Definition. A register machine is specified by: [¢ r,,({“l

l"‘\-__

» finitely many registers Rg, Ry, ..., Ry,
(each capable of storing a natural number);

» a program consisting of a finite list of instructions of
the form label : body, where fori = 0,1,2,..., the
(i + 1)™ instruction has label L;.

nstruction body takes one of three forms:

add 1 to contents of register R and

jump to instruction labelled L’

if contents of R is > 0, then subtract

R-—=L',L” 1 fromit and jump to L’, else jump to
L//

HALT stop executing instructions

R+ = L'

L2 21

. ﬂ ;'ll)

_1;"...- \‘i;:h I:____[::.-'ﬁ'-__l (T

—

Computable functions

Definition. f € IN"~IN is (register machine)
computable if there is a register machine M with at least
n + 1 registers Rg, Ry, ..., R, (and maybe more)

such that for all (x1,...,x,) € N" and all y € IN,

the computation of M starting with Ry = 0,
R1 = x1, ..., Ry, = x, and all other registers set

to 0, halts with Ry = y

if and only if f(x1,...,x,) = .

N.B. there may be many different M that compute the same partial
functionf.

L2 29

L3

Coding programs as numbers

34

Turing/Church solution of the Entscheidungsproblem uses

t
C

ne idea that (formal descriptions of) algorithms can be the
ata on which algorithms act.

0 realize this idea with Register Machines we have to be

able to code RM programs as numbers. (In general, such
codings are often called Godel numberings.)

L3

35

] E e W\
ffechive numericl Codes

RM
—'mp\l N\{W)ﬁ'

-\{) ¢ Rly-- Rv\)
TO% , | Xyare-- -
(215 Tn] > \g\,[(?]f nas)

/&Y\mfm Ry

"Effective’ numerical codes

PY‘O% . [1\3"-: 1"‘} — \g,

N
code L , d,QCoiL Wo\vj;nv\wco\[
. s
ﬁ< rpmg:'\) [I\,...,JV\’_\> <___ -, .1 [))_,’J
S o
N mw»»-b"
)\em)ivl\)
1S Rm mmpmw

-(ro,n,l,z,.--\]—l
. ; 2 2%(2y

For x,y € IN, define { ((x y>>
/ (x,y) (2) 2% (2y

Numerical coding of pairs

1)

1) —1

\J&\“\/\M\/\ S\AN ;S (’/qu jFO
e Y\S\/\\‘W\M\i 57\ %}} M{V\\(HW\

L3

Numerical coding of pairs

A Ax
For x,y € IN, define { (%) A 2x(2y 1)
(x,y) = 2%°(2y+1) —1
Kcy»|l o 2 ... O] o | 2
0 Ll 3> S - 0 Z % -
l 2 L 1 . | C 9

0
|
2 1Y v 20... Z >0 19 ..

L3 36

Numerical coding of pairs

2 2*(2y + 1)
= 2°(2y+1) —1

¢ Os
So "

0b{x,y) | = |0b
Ob(x,y) | = |Oby |0

For x,4 € IN, define { <<<’;' ?;

<
k.

0.--0
1...1

(Notation: Obx = x in binary.) e s

E.g. 27 = 0b11011 = (0,13) = (2,3)

36

Numerical coding of pairs

L mx
e {0 2T0 1
So
0b{x,y) | = [Oby |1|/0--:0
Ob(x,y)| = |Oby |0 |1---1

(—, —) gives a bijection (one-one correspondence)
between IN X IN and IN.

{—, —) gives a bijection between IN X IN and
{n €N |n#0}.

36

Numerical coding of lists

list N = set of all finite lists of natural numbers, using ML
notation for lists:

» empty list: []
» list-cons: x:: £ € list N (given x € IN and £ € listIN)

> [xl,xz,...,xn] = X113(x2::("°xn:: []°))

L3 37

L3

Numerical coding of lists

list N = set of all finite lists of natural numbers, using ML
notation for lists.

For £ € list N, define " £ ' € IN by induction on the
length of the list £:
A

{ 2o
Txu 7 2 (x, 7)) =2%(2-T47 4+ 1)

Thus |_[xl, X2yeoo rxn]_| — <<xlr <<x21 te <<xnl O>> tee >> >>

37

L3

Numerical coding of lists

list N = set of all finite lists of natural numbers, using ML
notation for lists.
For £ € list N, define " £ ' € IN by induction on the
length of the list £:
l_[]_l 4L 0
{ Txu 7 2 (x, 7)) =2%(2-T47 4+ 1)

For example:
B]"="3=[]7=(3,0) =23(2-0+1) = 8 = 0b1000

"[1,3]" = (1,7 [3] ") = (1,8) = 34 = 0b100010

"[2,1,3] "= (2,7 [1,3] ") = (2,34) = 276 = 00100010100

37

Numerical coding of lists

list N = set of all finite lists of natural numbers, using ML
notation for lists.
For £ € list N, define " £ ' € IN by induction on the
length of the list £:
l_[]_l 4L 0
{ Txu 7 2 (x, 7)) =2%(2-T47 4+ 1)

For example: 3

37 ="3:[]7 = (3,0) = 23(2-0+1) = 8 = 051000

) /

"[1,3]7 = (1,7[3]7) = (1,8) = 34 = 00100010

"[2,1,3] "= (2,7 [1,3] ") = (2,34) = 276 = 00100010100

L/V“’Ww
3 12

37

Numerical coding of lists

list N = set of all finite lists of natural numbers, using ML
notation for lists.

