in Haskell or ML) these instead have type
rdint: int IO
wrint: int -> unit IO

I The unary type constructor IO is predefined, just like the
binary type constructor ‘->’.

I Shouldn’t we have rdint: unit -> int IO?
We could, but this would be a bit pointless—writing takes
an argument and gives a computation, but reading from
stdin is just a computation.

210 / 248

Composing I/O functions
or Sequencing I/O effects

I In ML we could just write e; e′ to sequence the side effects
of e and those in e′. But now all ‘effects’ like I/O are part of
monadic values, and no longer ‘side effects’—so this
doesn’t work

I Instead every monad M (including IO as a special case)
has two operators: one to sequence computations and one
to create an empty computation.

(>>=): ’a M -> (’a -> ’b M) -> ’b M
(* infix, pronounced ‘bind’ *)

return: ’a -> ’a M

211 / 248

Digression – Monad Laws

The idea of monad originates in mathematics, so these
operators have axioms relating >>= and return in the
mathematics; these are seem as laws which all well-behaved
programming monads satisfy.
[left unit]

m >>= return = m
[right unit]

return x >>= f = f x
[associativity]

(m >>= f) >>= g = m >>= λx.(f x >>= g)

(The bind operator ‘>>=’ syntactically groups to the left so the
brackets in the final line are redundant.)

212 / 248

Using the IO monad

In a system using monadic I/O, for example Haskell, the
read-eval-print loop not only deals with pure values (integers,
lists and the like), but has a special treatment for values in the
IO monad. Given a value of type tIO, it:
I performs the side effects in the monad; then
I prints the resulting value of type t.

So the question is: how do we make a computation which (say)
reads an integer, adds one to it, and then prints the result?

213 / 248

Using the IO monad – examples

Read an integer, adds one to it, and print the result (using ML
syntax):

rdint >>= (fun x -> wrint(x+1));

Do this twice:
let doit = rdint >>= (fun x -> wrint(x+1))
in doit >>= (fun () -> doit);;

Note that doit has type unit IO, so we use >>= to use doit

twice.

NB: computations are not called as they are not functions; they
are combined using >>= as in the above examples.

214 / 248

Using the IO monad – examples (2)

Read pairs of numbers, multiply them, printing the sum of
products so far, until the product is zero.

let rec foo s = rdint >>= fun x ->
rdint >>= fun y ->
if (x*y = 0) then return ()
else wrint(s + x*y) >>= fun () ->
foo(s + x*y);

foo 0;;

Note the type of foo is int -> unit IO.
Note also the use of return to give a ‘do nothing’ computation.

215 / 248

Practical use

The Mirage OS (most recent Computer Lab spin-out acquired
by Docker) is written in OCaml in monadic style. But most
monadic-style programs are written in Haskell. GHCi is just like
the ML read-eval-print loop, but remember:
I Haskell syntax uses upper case for constants (types,

constructors) and lower case for variables.
I Haskell swaps ‘:’ and ‘::’ relative to ML
I Type constructors are prefix
I fun x->e is written \x->e

Haskell also provides do-notation to allow programmers to write
imperative-looking code which de-sugars to uses of return
and >>=.

216 / 248

Other monads

I Many other unary type constructors have natural monadic
structure (at least as important as IO).

I For example, using Haskell syntax, List t and Maybe t.
Another important one is State s t of computations
returning a value of type t, but which can mutate a state of
type s. (Subtlety: the monad is legally the unary type
State s for some given s.)

I Haskell overloads >>= and return to work on all such
types (Haskell’s type class construct facilitates this).

I The common idea is ‘threading’ some idea of state
implicitly through a calculation.

Haskell example using List in GHCi:
[1,2,3] >>= \x->if x==2 then return 5 else [x,x]
[1,1,5,3,3]

217 / 248

Generalised Algebraic Data Types (GADTs)

OCaml data type (just like datatype in ML):

type ’a mylist = MyNil | MyCons of ’a * ’a mylist;;

Can also be written

type ’a mylist = MyNil : ’a mylist
| MyCons : ’a * ’a mylist -> ’a mylist;;

Why bother (it’s longer and duplicates info)?

