
Topic 6 – Applications

• Infrastructure Services (DNS)
– Now with added security…

• Traditional Applications (web)
– Now with added QUIC

• Multimedia Applications (SIP)
– One day (more…)…

• P2P Networks
– Every device serves

1

2

Client-server paradigm reminder
server:

– always-on host
– permanent IP address
– server farms for scaling

clients:
– communicate with server
– may be intermittently connected
– may have dynamic IP addresses
– do not communicate directly

with each other

client/server

3

Relationship Between
Names&Addresses

• Addresses can change underneath
– Move www.bbc.co.uk to 212.58.246.92
– Humans/Apps should be unaffected

• Name could map to multiple IP addresses
– www.bbc.co.uk to multiple replicas of the Web site
– Enables

• Load-balancing
• Reducing latency by picking nearby servers

• Multiple names for the same address
– E.g., aliases like www.bbc.co.uk and bbc.co.uk
– Mnemonic stable name, and dynamic canonical name

• Canonical name = actual name of host

Mapping from Names to Addresses
• Originally: per-host file /etc/hosts*

– SRI (Menlo Park) kept master copy
– Downloaded regularly
– Flat namespace

• Single server not resilient, doesn’t scale
– Adopted a distributed hierarchical system

• Two intertwined hierarchies:
– Infrastructure: hierarchy of DNS servers
– Naming structure: www.bbc.co.uk

*C:\Windows\System32\drivers\etc\hosts for recent windows

4

5

Domain Name System (DNS)
• Top of hierarchy: Root

– Location hardwired into other servers

• Next Level: Top-level domain (TLD) servers
– .com, .edu, etc.
– .uk, .au, .to, etc.
– Managed professionally

• Bottom Level: Authoritative DNS servers
– Actually do the mapping
– Can be maintained locally or by a service provider

6

Distributed Hierarchical Database

com edu org ac uk zw arpa

unnamed root

bar

west east

foo my

ac

cam

cl

in-
addr

generic domains country domains

my.east.bar.edu cl.cam.ac.uk

Top-Level Domains (TLDs)

7

DNS Root
• Located in Virginia, USA
• How do we make the root scale?

Verisign, Dulles, VA

8

DNS Root Servers
• 13 root servers (see http://www.root-servers.org/)

– Labeled A through M
• Does this scale?

B USC-ISI Marina del Rey, CA
L ICANN Los Angeles, CA

E NASA Mt View, CA
F Internet Software

Consortium
Palo Alto, CA

I Autonomica, Stockholm

K RIPE London

M WIDE Tokyo

A Verisign, Dulles, VA
C Cogent, Herndon, VA
D U Maryland College Park, MD
G US DoD Vienna, VA
H ARL Aberdeen, MD
J Verisign

9

DNS Root Servers
• 13 root servers (see http://www.root-servers.org/)

– Labeled A through M
• Replication via any-casting (localized routing for addresses)

B USC-ISI Marina del Rey, CA
L ICANN Los Angeles, CA

E NASA Mt View, CA
F Internet Software

Consortium,
Palo Alto, CA
(and 37 other locations)

I Autonomica, Stockholm (plus
29 other locations)

K RIPE London (plus 16 other locations)

M WIDE Tokyo
plus Seoul, Paris,
San Francisco

A Verisign, Dulles, VA
C Cogent, Herndon, VA (also Los Angeles, NY, Chicago)
D U Maryland College Park, MD
G US DoD Vienna, VA
H ARL Aberdeen, MD
J Verisign (21 locations)

10

Using DNS
• Two components

– Local DNS servers
– Resolver software on hosts

• Local DNS server (“default name server”)
– Usually near the endhosts that use it
– Local hosts configured with local server (e.g.,

/etc/resolv.conf) or learn server via DHCP

• Client application
– Extract server name (e.g., from the URL)
– Do gethostbyname() to trigger resolver code

local DNS server
dns.cam.ac.uk

11

requesting host
cl.cam.ac.uk www.stanford.edu

root DNS server

1

2
3

4

5

6

authoritative DNS server
dns.stanford.edu

7
8

TLD DNS server

How Does Resolution Happen?
(Iterative example)

Host at cl.cam.ac.uk
wants IP address for
www.stanford.edu

iterated query:
• Host enquiry is delegated

to local DNS server
• Consider

transactions 2 – 7 only
• contacted server replies

with name of next server
to contact

• “I don’t know this name,
but ask this server”

12

requesting host
cl.cam.ac.uk

www.stanford.edu

root DNS server

local DNS server
dns.cam.ac.uk

1

2

45

6

authoritative DNS server
dns.stanford.edu

7

8

TLD DNS server

3recursive query:
• puts burden of name

resolution on contacted
name server

• heavy load?

