Define the *configuration graph* of M, x to be the graph whose nodes are the possible configurations, and there is an edge from i to j if, and only if, $i \rightarrow_M j$.

Then, M accepts x if, and only if, some accepting configuration is reachable from the starting configuration $(s, \triangleright, x, \triangleright, \varepsilon)$ in the configuration graph of M, x.
Using the $O(n^2)$ algorithm for Reachability, we get that $L(M)$—the language accepted by M—can be decided by a deterministic machine operating in time

$$c'(nc^f(n))^2 \sim c' c^{2(\log n + f(n))} \sim k^{(\log n + f(n))}$$

In particular, this establishes that $\text{NL} \subseteq \text{P}$ and $\text{NPSPACE} \subseteq \text{EXP}$.
We can construct an algorithm to show that the Reachability problem is in \(\text{NL} \):

1. write the index of node \(a \) in the work space;
2. if \(i \) is the index currently written on the work space:
 2.1 if \(i = b \) then accept, else
 guess an index \(j \) (\(\log n \) bits) and write it on the work space.
 2.2 if \((i, j) \) is not an edge, reject, else replace \(i \) by \(j \) and return to (2).
Savitch’s Theorem

Further simulation results for nondeterministic space are obtained by other algorithms for Reachability.

We can show that Reachability can be solved by a deterministic algorithm in $O((\log n)^2)$ space.

Consider the following recursive algorithm for determining whether there is a path from a to b of length at most i.
$O((\log n)^2)$ space Reachability algorithm:

Path(a, b, i)
if $i = 1$ and $a \neq b$ and (a, b) is not an edge reject
else if (a, b) is an edge or $a = b$ accept
else, for each node x, check:
 1. Path($a, x, \lfloor i/2 \rfloor$)
 2. Path($x, b, \lceil i/2 \rceil$)

if such an x is found, then accept, else reject.

The maximum depth of recursion is $\log n$, and the number of bits of information kept at each stage is $3 \log n$.
Savitch’s Theorem

The space efficient algorithm for reachability used on the configuration graph of a nondeterministic machine shows:

\[\text{NSPACE}(f) \subseteq \text{SPACE}(f^2) \]

for \(f(n) \geq \log n \).

This yields

\[\text{PSPACE} = \text{NPSPACE} = \text{co-NPSPACE}. \]
A still more clever algorithm for Reachability has been used to show that nondeterministic space classes are closed under complementation:

If $f(n) \geq \log n$, then

$$\text{NSPACE}(f) = \text{co-NSPACE}(f)$$

In particular

$$\text{NL} = \text{co-NL}.$$
Logarithmic Space Reductions

We write

\[A \leq_L B \]

if there is a reduction \(f \) of \(A \) to \(B \) that is computable by a deterministic Turing machine using \(O(\log n) \) workspace (with a read-only input tape and write-only output tape).

Note: We can compose \(\leq_L \) reductions. So,

if \(A \leq_L B \) and \(B \leq_L C \) then \(A \leq_L C \)
Analysing carefully the reductions we constructed in our proofs of \(\text{NP} \)-completeness, we can see that SAT and the various other \(\text{NP} \)-complete problems are actually complete under \(\leq_L \) reductions.

Thus, if SAT \(\leq_L A \) for some problem A in L then not only \(P = \text{NP} \) but also \(L = \text{NP} \).
P-complete Problems

It makes little sense to talk of complete problems for the class P with respect to polynomial time reducibility \leq_{P}.

There are problems that are complete for P with respect to logarithmic space reductions \leq_{L}.
One example is CVP—the circuit value problem.

That is, for every language A in P,

$$A \leq_{L} \text{CVP}$$

- If $\text{CVP} \in \text{L}$ then $\text{L} = \text{P}$.
- If $\text{CVP} \in \text{NL}$ then $\text{NL} = \text{P}$.