218 / 248

How about this:
type _ exp = Val : ’a -> ’a exp

| Eq : ’a exp * ’a exp -> bool exp
| Add : int exp * int exp -> int exp

Allows bool exp values to be checked that Add, Eq etc. are
used appropriately. E.g.
Val 3: int exp

√

Val true: bool exp
√

Add(Val 3, Val 4): int exp
√

Add(Val 3, Val true) ×
Eq(Val true, Val false): bool exp

√

Eq(Val 3, Val 4): bool exp
√

Eq(Val 3, Val true) ×

I GADTs are a special case of dependent types (later this
lecture).

219 / 248

Can even write eval where the type of the result depends on
the value of its type:
let rec eval = function
| Val(x) -> x
| Eq(x,y) -> eval(x) = eval(y)
| Add(x,y) -> eval(x) + eval(y);;

eval: ’a exp -> ’a

(Some type-checking dust being swept under the carpet here.)

220 / 248

Reified continuations

Make calling continuation appear to be a value in the language
(reifying it).
Reminder on continuation-passing style (CPS), perhaps
mentioned in Compiler Construction. Can see a function of type
t1 → t2 as a function of type

(t2 → unit)→ (t1 → unit)

Or uncurrying

(t2 → unit)× t1 → unit

(One parameter of type t1 and the other saying what to do with
the result t2 – like argument and return address!)

221 / 248

Instead of

let f(x) = ... return e ... ;;
print f(42);;

we write

let f’(k, x) = ... return (k e’) ... ;;
f’(print, 42);;

In CPS all functions return unit and all calls are now tail-calls
(so the above isn’t just a matter of adjusting a return statement).
Sussman and Steele papers from the 1970’s (“Lambda the
ultimate XXX”).

222 / 248

Reified continuations (2)

I A function with two continuation parameters rather than
one can act as normal return vs. exception return. (Or
Prolog success return vs failure return.)

I But we don’t want to write all our code in CPS style. So:
call/cc “call with current continuation”. Lots of neat
programming tricks in a near-functional language.

I Reified? The continuation used at the meta-level
(semantics) to explain how a language operates is
exposed as an object-level (run-time value).

223 / 248

Reified continuations (3)

Core idea (originally in Scheme, a form of Lisp):
let f(k) = let x = k(2) in 3;

In ML this function ‘always returns 3’. E.g.
> f(fun x->x);

But callcc(f) returns 2!
I The return address/continuation used in the call to f is

reified into a side-effecting function value k which
represents the “rest of the computation after the call to f”.

I Some similarity with f(fun x -> raise Foo);

224 / 248

Dependent types

Suppose f is a curried function of n boolean arguments which
returns a boolean. How do we determine if f is a tautology
(always returns true)?

let ref taut(n,f) =
if n = 0 then f
else taut(n-1, f true) && taut(n-1, f false);

Works nicely in dynamically typed languages. Fails to
type-check in OCcaml. Why?
I The type of the second argument depends on the value of

the first.
I Dependent type systems can capture this (languages like

Coq, Agda and Idris).
I But type checking can require theorem proving.

225 / 248

Dependent typing of taut in Idris
-- BF n is the type Bool -> ... -> Bool -> Bool
-- _________________/
-- n
BF : Nat -> Type
BF Z = Bool
BF (S n) = Bool -> BF n

taut : (n : Nat) -> BF n -> Bool
taut Z f = f
taut (S n) f = taut n (f False) &&

taut n (f True)

I Dependent types allow compile-time checking of things
which we would expect to cause exceptions, e.g.
hd : (n:Nat) -> List (S n) alpha -> alpha

I More Idris code on the course website.
I Something to think about: are ML exceptions just

dynamically checked types?

226 / 248

˜ Topic XII ˜
Concepts growing in importance recently

I Type-managed storage [example: Rust]
I Resumable exceptions/algebraic effect handlers

[examples: Eff and Koka]

227 / 248

Approaches to storage allocation

I Manual, e.g. C/C++
Danger: user-incompetence (use after free)

I Automatic, e.g. Java, Python
Danger: unexpected delays (GC in a flight controller???)

I Ban it, MISRA (motor industry embedded coding standard)
Rule 18-4-1 “Dynamic heap memory allocation shall not be
used.”