DNS name resolution recursive example

13

Recursive and Iterative Queries - Hybrid case
• Recursive query
– Ask server to get

answer for you
– E.g., requests 1,2

and responses
9,10

• Iterative query
– Ask server who

to ask next
– E.g., all other

request-
response pairs

requesting host
my-host.cl.cam.ac.uk

root DNS server

3
4

5

6

7

authoritative DNS server
dns.stanford.edu

8

TLD DNS server

Site DNS server
dns.cam.ac.uk

2 9

1 10

Site DNS server
dns.cl.cam.ac.uk

14

DNS Caching
• Performing all these queries takes time

– And all this before actual communication takes place
– E.g., 1-second latency before starting Web download

• Caching can greatly reduce overhead
– The top-level servers very rarely change
– Popular sites (e.g., www.bbc.co.uk) visited often
– Local DNS server often has the information cached

• How DNS caching works
– DNS servers cache responses to queries
– Responses include a “time to live” (TTL) field
– Server deletes cached entry after TTL expires

15

Negative Caching

• Remember things that don’t work
– Misspellings like bbcc.co.uk and www.bbc.com.uk
– These can take a long time to fail the first time
– Good to remember that they don’t work
– … so the failure takes less time the next time around

• But: negative caching is optional
– And not widely implemented

16

Reliability
• DNS servers are replicated (primary/secondary)
– Name service available if at least one replica is up
– Queries can be load-balanced between replicas

• Usually, UDP used for queries
– Need reliability: must implement this on top of UDP
– Spec supports TCP too, but not always implemented

• Try alternate servers on timeout
– Exponential backoff when retrying same server

• Same identifier for all queries
– Don’t care which server responds

17

From https://www.caida.org/publications/presentations/2008/wide_castro_root_servers/wide_castro_root_servers.pdf

11

Invalid queries categories

• Unused query class:
• Any class not in IN, CHAOS, HESIOD, NONE or ANY

• A-for-A: A-type query for a name is already a IPv4 Address
• <IN, A, 192.16.3.0>

• Invalid TLD: a query for a name with an invalid TLD
• <IN, MX, localhost.lan>

• Non-printable characters:
• <IN, A, www.ra^B.us.>

• Queries with ‘_’:
• <IN, SRV, _ldap._tcp.dc._msdcs.SK0530-K32-1.>

• RFC 1918 PTR:
• <IN, PTR, 171.144.144.10.in-addr.arpa.>

• Identical queries:
• a query with the same class, type, name and id (during the whole period)

• Repeated queries:
• a query with the same class, type and name

• Referral-not-cached:
• a query seen with a referral previously given.

https://www.caida.org/publications/presentations/2008/wide_castro_root_servers/wide_castro_root_servers.pdf

19

Invalid TLD

• Queries for invalid TLD
represent 22% of the total traffic
at the roots
– 20.6% during DITL 2007

• Top 10 invalid TLD represent
10.5% of the total traffic

• RFC 2606 reserves some TLD
to avoid future conflicts

• We propose:
– Include some of these TLD

(local, lan, home, localdomain)
to RFC 2606

– Encourage cache
implementations to answer
queries for RFC 2606 TLDs
locally (with data or error)

Percentage of total
queriesTLD

2007 2008
local 5.018 5.098
belkin 0.436 0.781
localhost 2.205 0.710
lan 0.509 0.679
home 0.321 0.651
invalid 0.602 0.623
domain 0.778 0.550
localdomain 0.318 0.332
wpad 0.183 0.232
corp 0.150 0.231

18

From https://www.caida.org/publications/presentations/2008/wide_castro_root_servers/wide_castro_root_servers.pdf

awm22: at least WORKGROUP is no
longer here!
It was the top in valid TLD for years…

https://www.caida.org/publications/presentations/2008/wide_castro_root_servers/wide_castro_root_servers.pdf

Secondary
DNS

primary
DNS

Registrars
& Registrants

Registry

Secondary
DNS

Data flow through the DNS
Where are the vulnerable
points?

