Consider the decision problem (or *language*) Composite defined by:

\[\{ x \mid x \text{ is not prime} \} \]

This is the complement of the language Prime.

Is Composite \(\in \mathbb{P} \)?

Clearly, the answer is yes if, and only if, Prime \(\in \mathbb{P} \).
Hamiltonian Graphs

Given a graph $G = (V, E)$, a *Hamiltonian cycle* in G is a path in the graph, starting and ending at the same node, such that every node in V appears on the cycle *exactly once*.

A graph is called *Hamiltonian* if it contains a Hamiltonian cycle.

The language HAM is the set of encodings of Hamiltonian graphs.

Is $HAM \in P$?
Examples

The first of these graphs is not Hamiltonian, but the second one is.
Graph Isomorphism

Given two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$, is there a bijection

$$\iota : V_1 \rightarrow V_2$$

such that for every $u, v \in V_1$,

$$(u, v) \in E_1 \text{ if, and only if, } (\iota(u), \iota(v)) \in E_2.$$

Is Graph Isomorphism $\in P$?
The problems Composite, SAT, HAM and Graph Isomorphism have something in common.

In each case, there is a search space of possible solutions.

- the numbers less than x
- truth assignments to the variables of ϕ
- lists of the vertices of G
- a bijection between V_1 and V_2

The size of the search is exponential in the length of the input.

Given a potential solution in the search space, it is easy to check whether or not it is a solution.
Verifiers

A verifier V for a language L is an algorithm such that

$$L = \{ x \mid (x, c) \text{ is accepted by } V \text{ for some } c \}$$

If V runs in time polynomial in the length of x, then we say that

L is polynomially verifiable.

Many natural examples arise, whenever we have to construct a solution to some design constraints or specifications.
Nondeterminism

If, in the definition of a Turing machine, we relax the condition on δ being a function and instead allow an arbitrary relation, we obtain a *nondeterministic Turing machine*.

$$\delta \subseteq (Q \times \Sigma) \times ((Q \cup \{\text{acc}, \text{rej}\}) \times \Sigma \times \{R, L, S\}).$$

The yields relation \rightarrow_M is also no longer functional.

We still define the language accepted by M by:

$$\{x \mid (s, \triangleright, x) \rightarrow^*_M (\text{acc}, w, u) \text{ for some } w \text{ and } u\}$$

though, for some x, there may be computations leading to accepting as well as rejecting states.
With a nondeterministic machine, each configuration gives rise to a tree of successive configurations.

Computation Trees

(s, ⊢, x) → (q₀, u₀, w₀) → (q₀₀, u₀₀, w₀₀) → (q₁₀, u₁₀, w₁₀) → ... → (acc, ...)
We have already defined $\text{TIME}(f)$ and $\text{SPACE}(f)$.

$\text{NTIME}(f)$ is defined as the class of those languages L which are accepted by a nondeterministic Turing machine M, such that for every $x \in L$, there is an accepting computation of M on x of length $O(f(n))$, where n is the length of x.

$$\text{NP} = \bigcup_{k=1}^{\infty} \text{NTIME}(n^k)$$

Anuj Dawar Complexity Theory
For a language in $\text{NTIME}(f)$, the height of the tree can be bounded by $f(n)$ when the input is of length n.

Anuj Dawar Complexity Theory
A language L is polynomially verifiable if, and only if, it is in \textbf{NP}.

To prove this, suppose L is a language, which has a verifier V, which runs in time $p(n)$.

The following describes a \textit{nondeterministic algorithm} that accepts L

1. input x of length n
2. nondeterministically guess c of length $\leq p(n)$
3. run V on (x, c)
In the other direction, suppose M is a nondeterministic machine that accepts a language L in time n^k.

We define the *deterministic algorithm* V which on input (x, c) simulates M on input x. At the i^{th} nondeterministic choice point, V looks at the i^{th} character in c to decide which branch to follow. If M accepts then V accepts, otherwise it rejects.

V is a polynomial verifier for L.
We can think of nondeterministic algorithms in the generate-and-test paradigm:

Where the *generate* component is nondeterministic and the *verify* component is deterministic.
Given two languages $L_1 \subseteq \Sigma_1^*$, and $L_2 \subseteq \Sigma_2^*$,

A *reduction* of L_1 to L_2 is a *computable* function

$$f : \Sigma_1^* \to \Sigma_2^*$$

such that for every string $x \in \Sigma_1^*$,

$$f(x) \in L_2 \text{ if, and only if, } x \in L_1$$