I Type-managed – Rust
Upside: type system ensures memory- and thread-safety
and automatically adds calls to deallocate storage. No GC.
Downside: search online for “Rust hard to learn” – but this
is perhaps an advantage for smart programmers!
Fact: Rust is ranked 19 in the 2022 RedMonk language
rankings – so there are plenty of smart programmers and
interesting companies about!

228 / 248

Storage management is more than allocation and
deallocation

Regardless of manual or automatic deallocation there’s a wider
issue: ownership (related to the sweet spots on slides 222)
I If I pass a mutable object to be incorporated into a global

datastructure, then logically the call transfers ownership
from the caller to the callee, so I should never refer to it
again – just like free!

I When an API call returns me a record (which I plan to
mutate) is the caller or returner (callee) responsible for
copying it?

I Can we check this sort of property at compile time? Types?
Reasoning about ownership is more general than reasoning
about manual deallocation (freeing an object is just like passing
ownership to the pool of free memory).

229 / 248

Type Systems – weakness

In traditional type systems Γ ` e : t , variables have the same
type throughout the scope that introduce them.

This means that the three errors in the following program can’t
be detected by the type system:

{ char *x = malloc(10); // x has type char *
foo(x); // x still has type char *
free(x); // x has type char * (but should not??)
foo(x); // a use-after-free disaster...
x = malloc(20); // type char * is right again for x
x = malloc(30); // an unfaulted memory leak

} // and another one (x gone out-of-scope)

Replacing free(x) with AddToGlobalDataStructure(x)

shows classical types are equally weak at controlling sharing of
data in languages like Java (details on next slide).

230 / 248

Type Systems – weakness (2)

{ char *x = malloc(sizeof(SomeRecord));
x->field1 = 4; x->field2 = 5;
AddToGlobalDataStructure(x);
// x = malloc(sizeof(SomeRecord));
x->field1 = 8; x->field2 = 9;
AddToGlobalDataStructure(x);
// free(x);

}

Is there a bug in this code? [Almost certainly.] But what is it?
I AddToGlobalDataStructure wants to take ownership of x,

so the problem is due to commenting out line 4?
I AddToGlobalDataStructure merely reads the fields of x, so

the problem is due to commenting out line 7?
I Common error in API-understanding (= bugs) – needs

documentation (formal or informal).
I How can we document this formally? [Answer: “Use Rust”]

231 / 248

Solutions

I Code it all in the type system: linear types, substructural
types, separation logic.

I Treat reference types as having two attributes: type and
ownership.

I Just different phrasing, Rust follows the latter.
I Rust performs type-checking then runs the borrow checker.

Borrow? Well, if we have owners we might also lend and
borrow, right?

[Thanks to Brendan Coll (CST Part II 2021/22) for his
comments on these notes on Rust.]

232 / 248

Rust by example
(from the manual)

I Rust types look a bit like Java types with C-like qualifiers,
but be careful.

I Box<i32> is like ref in ML or a boxed int in Java:

fn create_box() {
let _box1 = Box::new(3i32); // ref to heap int
// ’_box1’ is destroyed (’dropped’) and its memory freed
// Resembles C++ RAII/destructors.

}
// destroy_box takes ownership of an item of
// heap-allocated memory (default call-by-value)
fn destroy_box(c: Box<i32>) {
println!("Destroying a box that contains {}", c);
// ’c’ goes out of scope here and is deallocated.

}

I Passing an object by value passes its ownership, and
owners can destroy things (think cars etc.)

But but but . . .
233 / 248

Copying and passing by value as similar

Rust calls let b=a below (and also passing by value) a move.

fn main() {
let x = 5u32; // stack allocated int
let y = x; // copy x to y
println!("x is {}, and y is {}", x, y); // use both

// BUT:
let a = Box::new(5i32); // stack ref to heap-allocated int
println!("a contains: {}", a); // (borrows the ref)

let b = a; // copy a to b -- transfers ownership
println!("a contains: {}", a); // error, ’a’ not owner

destroy_box(b);
println!("b contains: {}", b); // error, ’b’ not owner

}

Can we really write programs?

