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Think you’ve mastered the art of server 
performance? Think again.

BY PouL-henninG KamP

woULd YoU beLieVe me if I claimed that an algorithm 
that has been on the books as “optimal” for 46 years, 
which has been analyzed in excruciating detail by 
geniuses like Knuth and taught in all computer 
science courses in the world, can be optimized to run 
10 times faster? 

A couple of years ago, I fell into some 
interesting company and became the 
author of an open source HTTP ac-
celerator called Varnish, basically an 
HTTP cache to put in front of slow 
Web servers. Today Varnish is used by 
Web sites of all sorts, from Facebook, 
Wikia, and Slashdot to obscure sites 
you have surely never heard of. 

Having spent 15 years as a lead 
developer of the FreeBSD kernel, I 
arrived in user land with a detailed 
knowledge of what happens under the 
system calls. One of the main reasons 

I accepted the Varnish proposal was to 
show how to write a high-performance 
server program. 

Because, not to mince words, the 
majority of you are doing that wrong. 

Not just wrong as in not perfect, 
but wrong as in wasting half, or more, 
of your performance. 

The first user of Varnish, the large 
Norwegian newspaper VG, replaced 
12 machines running Squid with three 
machines running Varnish. The Squid 
machines were flat-out 100% busy, 
while the Varnish machines had 90% 

You’re 
Doing it 
Wrong
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of their CPU available for twiddling 
their digital thumbs.a

The short version of the story is that 
Varnish knows it is not running on the 
bare metal but under an operating sys-
tem that provides a virtual-memory-
based abstract machine. For example, 
Varnish does not ignore the fact that 
memory is virtual; it actively exploits 
it. A 300GB backing store, memory 
mapped on a machine with no more 
than 16GB of RAM, is quite typical. 

a This pun is included specifically to inspire 
Stan Kelly-Bootle.

The user paid for 64 bits of address 
space, and I am not afraid to use it. 

One particular task inside Varnish 
is expiring objects from the cache 
when their virtual life-timers run out 
of sand. This calls for a data structure 
that can efficiently deliver the small-
est keyed object from the total set. 

A quick browse of the mental cata-
log flipped up the binary-heap card, 
which not only sports a O(log2(n)) 
transaction performance, but also has 
a meta-data overhead of only a pointer 
to each object—which is important if 
you have over 10 million objects. 

Careful rereading of Knuth con-
firmed that this was the sensible 
choice, and the implementation was 
trivial: “Ponto facto, Cæsar transit,” 
and so on. 

On a recent trip by night train to 
Amsterdam, my mind wandered, and 
it struck me that Knuth might be ter-
ribly misleading on the performance 
of the binary heap, possibly even by an 
order of magnitude. On the way home, 
also on the train, I wrote a simulation 
that proved my hunch right. 

Before any fundamentalist CS theo-
reticians choke on their coffees: don’t 
panic! The P vs. NP situation is un-
changed, and I have not found a sys-
tematic flaw in the quality of Knuth et 
al.’s reasoning. The findings of CS, as 
we know it, are still correct. They are 
just a lot less relevant and useful than 
you think—at least with respect to per-
formance. 

The oldest reference to the binary 
heap I have located, in a computer 
context, is J.W.J. Williams’ article pub-
lished in the June 1964 issue of Com-
munications of the ACM, entitled “Algo-
rithm Number 232—Heapsort.”2,b The 
trouble is, Williams was already out 
of touch, and his algorithmic analysis 
was outdated even before it was pub-
lished. 

In an article in the April 1961 issue 
of Communications, J. Fotheringham 
documented how the Atlas Computer 
at Manchester University separated 
the concept of an address from a 
memory location, which for all prac-
tical purposes marks the invention 
of virtual memory (VM).1 It took quite 
some time before VM took hold, but 
today all general-purpose, most em-
bedded, and many specialist operat-
ing systems use VM to present a stan-
dardized virtual machine model (such 
as POSIX) to the processes they herd. 

Of course, it would be unjust and 
unreasonable to blame Williams for 
not realizing that Atlas had invali-
dated one of the tacit assumptions of 
his algorithm: only hindsight makes 
that observation possible. The fact is, 
however, 46 years later most CS-edu-
cated professionals still ignore VM as 
a matter of routine. This is an embar-

b How wonderful must it have been to live and 
program back then, when all algorithms in the 
world could be enumerated in an 8-bit byte.

figure 1. comparison of runtime speeds of binary heap and B-heap.

1e +00

100000

10000

1000

100

10

1

12

10

8

6

4

2

0

–8

1M records 
512 per page 
1ms disk

–7 –6 –5

Vm pressure in megabytes

R
u

n
ti

m
e 

in
 s

ec
on

d
s

–4 –3 –2 –1 0

 binary heap (left scale)   b-heap (left scale)   speedup (right scale)

figure 2. close-up comparison of binary-heap and B-heap runtime speeds.
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rassment for CS as a discipline and 
profession, not to mention wasting 
enormous amounts of hardware and 
electricity.