Server vulnerability

Man in the Middle

spoofing
&

Man in the Middle

DNS and Security
• No way to verify answers

– Opens up DNS to many potential attacks
– DNSSEC fixes this

• Most obvious vulnerability: recursive resolution
– Using recursive resolution, host must trust DNS server
– When at Starbucks, server is under their control
– And can return whatever values it wants

• More subtle attack: Cache poisoning
– Those “additional” records can be anything!

20

DNSSEC protects all these end-to-end

• provides message authentication and integrity verification through
cryptographic signatures
– You know who provided the signature
– No modifications between signing and validation

• It does not provide authorization
• It does not provide confidentiality
• It does not provide protection against DDOS

DNSSEC in practice

• Scaling the key signing and key distribution
Solution: Using the DNS to Distribute Keys

• Distributing keys through DNS hierarchy:
– Use one trusted key to establish authenticity of other keys
– Building chains of trust from the root down
– Parents need to sign the keys of their children

• Only the root key needed in ideal world
– Parents always delegate security to child

22

Why is the web so
successful?

• What do the web, youtube, facebook, twitter, instagram, …..
have in common?
– The ability to self-publish

• Self-publishing that is easy, independent, free

• No interest in collaborative and idealistic endeavor
– People aren’t looking for Nirvana (or even Xanadu)
– People also aren’t looking for technical perfection

• Want to make their mark, and find something neat
– Two sides of the same coin, creates synergy
– “Performance” more important than dialogue….

23

24

Web Components
• Infrastructure:

– Clients
– Servers
– Proxies

• Content:
– Individual objects (files, etc.)
– Web sites (coherent collection of objects)

• Implementation
– HTML: formatting content
– URL: naming content
– HTTP: protocol for exchanging content

Any content not just HTML!

25

HTML: HyperText Markup Language

• A Web page has:
– Base HTML file
– Referenced objects (e.g., images)

• HTML has several functions:
– Format text
– Reference images
– Embed hyperlinks (HREF)

26

URL Syntax
protocol://hostname[:port]/directorypath/resource

protocol http, ftp, https, smtp, rtsp, etc.

hostname DNS name, IP address

port Defaults to protocol’s standard port
e.g. http: 80 https: 443

directory path Hierarchical, reflecting file system

resource Identifies the desired resource

Can also extend to program executions:
http://us.f413.mail.yahoo.com/ym/ShowLetter?box=%4
0B%40Bulk&MsgId=2604_1744106_29699_1123_1261_0_289
17_3552_1289957100&Search=&Nhead=f&YY=31454&order=
down&sort=date&pos=0&view=a&head=b

27

HyperText Transfer Protocol (HTTP)

• Request-response protocol
• Reliance on a global namespace
• Resource metadata
• Stateless
• ASCII format (ok this changed….)

$ telnet www.cl.cam.ac.uk 80
GET /win HTTP/1.0
<blank line, i.e., CRLF>

Steps in HTTP Request
• HTTP Client initiates TCP connection to server

– SYN
– SYNACK
– ACK

• Client sends HTTP request to server
– Can be piggybacked on TCP’s ACK

• HTTP Server responds to request
• Client receives the request, terminates connection
• TCP connection termination exchange

How many RTTs for a single request?

28

29

Client-Server Communication

• two types of HTTP messages: request, response
• HTTP request message: (GET POST HEAD ….)

GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu
User-agent: Mozilla/4.0
Connection: close
Accept-language:fr

(extra carriage return, line feed)

request line
(GET, POST,

HEAD commands)

header
lines

Carriage return,
line feed

indicates end
of message

HTTP/1.1 200 OK
Connection close
Date: Thu, 06 Aug 1998 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 1998 …...
Content-Length: 6821
Content-Type: text/html

data data data data data ...

status line
(protocol

status code
status phrase)

header
lines

data, e.g.,
requested
HTML file

HTTP response message

30

Different Forms of Server
Response

• Return a file
– URL matches a file (e.g., /www/index.html)
– Server returns file as the response
– Server generates appropriate response header

• Generate response dynamically
– URL triggers a program on the server
– Server runs program and sends output to client

• Return meta-data with no body

31

HTTP Resource Meta-Data
• Meta-data
– Info about a resource, stored as a separate entity