234 / 248

Mutability

Mutability of data can be changed when ownership is
transferred (think why). Note * is not quite like C:

fn main() {
let immutable_box = Box::new(5u32);
println!("immutable_box contains {}", immutable_box);

*immutable_box = 4; // error

// *Move* the box, changing the ownership (and mutability)
let mut mutable_box = immutable_box;

println!("mutable_box contains {}", mutable_box); // 5

*mutable_box = 4;
println!("mutable_box now contains {}", mutable_box); // 4

}

235 / 248

Borrowing
fn borrow_box(x: &Box<i32>) {

println!("A borrowed box (see below): {}={}" &x, x); }

fn borrow_twice(x: &Box<i32>, y: &Box<i32>) {
println!("Borrow two boxes: {}, {}", x, y); }

fn borrow_and_eat(x: &Box<i32>, y: Box<i32>) {
println!("Borrow box {}, and destroy box {}", x, y); }

fn main() {
let b = Box::new(5i32);
let c = Box::new(6i32);
borrow_box(&b); // 5=5
borrow_twice(&b,&c); // 5,6
borrow_twice(&b,&b); // 5,5
borrow_and_eat(&b,c); // 5,6
borrow_and_eat(&b,b); // error (borrow checker)

}

Subtlety: println! is a macro which implicitly inserts & before
borrowed arguments, see borrow_box above using x twice.

236 / 248

Borrowing – more details
I Can borrow (&mut) a mutable object once, or an immutable

object many times (cf. Multiple Reader Single Writer
(MRSW) in concurrent systems). Good for concurrent
access, and also for the AddToGlobalDataStructure
example earlier.

I Rust’s borrowing discipline prevents unsafe uses of
aliasing.

I Can borrow parts of an object
I All borrowing must be completed before ownership can be

transferred
I Gives memory safety – no referencing freed memory, and

pretty well avoids memory leaks. [Subtleties: you can
break memory safety by using unsafe to cheat the type
system; you can leak memory if you really try but not using
examples we have seen.]

I Rust advocates claim that these rules are an acceptable
the sweet spot to ensure memory safety.

237 / 248

Resumable exceptions
Normally called (Algebraic) Effect Handlers

Start by revisiting exceptions (SML, OCaml, Java are all
semantically similar):

I exception Foo; declare exception Foo

I raise e; raise an exception
I try e catch Foo => e’; handle exception Foo

Exceptions behave syntactically like constructors (for type exn

in SML/OCaml and subclasses of Throwable in Java), and
hence may take parameters; the catch part of try is like
pattern matching.

[Thanks to Dan Gooding (CST Part II 2021/22) for examples
and general discussion; see also his Part II project on Koka.]

238 / 248

Exceptions: dynamic or static scoping?

I A mixture!
I Declaring an exception is statically scoped

exception Foo;

I Handling an exception is like dynamic scoping
exception Foo;
fun f():int = raise Foo;
fun g() = (try f() catch Foo => 1) + f();
fun main() = (try g() catch Foo => 42)

gives 42.

Subtlety: OCaml doesn’t syntactically allow local exception
declarations, but wrapping the exception in a module

circumvents this.

239 / 248

Resumable exceptions

I Resumable exceptions are generally called effects.
Why? Can see calls to side-effecting operations like IO as
having exceptional behaviour handled by OS (a system
call), and then your program is resumed.

I In general effects have result types to allow
resume-with-a-value (think read()).

I We now look at Koka programs using resumable
exceptions to model yield, dynamic scoping and Prolog
non-determinism.

I We use resume to return a value from an effect
I Koka subtlety: effects can be declared as ctl or fun.

Declaring an effect as fun is syntactic sugar – such code
desugars to use ctl and inserts resume automatically –
but also allows the compiler to generate more efficient
code.