Performance simulation 
Enough talk. Let me put some simu-
lated facts on the table. The plot in 
Figure 1 shows the runtime of the bi-
nary heap and of my new B-heap ver-
sion for one million items on a 64-bit 
machine.c (My esteemed FreeBSD col-
league Colin Percival helpfully point-
ed out the change I have made to the 
binary heap is very much parallel to 
the change from binary tree to B-tree, 
so I have adopted his suggestion and 
named my new variant a B-heap.d)

The x-axis is VM pressure, mea-
sured in the amount of address space 
not resident in primary memory, be-
cause the kernel paged it out to sec-
ondary storage. The left y-axis is run-
time in seconds (log-scale), and the 
right Y-axis shows the ratio of the two 
runtimes: (binary heap/B-heap). 

Let’s get my “order of magnitude” 
claim out of the way. When we zoom 
in on the left side in Figure 2, we see 
there is indeed a factor 10 difference 
in the time the two algorithms take 
when running under almost total VM 
pressure: only 8 to 10 pages of the 
1,954 pages allocated are in primary 
memory at the same time. 

Did you just decide that my order of 
magnitude claim was bogus because 
it is based on only an extreme corner 
case? If so, you are doing it wrong, 
because this is pretty much the real-
world behavior seen. 

Creating and expiring objects in 
Varnish are relatively infrequent ac-
tions. Once created, objects are often 
cached for weeks if not months, and 
therefore the binary heap may not be 
updated even once per minute; on 
some sites not even once per hour. 

In the meantime, we deliver giga-

c Page size is 4KB, each holding 512 pointers 
of 64 bits. The VM system is simulated with 
dirty tracking and perfect LRU page replace-
ment. Paging operations set to 1 millisecond. 
Object key values are produced by random(3). 
The test inserts one million objects, then alter-
nately removes and inserts objects one million 
times, and finally removes the remaining one 
million objects from the heap. Source code is 
at http://phk.freebsd.dk/B-Heap.

d Does Communications still enumerate algo-
rithms, and is eight bits still enough?

bytes of objects to clients’ browsers, 
and since all these objects compete 
for space in the primary memory, the 
VM pages containing the binheap that 
are not accessed get paged out. In the 
worst case of only nine pages resident, 
the binary heap averages 11.5 page 
transfers per operation, while the B-
heap needs only 1.14 page transfers. 
If your server has solid state drives 
(SSD), that is the difference between 
each operation taking 11 or 1.1 milli-
seconds. If you still have rotating plat-
ters, it is the difference between 110 
and 11 milliseconds. 

At this point, is it wrong to think, 
“If it runs only once per minute, who 
cares, even if it takes a full second?” 

We care because the 10 extra pages 
needed once per minute loiter in RAM 
for a while, doing nothing—until the 
kernel pages them back out again, 
at which point they get to pile on top 
of the already frantic disk activity, 
typically seen on a system under this 
heavy VM pressure.e 

e Please don’t take my word for it: applying 
queuing theory to this situation is a very edu-
cational experience.

figure 3. close-up of the effect of Vm pressure on binary-heap and B-heap runtime speeds.
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figure 4. comparisons of runtime speeds of binary heap and B-heap on a mechanical disk.
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Next, let us zoom in on the other 
end of the plot (Figure 3). If there is 
no VM pressure, the B-heap algorithm 
needs more comparisons than the 
binary sort, and the simple parent-to-
child / child-to-parent index calcula-
tion is a tad more involved: so, instead 
of a runtime of 4.55 seconds, it takes 
5.92 seconds—a whopping 30% slow-
er; almost 350 nanoseconds slower 
per operation. 

So, yes, Knuth and all the other 
CS dudes had their math figured out 
right. 

If, however, we move left on the 

curve, then we find, at a VM pressure 
of four missing pages (= 0.2%) the B-
heap catches up, because of fewer VM 
page faults; and it gradually gets bet-
ter and better, until as we saw earlier, 
it peaks at 10 times faster. 

That was assuming you were using 
an SSD, which can do a page operation 
in 1 millisecond—pretty optimistic, in 
particular for the writes. If we simu-
late a mechanical disk by setting the 
I/O time to a still-optimistic 10 mil-
liseconds instead (Figure 4), then B-
heap is 10% faster as soon as the ker-
nel steals just a single page from our 

1,954-page working set and 37% faster 
when four pages are missing. 

so What is a B-heap, anyway? 
The only difference between a binary 
heap and a B-heap is the formula for 
finding the parent from the child, or 
vice versa. 

The traditional n -> {2n, 2n+1} 
formula leaves us with a heap built 
of virtual pages stacked one over the 
next, which causes (almost) all vertical 
traversals to hit a different VM page 
for each step up or down in the tree, 
as shown in Figure 5, with eight items 
per page. (The numbers show the or-
der in which objects are allocated, not 
the key values.) 

