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Configuration Graph

Define the configuration graph of M, x to be the graph whose nodes are
the possible configurations, and there is an edge from i to j if, and only
if, i →M j .

Then, M accepts x if, and only if, some accepting configuration is
reachable from the starting configuration (s, ., x , ., ε) in the
configuration graph of M, x .
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Using the O(n2) algorithm for Reachability, we get that L(M)—the
language accepted by M—can be decided by a deterministic machine
operating in time

c ′(nc f (n))2 ∼ c ′c2(log n+f (n)) ∼ k(log n+f (n))

In particular, this establishes that NL ⊆ P and NPSPACE ⊆ EXP.
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NL Reachability

We can construct an algorithm to show that the Reachability problem is
in NL:

1. write the index of node a in the work space;
2. if i is the index currently written on the work space:

2.1 if i = b then accept, else
guess an index j (log n bits) and write it on the work space.

2.2 if (i , j) is not an edge, reject, else replace i by j and return to (2).
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Savitch’s Theorem

Further simulation results for nondeterministic space are obtained by
other algorithms for Reachability.

We can show that Reachability can be solved by a deterministic
algorithm in O((log n)2) space.

Consider the following recursive algorithm for determining whether there
is a path from a to b of length at most i .
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O((log n)2) space Reachability algorithm:

Path(a, b, i)
if i = 1 and a 6= b and (a, b) is not an edge reject
else if (a, b) is an edge or a = b accept
else, for each node x , check:
1. Path(a, x , bi/2c)
2. Path(x , b, di/2e)

if such an x is found, then accept, else reject.

The maximum depth of recursion is log n, and the number of bits of
information kept at each stage is 3 log n.
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Savitch’s Theorem

The space efficient algorithm for reachability used on the configuration
graph of a nondeterministic machine shows:

NSPACE(f ) ⊆ SPACE(f 2)

for f (n) ≥ log n.

This yields
PSPACE = NPSPACE = co-NPSPACE.
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Complementation

A still more clever algorithm for Reachability has been used to show that
nondeterministic space classes are closed under complementation:

If f (n) ≥ log n, then

NSPACE(f ) = co-NSPACE(f )

In particular
NL = co-NL.
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Logarithmic Space Reductions

We write
A ≤L B

if there is a reduction f of A to B that is computable by a deterministic
Turing machine using O(log n) workspace (with a read-only input tape
and write-only output tape).

Note: We can compose ≤L reductions. So,

if A ≤L B and B ≤L C then A ≤L C
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NP-complete Problems

Analysing carefully the reductions we constructed in our proofs of
NP-completeness, we can see that SAT and the various other
NP-complete problems are actually complete under ≤L reductions.

Thus, if SAT ≤L A for some problem A in L then not only P = NP but
also L = NP.
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P-complete Problems

It makes little sense to talk of complete problems for the class P with
respect to polynomial time reducibility ≤P .

There are problems that are complete for P with respect to logarithmic
space reductions ≤L.
One example is CVP—the circuit value problem.

That is, for every language A in P,

A ≤L CVP

• If CVP ∈ L then L = P.
• If CVP ∈ NL then NL = P.
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