• Examples:
– Size of resource, last modification time, type of

content

• Usage example: Conditional GET Request
– Client requests object “If-modified-since”
– If unchanged, “HTTP/1.1 304 Not Modified”
– No body in the server’s response, only a header

32

HTTP is Stateless

• Each request-response treated independently
– Servers not required to retain state

• Good: Improves scalability on the server-side
– Failure handling is easier
– Can handle higher rate of requests
– Order of requests doesn‘t matter

• Bad: Some applications need persistent state
– Need to uniquely identify user or store temporary info
– e.g., Shopping cart, user profiles, usage tracking, …

33

State in a Stateless Protocol:
Cookies

• Client-side state maintenance
– Client stores small(?) state on behalf of server
– Client sends state in future requests to the server

• Can provide authentication

Request

Response
Set-Cookie: XYZ

Request
Cookie: XYZ

34

HTTP Performance
• Most Web pages have multiple objects
– e.g., HTML file and a bunch of embedded images

• How do you retrieve those objects (naively)?
– One item at a time

• Put stuff in the optimal place?
–Where is that precisely?

• Enter the Web cache and the CDN

35

Fetch HTTP Items: Stop & Wait
Client Server

Request item 1

Transfer item 1

Request item 2

Transfer item 2

Request item 3

Transfer item 3

Finish; display
page

Start fetching
page Tim

e

≥2 RTTs
per
object

36

Improving HTTP Performance:
Concurrent Requests & Responses

• Use multiple connections in
parallel

• Does not necessarily maintain
order of responses

• Client = !

• Server = !

• Network = " Why?

R1
R2 R3

T1

T2 T3

37

Improving HTTP Performance:
Pipelined Requests & Responses

• Batch requests and responses
– Reduce connection overhead
– Multiple requests sent in a single

batch
– Maintains order of responses
– Item 1 always arrives before item 2

• How is this different from
concurrent requests/responses?
– Single TCP connection

Client Server

Request 1
Request 2
Request 3

Transfer 1

Transfer 2

Transfer 3

Improving HTTP Performance:
Persistent Connections

• Enables multiple transfers per connection
– Maintain TCP connection across multiple requests
– Including transfers subsequent to current page
– Client or server can tear down connection

• Performance advantages:
– Avoid overhead of connection set-up and tear-down
– Allow TCP to learn more accurate RTT estimate
– Allow TCP congestion window to increase
– i.e., leverage previously discovered bandwidth

• Default in HTTP/1.1

38

HTTP evolution

• 1.0 – one object per TCP: simple but slow
• Parallel connections - multiple TCP, one object

each: wastes b/w, may be svr limited, out of order
• 1.1 pipelining – aggregate retrieval time: ordered,

multiple objects sharing single TCP
• 1.1 persistent – aggregate TCP overhead: lower

overhead in time, increase overhead at ends (e.g.,
when should/do you close the connection?)

39

Scorecard: Getting n Small Objects

Time dominated by latency

• One-at-a-time: ~2n RTT
• Persistent: ~ (n+1)RTT
• M concurrent: ~2[n/m] RTT
• Pipelined: ~2 RTT
• Pipelined/Persistent: ~2 RTT first time, RTT

later

40

Scorecard: Getting n Large Objects

Time dominated by bandwidth

• One-at-a-time: ~ nF/B
• M concurrent: ~ [n/m] F/B
– assuming shared with large population of users

• Pipelined and/or persistent: ~ nF/B
– The only thing that helps is getting more

bandwidth..

41

42

Improving HTTP Performance:
Caching

• Many clients transfer the same information
– Generates redundant server and network load
– Clients experience unnecessary latency

Server

Clients

Backbone ISP

ISP-1 ISP-2

43

Improving HTTP Performance:
Caching: How

•Modifier to GET requests:
– If-modified-since – returns “not modified” if

resource not modified since specified time
• Response header:

– Expires – how long it’s safe to cache the resource
– No-cache – ignore all caches; always get resource

directly from server

44

Improving HTTP Performance:
Caching: Why

• Motive for placing content closer to client:
– User gets better response time
– Content providers get happier users
• Time is money, really!

– Network gets reduced load

• Why does caching work?
– Exploits locality of reference

• How well does caching work?
– Very well, up to a limit
– Large overlap in content
– But many unique requests

45

Improving HTTP Performance:
Caching on the Client

Example: Conditional GET Request
• Return resource only if it has changed at the server

– Save server resources!