The B-heap builds the tree by fill-
ing pages vertically, to match the di-
rection we traverse the heap (Figure 
6). This rearrangement increases the 
average number of comparison/swap 
operations required to keep the tree 
invariant true, but ensures that most 
of those operations happen inside a 
single VM page and thus reduces the 
VM footprint and, consequently, VM 
page faults. 

Two details are worth noting: 
˲˲ Once we leave a VM page through 

the bottom, it is important for perfor-
mance that both child nodes live in 
the same VM page, because we are go-
ing to compare them both with their 
parent. 

˲˲ Because of this, the tree fails to ex-
pand for one generation every time it 
enters a new VM page in order to use 
the first two elements in the page pro-
ductively. 

In our simulated example, fail-
ure to do so would require five pages 
more. 

If that seems unimportant to you, 
then you are doing it wrong: try shift-
ing the B-heap line 20KB to the right 
in figures 2 and 3, and think about the 
implications. 

The parameters of my simulation 
are chosen to represent what happens 
in real life in Varnish, and I have not 
attempted to comprehensively char-
acterize or analyze the performance of 
the B-heap for all possible parameters. 
Likewise, I will not rule out that there 
are smarter ways to add VM-clue to a 
binary heap, but I am not inclined to 
buy a ticket on the Trans-Siberian Rail-
way in order to find time to work it out. 

figure 5. Binary-heap tree structure.
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figure 6. B-heap tree structure.

11

12 3

4

8 16 24 32

12
40

47

13 14 15 25 31 39

10 18

9 17

65 7

figure 7. outdated computer model.

outPutcPu

memoRY

inPut



practice

july 2010  |   vol.  53  |   no.  7   |   communications of the acm     59

The order of magnitude of differ-
ence obviously originates with the 
number of levels of heap inside each 
VM page, so the ultimate speedup will 
be on machines with small pointer 
sizes and big page sizes. This is a 
pertinent observation, as operating 
system kernels start to use super-
pages to keep up with increased I/O 
throughput. 

so Why are You, and i, 
still Doing it Wrong? 
An (in)famous debate, “Quicksort vs. 
Heapsort,” centered on the fact that 
the worst-case behavior of the for-
mer is terrible, whereas the latter has 
worse average performance but no 
such “bad spots.” Depending on your 
application, that can be a very impor-
tant difference. 

We lack a similar inquiry into al-
gorithm selection in the face of the 
anisotropic memory access delay 
caused by virtual memory, CPU cach-
es, write buffers, and other facts of 
modern hardware. 

Whatever book you learned pro-
gramming from, it probably had a 
figure within the first five pages dia-
gramming a computer much like the 
one shown in Figure 7. That is where 
it all went pear shaped: that model is 
totally bogus today. 

Amazingly, it is the only concep-
tual model used in computer educa-
tion, despite the fact that it has next to 
nothing to do with the execution envi-
ronment on a modern computer. And 
just for the record: by modern, I mean 
VAX 11/780 or later. 

The past 30 or 40 years of hardware 
and operating-systems development 
seems to have only marginally im-
pinged on the agenda in CS depart-
ments’ algorithmic analysis sections, 
and as far as my anecdotal evidence, it 
has totally failed to register in the edu-
cation they provide. 

The speed disparity between pri-
mary and secondary storage on the 
Atlas Computer was on the order of 
1:1,000. The Atlas drum took two mil-
liseconds to deliver a sector; instruc-
tions took approximately two micro-
seconds to execute. You lost around 
1,000 instructions for each VM page 
fault. 

On a modern multi-issue CPU, 
running at some gigahertz clock fre-

quency, the worst-case loss is almost 
10 million instructions per VM page 
fault. If you are running with a rotat-
ing disk, the number is more like 100 
million instructions.f 

What good is an O(log2(n)) al-
gorithm if those operations cause 
page faults and slow disk operations? 
For most relevant datasets an O(n) 
or even an O(n2) algorithm, which 
avoids page faults, will run circles 
around it. 

Performance analysis of algorithms 
will always be a cornerstone achieve-
ment of computer science, and like 
all of you, I really cherish the foldout 
chart with the tape sorts in Volume 3 
of The Art of Computer Programming. 
But the results coming out of the CS 
department would be so much more 
interesting and useful if they applied 
to real computers and not just toys 
like ZX81, C64, and TRS-80. 

f And below the waterline there are the flushing 
of pipelines, now useless and in the way, cache 
content, page-table updates, lookaside buffer 
invalidations, page-table loads, etc. It is not 
atypical to find instructions in the “for operat-
ing system programmers” section of the CPU 
data book, which take hundreds or even thou-
sands of clock cycles, before everything is said 
and done.

most cs-educated 
professionals  
still ignore Vm as  
a matter of 
routine. this is an 
embarrassment  
for cs as  
a discipline and 
profession, not  
to mention wasting 
enormous amounts 
of hardware and 
electricity.
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