
Complexity Theory
Lecture 2

Anuj Dawar

http://www.cl.cam.ac.uk/teaching/2223/Complexity



Formalising Algorithms

To prove a lower bound on the complexity of a problem, rather than a
specific algorithm, we need to prove a statement about all algorithms for
solving it.

In order to prove facts about all algorithms, we need a mathematically
precise definition of algorithm.

We will use the Turing machine.
The simplicity of the Turing machine means it’s not useful for
actually expressing algorithms, but very well suited for proofs
about all algorithms.

Anuj Dawar Complexity Theory



Turing Machines

For our purposes, a Turing Machine consists of:

• Q — a finite set of states;
• Σ — a finite set of symbols, including t and ..
• s ∈ Q — an initial state;
• δ : (Q × Σ)→ (Q ∪ {acc, rej})× Σ× {L,R,S}

A transition function that specifies, for each state and symbol a next
state (or accept acc or reject rej), a symbol to overwrite the current
symbol, and a direction for the tape head to move (L – left, R –
right, or S - stationary)

Anuj Dawar Complexity Theory



Configurations

A complete description of the configuration of a machine can be given if
we know what state it is in, what are the contents of its tape, and what
is the position of its head. This can be summed up in a simple triple:

Definition
A configuration is a triple (q,w , u), where q ∈ Q and w , u ∈ Σ?

The intuition is that (q,w , u) represents a machine in state q with the
string wu on its tape, and the head pointing at the last symbol in w .

The configuration of a machine completely determines the future
behaviour of the machine.

Anuj Dawar Complexity Theory



Computations

Given a machine M = (Q,Σ, s, δ) we say that a configuration (q,w , u)
yields in one step (q′,w ′, u′), written

(q,w , u)→M (q′,w ′, u′)

if

• w = va ;
• δ(q, a) = (q′, b,D); and
• either D = L and w ′ = v and u′ = bu

or D = S and w ′ = vb and u′ = u
or D = R and w ′ = vbc and u′ = x , where u = cx . If u is empty,
then w ′ = vbt and u′ is empty.

Anuj Dawar Complexity Theory



Computations

The relation →?
M is the reflexive and transitive closure of →M .

A sequence of configurations c1, . . . , cn, where for each i , ci →M ci+1, is
called a computation of M.

The language L(M) ⊆ Σ? accepted by the machine M is the set of strings

{x | (s, ., x)→?
M (acc,w , u) for some w and u}

A machine M is said to halt on input x if for some w and u, either
(s, ., x)→?

M (acc,w , u) or (s, ., x)→?
M (rej,w , u)

Anuj Dawar Complexity Theory



Decidability

A language L ⊆ Σ? is recursively enumerable if it is L(M) for some M.

A language L is decidable if it is L(M) for some machine M which halts
on every input.

A language L is semi-decidable if it is recursively enumerable.

A function f : Σ? → Σ? is computable, if there is a machine M, such
that for all x , (s, ., x)→?

M (acc, .f (x), ε)

Anuj Dawar Complexity Theory



Example

Consider the machine with δ given by:

. 0 1 t

s s, .,R rej, 0,S rej, 1,S q,t,R
q rej, .,R q, 1,R q, 1,R q′, 0,R
q′ rej, .,R rej, 0,S q′, 1, L acc,t,S

This machine, when started in configuration (s, .,t1n0) eventually halts
in configuration (acc, . t 1n+10t, ε).

Anuj Dawar Complexity Theory



Multi-Tape Machines

The formalisation of Turing machines extends in a natural way to
multi-tape machines. For instance a machine with k tapes is specified by:

• Q, Σ, s; and
• δ : (Q × Σk)→ (Q ∪ {acc, rej})× (Σ× {L,R,S})k

Similarly, a configuration is of the form:

(q,w1, u1, . . . ,wk , uk)

Anuj Dawar Complexity Theory



Running Time

With any Turing machine M, we associate a function r : IN→ IN called
the running time of M.

r(n) is defined to be the largest value R such that there is a string x of
length n so that the computation of M starting with configuration
(s, ., x) is of length R (i.e. has R successive configurations in it) and
ends with an accepting configuration.

In short, r(n) is the length of the longest accepting computation of M on
an input of length n.
We let r(n) = 0 if M does not accept any inputs of length n.

Anuj Dawar Complexity Theory



Complexity

For any function f : IN→ IN, we say that a language L is in TIME(f ) if
there is a machine M = (Q,Σ, s, δ), such that:

• L = L(M); and
• The running time of M is O(f ).

Similarly, we define SPACE(f ) to be the languages accepted by a
machine which uses O(f (n)) tape cells on inputs of length n.

In defining space complexity, we assume a machine M, which has a
read-only input tape, and a separate work tape. We only count cells on
the work tape towards the complexity.

Anuj Dawar Complexity Theory