• How?
– Client specifies “if-modified-since” time in request
– Server compares this against “last modified” time of desired resource
– Server returns “304 Not Modified” if resource has not changed
– …. or a “200 OK” with the latest version otherwise

GET /~awm22/win HTTP/1.1
Host: www.cl.cam.ac.uk
User-Agent: Mozilla/4.03
If-Modified-Since: Sun, 27 Aug 2006 22:25:50 GMT
<CRLF>

Request from client to server:

46

Improving HTTP Performance:
Caching with Reverse Proxies

Cache documents close to server
decrease server load

• Typically done by content providers

• Only works for static(*) content
(*) static can also be snapshots
of dynamic content

Clients

Backbone ISP

ISP-1 ISP-2

Server

Reverse proxies

47

Improving HTTP Performance:
Caching with Forward Proxies

Cache documents close to clients
reduce network traffic and decrease latency

• Typically done by ISPs or corporate LANs

Clients

Backbone ISP

ISP-1 ISP-2

Server

Reverse proxies

Forward proxies

48

Improving HTTP Performance:
Caching w/ Content Distribution Networks

• Integrate forward and reverse caching functionality
– One overlay network (usually) administered by one entity
– e.g., Akamai

• Provide document caching
– Pull: Direct result of clients’ requests
– Push: Expectation of high access rate

• Also do some processing
– Handle dynamic web pages
– Transcoding
– Maybe do some security function – watermark IP

49

Improving HTTP Performance:
Caching with CDNs (cont.)

Clients

ISP-1

Server

Forward proxies

Backbone ISP

ISP-2

CDN

50

Improving HTTP Performance:
CDN Example – Akamai

• Akamai creates new domain names for each client
content provider.
– e.g., a128.g.akamai.net

• The CDN’s DNS servers are authoritative for the new
domains

• The client content provider modifies its content so
that embedded URLs reference the new domains.
– “Akamaize” content
– e.g.: http://www.bbc.co.uk/popular-image.jpg becomes

http://a128.g.akamai.net/popular-image.jpg

• Requests now sent to CDN’s infrastructure…

51

Hosting: Multiple Sites Per
Machine

• Multiple Web sites on a single machine
– Hosting company runs the Web server on behalf of

multiple sites (e.g., www.foo.com and www.bar.com)
• Problem: GET /index.html

– www.foo.com/index.html or www.bar.com/index.html?
• Solutions:

– Multiple server processes on the same machine
• Have a separate IP address (or port) for each server

– Include site name in HTTP request
• Single Web server process with a single IP address
• Client includes “Host” header (e.g., Host: www.foo.com)
• Required header with HTTP/1.1

52

Hosting: Multiple Machines Per Site

• Replicate popular Web site across many machines
– Helps to handle the load
– Places content closer to clients

• Helps when content isn’t cacheable

• Problem: Want to direct client to particular replica
– Balance load across server replicas
– Pair clients with nearby servers

53

Multi-Hosting at Single Location
• Single IP address, multiple machines

– Run multiple machines behind a single IP address

– Ensure all packets from a single
TCP connection go to the same replica

Load Balancer
64.236.16.20

54

Multi-Hosting at Several Locations

• Multiple addresses, multiple machines
– Same name but different addresses for all of the replicas
– Configure DNS server to return closest address

Internet
64.236.16.20

173.72.54.131

12.1.1.1

CDN examples round-up

• CDN using DNS
DNS has information on loading/distribution/location

• CDN using anycast
same address from DNS name but local routes

• CDN based on rewriting HTML URLs
(akami example just covered – akami uses DNS too)

55

After HTTP/1.1

SPDY (speedy) and its moral successor HTTP/2
• Binary protocol
–More efficient to parse
–More compact on the wire
–Much less error prone as compared
– to textual protocols

56

After HTTP/1.1

SPDY (speedy) and its moral successor HTTP/2
• Binary protocol
• Multiplexing
– Interleaved

57

After HTTP/1.1

SPDY (speedy) and its moral successor HTTP/2
• Binary protocol
• Multiplexing
• Priority control over Frames
• Header Compression
• Server Push
– Proactively push stuff to client that it will need

58

After HTTP/1.1

SPDY (speedy) and its moral successor HTTP/2
• Binary protocol
• Multiplexing
• Priority control over Frames
• Header Compression
• Server Push
– Proactively push stuff to client that it will need