For £ € listIN, define " £ ' € IN by induction on the
length of the list £:
A

{ 2o
Txu 7 2 (x, 7)) =2%(2-T47 4+ 1)

0b" [x1,X2, ..., %] ' |=[1]0---0][1]0---0].]1[0---0

L3 37

Numerical coding of lists

list N = set of all finite lists of natural numbers, using ML
notation for lists.

For £ € list N, define " £ ' € IN by induction on the
length of the list £:

{ 2o
Txu 7 2 (x, 7)) =2%(2-T47 4+ 1)

0b" [x1,X2, ..., %] ' |=[1]0---0][1]0---0].]1[0---0

Hence £ — " £ gives a bijection from list IN to IN.

L3 37

Numerical coding of programs

Lo : body,

L :bod
If P is the RM program ! _0 J1

L,: b.odyn

then its numerical code is
P& "["body, ,...,"body "
where the numerical code ' body ' of an instruction body is
R —-LiT = (2i,7)

defined by: ¢ "Ry —L;, Ly = (2i+1,(j k))
THALT? £ 0

>

38

Any x € IN decodes to a unique instruction body(x):

if x = 0 then body(x) is HALT,
else (x > 0 and) let x = (y, z) in
if y = 21 is even, then
body(x) is R — L,
else y = 2i+1is odd, let z = (j, k) in
body(x) isR; —Lj, L

So any e € IN decodes to a unique program prog(e),
called the register machine program with index e:

Lo: body(xo)

where e = T [xg, ..., x,]

prog(e) =

Ly body(xn)

L3 39

L3

Example of prog(e)

— n19 18 —
» 786432 = 277 +2° = 0b110...0 =

> 18 = 0b10010 = (1,4) = (1,(0,2)) = "Ry — Lo, Ly"

» 0 = "HALT

So prog(786432) =

18 70”s

[18,0]™

LO . Ra — Lo, Lz
Lq:HALT

40

Example of prog(e)

> 786432 = 21 4218 — (0b110...0 = "[18,0]"
\/_/

18 IIOIIS

> 18 = 0b10010 = (1,4) = (1,(0,2)) = "Ry — Lo, Ly"

» 0 = "HALT'

So prog(786432) =

Lo: Ra — Lo, L2
Lq:HALT

N.B. jump to label with no
body (erroneous halt)

\J\“/\Nf &M/\C\ﬂ‘b\l\ VS c,ovv\PV\Ld b\} o RN\ atia
’?yoz(q&(oLP(ZZ) as ks ?rogrmm 7

40

b = 0b10)10011010
':r[: [)\,O)Z))’l

R

L, ' RI= L,
Ly RY = L,
’PVD?&éG) = L,: RAUT

L-'Bz n;__)LO)L/o
L RE - L

(nwer hatts)
Wahek prkial funchion does Fris compuke ?

Example of prog(e)

> 786432 = 21 4218 — (0b110...0 = "[18,0]"
\/_/
18 "0”s

> 18 = 0b10010 = (1,4) = (1,(0,2)) = "Ry — Lo, Ly"

» 0 = "HALT'

Lo: R’(; — Lo, L2

So prog(786432) = L HALT
1

N.B. In case e = 0 we have 0 = "[] ', so prog(0) is the program with
an empty list of instructions, which by convention we regard as a RM
that does nothing (i.e. that halts immediately).

L3 40

"Effective’ numerical codes

PY‘O% . [1\3"-: 1"‘} — \g,

N
code L , d,QCoiL Wo\vj;nv\wco\[
. s
ﬁ< rpmg:'\) [I\,...,JV\’_\> <___ -, .1 [))_,’J
S o
N mw»»-b"
)\em)ivl\)
1S Rm mmpmw

L4

Universal register machine, U

41

Universal RM U carries out the following computation,
starting with Rg = 0, Ry = e (code of a program), R, = a
(code of a list of arguments) and all other registers zeroed:

» decode e as a RM program P
» decode a as a list of register values aq, ..., a,

» carry out the computation of the RM program P
starting with Rg = 0,R; = ay,...,R, = a, (and any
other registers occurring in P set to 0).

L4 42

L4

Mnemonics for the registers of U and the role they play in
Its program:

R1 = P code of the RM to be simulated
Rp = A code of current register contents of simulated RM

Rz = PC program counter—number of the current instruction
(counting from 0)

Rg = N code of the current instruction body
Rs = C type of the current instruction body

Re¢ = R current value of the register to be incremented or
decremented by current instruction (if not HALT)

Ry = S, Rg = T and Rg9 = Z are auxiliary registers.

43

Overall structure of U’s program

1| copy PCth item of list in P to N; goto |2

else (decode N as (y, z)); C:u=1vy; N:u= z; goto

3

{at this point either C = 2i is even and current instruction is R;r — L,

2| if N = 0 then copy Oth item of list in A to Ry and halt,

)

or C = 2i + 1 is odd and current instruction is R; — Lj, Ly where z = (j, k) }

3| copy ith item of list in A to R; goto |4

abel; restore register values to A; goto |1

L4

4 | execute current instruction on R; update PC to next

44

U

1| copy PCth item of list in P to N; goto |2

else (decode N as (y,z); Cii=1vy; N:u= z; goto

3

{at this point either C = 2i is even and current instruction is Rf — L,
or C = 2i 4+ 1 is odd and current instruction is R; — Lj, Ly where z = (j, k) }

3| copy ith item of list in A to R; goto |4

abel; restore register values to A; goto |1

2| if N = 0 then copy Oth item of list in A to Ry and halt,

)

4 | execute current instruction on R; update PC to next

To implement this, we need RMs for manipulating (codes of) lists of

numbers. . .

L4

44

