Complexity Theory

Lecture 6

Anuj Dawar

http://www.cl.cam.ac.uk/teaching/2223/Complexity
Independent Set

Given a graph \(G = (V, E) \), a subset \(X \subseteq V \) of the vertices is said to be an *independent set*, if there are no edges \((u, v)\) for \(u, v \in X\).

The natural algorithmic problem is, given a graph, find the largest independent set.

To turn this *optimisation problem* into a *decision problem*, we define IND as:

The set of pairs \((G, K)\), *where* \(G \) *is a graph, and* \(K \) *is an integer, such that* \(G \) *contains an independent set with* \(K \) *or more vertices.*

IND is clearly in NP. We now show it is NP-complete.
Reduction

We can construct a reduction from 3SAT to IND.

A Boolean expression ϕ in 3CNF with m clauses is mapped by the reduction to the pair (G, m), where G is the graph obtained from ϕ as follows:

- G contains m triangles, one for each clause of ϕ, with each node representing one of the literals in the clause.
- Additionally, there is an edge between two nodes in different triangles if they represent literals where one is the negation of the other.
Example

$$(x_1 \lor x_2 \lor \neg x_3) \land (x_3 \lor \neg x_2 \lor \neg x_1)$$
Clique

Given a graph \(G = (V, E) \), a subset \(X \subseteq V \) of the vertices is called a \textit{clique}, if for every \(u, v \in X \), \((u, v)\) is an edge.

As with \textit{IND}, we can define a decision problem:
\textbf{CLIQUE} is defined as:

\textit{The set of pairs} \((G, K)\), \textit{where} \(G \) \textit{is a graph, and} \(K \) \textit{is an integer, such that} \(G \) \textit{contains a clique with} \(K \) \textit{or more vertices}.
CLIQUE is in NP by the algorithm which guesses a clique and then verifies it.

CLIQUE is NP-complete, since $\text{IND} \leq_p \text{CLIQUE}$ by the reduction that maps the pair (G, K) to (\bar{G}, K), where \bar{G} is the complement graph of G.
k-Colourability

A graph $G = (V, E)$ is k-colourable, if there is a function

$$\chi : V \rightarrow \{1, \ldots, k\}$$

such that, for each $u, v \in V$, if $(u, v) \in E,$

$$\chi(u) \neq \chi(v)$$

This gives rise to a decision problem for each k.
2-colourability is in P.
For all $k > 2$, k-colourability is NP-complete.
3-Colourability

3-Colourability is in NP, as we can guess a colouring and verify it.

To show NP-completeness, we can construct a reduction from 3SAT to 3-Colourability.

For each variable x, we have two vertices x, \bar{x} which are connected in a triangle with the vertex a (common to all variables).

In addition, for each clause containing the literals l_1, l_2 and l_3 we have a gadget.
Gadget

With a further edge from \(a \) to \(b \).
Recall the definition of HAM—the language of Hamiltonian graphs.

Given a graph $G = (V, E)$, a Hamiltonian cycle in G is a path in the graph, starting and ending at the same node, such that every node in V appears on the cycle exactly once.

A graph is called Hamiltonian if it contains a Hamiltonian cycle.

The language HAM is the set of encodings of Hamiltonian graphs.
Hamiltonian Cycle

We can construct a reduction from 3SAT to HAM. Essentially, this involves coding up a Boolean expression as a graph, so that every satisfying truth assignment to the expression corresponds to a Hamiltonian circuit of the graph.

This reduction is much more intricate than the one for IND.
Travelling Salesman

Recall the travelling salesman problem

Given

- \(V \) — a set of nodes.
- \(c : V \times V \to \mathbb{IN} \) — a cost matrix.

Find an ordering \(v_1, \ldots, v_n \) of \(V \) for which the total cost:

\[
c(v_n, v_1) + \sum_{i=1}^{n-1} c(v_i, v_{i+1})
\]

is the smallest possible.
Travelling Salesman

As with other optimisation problems, we can make a decision problem version of the Travelling Salesman problem.

The problem TSP consists of the set of triples

\[(V, c : V \times V \to \mathbb{N}, t)\]

such that there is a tour of the set of vertices \(V\), which under the cost matrix \(c\), has cost \(t\) or less.
Reduction

There is a simple reduction from HAM to TSP, mapping a graph \((V, E)\) to the triple \((V, c : V \times V \to \mathbb{N}, n)\), where

\[
c(u, v) = \begin{cases}
1 & \text{if } (u, v) \in E \\
2 & \text{otherwise}
\end{cases}
\]

and \(n\) is the size of \(V\).