240 / 248

A simple Koka program

// A generator effect with one ’fun’ operation
effect yieldeff

fun yield(x : int) : ()

// Traverse a list and yield the elements
fun traverse(xs : list<int>) : yieldeff ()

match xs
Cons(x,xx) -> yield(x); traverse(xx)
Nil -> ()

fun main() : console ()
with fun yield(i : int)
println("yielded " ++ i.show)

[1,2,3].traverse

[Modified from https://koka-lang.github.io/koka/doc/index.html]
Gives "yielded 1" "yielded 2" "yielded 3"

241 / 248

Using ctl exceptions

An optionally resumable (ctl) effect

effect yieldeff
ctl yield(x : int) : ()

// Traverse a list and yield the elements
fun traverse(xs : list<int>) : yieldeff ()
match xs
Cons(x,xx) -> yield(x); traverse(xx)
Nil -> ()

fun main() : console ()
with ctl yield(i : int)
if (i>2) then () // don’t resume
else // unusual syntax to reflect fun desugaring:
resume(println("yielded " ++ i.show))

[1,2,3,4].traverse

Gives "yielded 1" "yielded 2"

242 / 248

Effect names vs. effect-operation names
Minor naming subtlety

I Why did I distinguish yield from yieldeff?
I Pedagogy! Just like avoiding list : int list when

learning ML
I Experts tend not to bother when an effect only has a single

effect operation (like yield)
I But necessary for effects with multiple operations:

effect state<a> {
ctl get() : a
ctl set(s : a) : ()

}

243 / 248

Dynamic scoping – using ctl effects
// Simulation of dynamic scoping
effect dyneff
ctl dynvar (s : string) : int

fun f1() : dyneff int
dynvar("x") + dynvar("y") + dynvar("z");

fun f2(x : int) : dyneff int
with ctl dynvar(s)
if s=="x" then resume(x) // x visible as dynamic
else if s=="z" then resume(20) // bind z to 20
else resume(dynvar(s)); // look in outer scope

f1()

fun foo() : dyneff int
dynvar("x") + f2(500) + 1

fun main() : console ()
with ctl dynvar(s)
resume(1000) // unbound vars give 1000

println("foo gave " ++ foo().show) // 2521

244 / 248

Dynamic scoping – using fun effects
// Simulation of dynamic scoping using fun effects
effect dyneff
fun dynvar (s : string) : int

fun f1() : dyneff int
dynvar("x") + dynvar("y") + dynvar("z");

fun f2(x : int) : dyneff int
with fun dynvar(s)
if s=="x" then x else if s=="z" then 20
else dynvar(s); // look in outer scope

f1()

fun foo() : dyneff int
dynvar("x") + f2(500) + 1

fun main() : console ()
with fun dynvar(s)
1000 // unbound vars give 1000

println("foo gave " ++ foo().show) // 2521

245 / 248

Prolog style backtracking as effects
fun myor(a: bool, b: bool) a&&b; // define non-short-circuit OR

effect choose
ctl flip() : bool // new: handlers resume flip() more than once

fun mystery() : <choose,console> bool // a function to test
val x = flip()
val y = flip()
val z = flip()
val myst = !x && y && !z
// this debug line causes the uses of ’console’
println(x.show ++ y.show ++ z.show ++ "->" ++ myst.show)
myst

fun satisfiable(p : () -> <choose,console> bool) : <console> bool
// Try all inputs to see if p satisfiable;
// the order is: xyz = 000, 001, 010, 011, 100, ...
with ctl flip()

// for each input variable, try both values:
myor(resume(False), resume(True)) // short-circuit OR differs(!)

p()

fun main()
satisfiable(mystery).println // True

246 / 248

The bigger picture
I We’ve focused on effects including exceptions (never

resume), fun effects (resume once), and Prolog-style
multiple resumptions.

I Effects are a structured use of continuations.
I Koka has a type system which models possible effects

(Haskell notion of ‘pure’ includes effects {div,exn}):
fun sqr : (int) -> total int // total: mathematical total function

fun divide : (int,int) -> exn int // exn: may raise an exception (partial)

fun turing : (tape) -> div int // div: may not terminate (diverge)

fun print : (string) -> console () // console: may write to the console

fun rand : () -> ndet int // ndet: non-deterministic

I Various other goodies: type and effect polymorphism; and
Perceus compiler store re-use optimiser:

247 / 248

Places to look for more detail

I https://www.rust-lang.org/

I https://www.eff-lang.org/

I https://koka-lang.github.io/

Such languages (or subsets of their features) can make
interesting Part II projects.

248 / 248

