
Concurrent and Distributed Systems - 2022–2023

CS0: Get-started Questions (DJ Greaves) (Rev A)

The questions on this preliminary sheet are mostly open-ended and their purpose is mainly for
discussion in the first supervision. So do not worry about generating complete answers in ad-
vance.

* Star denotes optional/advanced exercise.

Q0 Parallel Programming
List or tabulate the essential similarities and/or differences between parallel programming and
distributed systems.

Can you think of an application or algorithm where the shared memory is not just being used for
some form of ‘message passing’?

Q1 Non-deterministic Schedulling
Why might the output from a concurrent program vary on different runs? What is one advantage
of allowing this? What is one disadvantage? [Do not consider programs that read the RTC (real-
time clock), use random number generators or read a different input data in different runs!]

Q2 Operating System Fundamental Abstractions.
Early versions of the Windows Operating System (before circa 1998) lacked most features that
would be expected to be found in an operating system: it was essentially a GUI-controlled com-
mand shell. List the minimal abstractions expected from a proper operating system. Windows did
provide some basic, non-preemptive threads (using co-routines). What benefit did having threads
bring and what problem arose from them being non-preemptive? What is the essential difference
between a thread and a process? Name four segments typically associated with a normal/minimal
process. When further threads are added, what might happen to the number of segments?

Q3 Atomic Hardware Operations
This is a question to think about at the start of this CC/DS course and which you should probably
be able to answer with confidence by start of Lent term!

Which of the following operations can be considered atomic on a modern digital computer: Store
of a character? Store of a 32-bit word? Store of a 64-bit word? Atomic compare-and-swap? Write
of a disk sector? A system call? A floating-point division? Sending a network packet? Signalling
a semaphore? An inter-processor interrupt (IPI) aka inter-core interrupt (ICI) ?

Make sure you understand the difference between cache consistency and sequential consistency by
the end of the Computer Design course. You may find this book helpful: ‘Modern SoC Design on
Arm’ [2021, DJ Greaves].

1

https://www.cl.cam.ac.uk/~djg11/pubs/modern-soc-design-djg/
https://www.cl.cam.ac.uk/~djg11/pubs/modern-soc-design-djg/


Q4 CBMC Example (*)
List the state variables required to model a ‘Beer Fridge Stocking problem’ as lectured with, say, 2
housemates. Separate state variables are likely required for the state of the fridge, each housemate
and the note. Give a state transition graph for each participant showing its effects on shared state
variables. Is the system finite state? Will their product sensibly be synchronous or asynchronous?
Advanced: see if you can do anything useful with the CBMC model checker are your abstraction.

Q5 Pthreads C Example from L1.
If you already have some C experience, you can try this now. Otherwise, do leave it until you are
more in the swing of C/C++.

// l1d1.c CCDS L1 D1: compile with something like: gcc -g l1d1.c -lpthread
#include <pthread.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>

#define NUMTHREADS 4

char *threadstr = "Thread";

// Do we even need the random call to get random results?
void *threadfn(void *arg)
{

long int threadnum = (long int)(arg);
sleep(rand() % 2); // Sleep 0 or 1 seconds
printf(" %s %ld\n", threadstr, threadnum);
return 0;

}

int main(void)
{

printf("Starting\n");

pthread_t threads[NUMTHREADS]; // Thread control blocks.

for (long int i = 0; i < NUMTHREADS; i++)
pthread_create(&threads[i], 0, threadfn, (void *)i);

for (int i = 0; i < NUMTHREADS; i++) pthread_join(threads[i], 0);

return 0;
}
// eof

2



©2019-22 - DJ Greaves.

3


