One Way Functions

A function f is called a one way function if it satisfies the following conditions:

1. f is one-to-one.
2. for each x, $|x|^{1/k} \leq |f(x)| \leq |x|^k$ for some k.
3. f is computable in polynomial time.
4. f^{-1} is not computable in polynomial time.

We cannot hope to prove the existence of one-way functions without at the same time proving $P \neq NP$.

It is strongly believed that the RSA function:

$$f(x, e, p, q) = (x^e \mod pq, pq, e)$$

is a one-way function.
UP One-way Functions

We have

\[P \subseteq \text{UP} \subseteq \text{NP} \]

It seems unlikely that there are any \text{NP}-complete problems in \text{UP}.

One-way functions exist \textit{if, and only if}, \(P \neq \text{UP} \).
Suppose that L is a language that is in UP but not in P. Let U be an unambiguous machine that accepts L.

Define the function f_U by

$\begin{align*}
 f_U(x) &= 1y \quad \text{where } y \text{ is the input string accepted by this computation.} \\
 f_U(x) &= 0x \quad \text{otherwise.}
\end{align*}$

We can prove that f_U is a one-way function.
Space Complexity

We’ve already seen the definition $\text{SPACE}(f)$: the languages accepted by a machine which uses $O(f(n))$ tape cells on inputs of length n. Counting only work space.

$\text{NSPACE}(f)$ is the class of languages accepted by a nondeterministic Turing machine using at most $O(f(n))$ work space.

As we are only counting work space, it makes sense to consider bounding functions f that are less than linear.
Classes

\[L = \text{SPACE}(\log n) \]

\[\text{NL} = \text{NSPACE}(\log n) \]

\[\text{PSPACE} = \bigcup_{k=1}^{\infty} \text{SPACE}(n^k) \]

The class of languages decidable in polynomial space.

\[\text{NPSPACE} = \bigcup_{k=1}^{\infty} \text{NSPACE}(n^k) \]

Also, define:

\text{co-NL} – the languages whose complements are in \text{NL}.

\text{co-NPSPACE} – the languages whose complements are in \text{NPSPACE}.
Inclusions

We have the following inclusions:

\[L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq NPSPACE \subseteq EXP \]

where \(\text{EXP} = \bigcup_{k=1}^{\infty} \text{TIME}(2^{n^k}) \)

Moreover,

\[L \subseteq NL \cap \text{co-NL} \]
\[P \subseteq NP \cap \text{co-NP} \]
\[\text{PSPACE} \subseteq \text{NPSPACE} \cap \text{co-NPSPACE} \]
Constructible Functions

A complexity class such as $\text{TIME}(f)$ can be very unnatural, if f is. We restrict our bounding functions f to be proper functions:

Definition
A function $f : \mathbb{N} \to \mathbb{N}$ is *constructible* if:

- f is non-decreasing, i.e. $f(n + 1) \geq f(n)$ for all n; and
- there is a deterministic machine M which, on any input of length n, replaces the input with the string $0^{f(n)}$, and M runs in time $O(n + f(n))$ and uses $O(f(n))$ work space.
Examples

All of the following functions are constructible:

- \(\lceil \log n \rceil \);
- \(n^2 \);
- \(n \);
- \(2^n \).

If \(f \) and \(g \) are constructible functions, then so are \(f + g, f \cdot g, 2^f \) and \(f(g) \) (this last, provided that \(f(n) > n \)).
NTIME(\(f\)) can be defined as the class of those languages \(L\) accepted by a *nondeterministic* Turing machine \(M\), such that for every \(x \in L\), there is an accepting computation of \(M\) on \(x\) of length at most \(O(f(n))\).

If \(f\) is a constructible function then any language in NTIME(\(f\)) is accepted by a machine for which all computations are of length at most \(O(f(n))\).

Also, given a Turing machine \(M\) and a constructible function \(f\), we can define a machine that simulates \(M\) for \(f(n)\) steps.
Establishing Inclusions

To establish the known inclusions between the main complexity classes, we prove the following, for any constructible f.

- $\text{SPACE}(f(n)) \subseteq \text{NSPACE}(f(n))$;
- $\text{TIME}(f(n)) \subseteq \text{NTIME}(f(n))$;
- $\text{NTIME}(f(n)) \subseteq \text{SPACE}(f(n))$;
- $\text{NSPACE}(f(n)) \subseteq \text{TIME}(k \log n + f(n))$;

The first two are straightforward from definitions.
The third is an easy simulation.
The last requires some more work.
Reachability

Recall the Reachability problem: given a directed graph $G = (V, E)$ and two nodes $a, b \in V$, determine whether there is a path from a to b in G.

A simple search algorithm solves it:

1. mark node a, leaving other nodes unmarked, and initialise set S to $\{a\}$;
2. while S is not empty, choose node i in S: remove i from S and for all j such that there is an edge (i, j) and j is unmarked, mark j and add j to S;
3. if b is marked, accept else reject.
We can use the $O(n^2)$ algorithm for Reachability to show that: $\text{NSPACE}(f(n)) \subseteq \text{TIME}(k^{\log n} + f(n))$ for some constant k.

Let M be a nondeterministic machine working in space bounds $f(n)$. For any input x of length n, there is a constant c (depending on the number of states and alphabet of M) such that the total number of possible configurations of M within space bounds $f(n)$ is bounded by $n \cdot c^{f(n)}$.

Here, $c^{f(n)}$ represents the number of different possible contents of the work space, and n different head positions on the input.