59

After HTTP/1.1

SPDY (speedy) and its moral successor HTTP/2
• Binary protocol
• Multiplexing
• Priority control over Frames
• Header Compression
• Server Push

60

SPDY

• SPDY + HTTP/2: One single TCP connection
instead of multiple

• Downside: Head of line blocking
• In TCP, packets need to be processed in

correct order

Add QUIC and stir…
Quick UDP Internet Connections

Objective: Combine speed of UDP protocol with
TCP’s reliability
• Very hard to make changes to TCP
• Faster to implement new protocol on top of UDP
• Roll out features in TCP if they prove theory
QUIC:
• Reliable transport over UDP (seriously)
• Uses FEC
• Default crypto
• Restartable connections

62

Add QUIC and stir…
Quick UDP Internet Connections

Objective: Combine speed of UDP protocol with
TCP’s reliability
• Very hard to make changes to TCP
• Faster to implement new protocol on top of UDP
• Roll out features in TCP if they prove theory
QUIC:
• Reliable transport over UDP (seriously)
• Uses FEC
• Default crypto
• Restartable connections

73

3-Way Handshake

Without TLS With TLS

UDP

• Fire and forget
– Less time spent to

validate packets
– Downside - no reliability,

this has to be built on top
of UDP

QUIC

• UDP does NOT depend on order of arriving packets
• Lost packets will only impact an individual resource,

e.g., CSS or JS file.
• QUIC is combining best parts of HTTP/2 over UDP:

– Multiplexing on top of non-blocking transport protocol

QUIC – more than just UDP

• QUIC outshines TCP under poor network
conditions, shaving a full second off the
Google Search page load time for the slowest
1% of connections.

• These benefits are even more apparent for
video services like YouTube. Users report 30%
fewer rebuffers when watching videos over
QUIC.

66

Why QUIC over UDP and not a new
proto

• IP proto value for new transport layer
• Change the protocol – risk the wraith of
– Legacy code
– Firewalls
– Load-balancer
– NATs (the high-priest of middlebox)

• Same problem faces any significant TCP change

67Honda M. et al. “Is it still possible to extend TCP?”, IMC’11
https://dl.acm.org/doi/abs/10.1145/2068816.2068834

SIP – Session Initiation Protocol

68

Session?

Anyone smell an OSI / ISO standards document burning?

SIP - VoIP

Establishing communication
through SIP proxies.

69

SIP?
• SIP – bringing the fun/complexity of

telephony to the Internet
–User location
–User availability
–User capabilities
– Session setup
– Session management
• (e.g. “call forwarding”)

70

H.323 – ITU

• Why have one standard when there are at least two….

• The full H.323 is hundreds of pages
– The protocol is known for its complexity – an ITU hallmark

• SIP is not much better

– IETF grew up and became the ITU….

71

Multimedia Applications

Message flow for a basic SIP session

72

The (still?) missing piece:
Resource Allocation for Multimedia Applications

I can ‘differentiate’ VoIP from data but…
I can only control data going into the Internet

73

Multimedia Applications
• Resource Allocation for Multimedia Applications

Admission control using session control protocol.

74

Resource Allocation for Multimedia Applications

So where does it happen?
Inside single institutions or domains of control…..

(Universities, Hospitals, big corp…)

What about my aDSL/CABLE/etc it combines voice and data?
Phone company controls the multiplexing on the line

and throughout their own network too…… everywhere else is best-effort

Co-ordination of SIP signaling and
resource reservation.

Coming soon… 1995
2000

2010
2020
who are we kidding??

75

Every host is a server:
Peer-2-Peer

76

77

Pure P2P architecture

• no always-on server
• arbitrary end systems

directly communicate
• peers are intermittently

connected and change IP
addresses

• Three topics:
– File distribution
– Searching for information
– Case Study: Skype

peer-peer

78

File Distribution: Server-Client vs P2P
Question : How much time to distribute file from

one server to N peers?

us

u2d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

File, size F

us: server upload
bandwidth

ui: peer i upload
bandwidth

di: peer i download
bandwidth

79

File distribution time: server-client

us

u2d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

F• server sequentially
sends N copies:
– NF/us time

• client i takes F/di
time to download

increases linearly in N
(for large N)

= dcs = max { NF/us, F/min(di) }
i

Time to distribute F
to N clients using

client/server approach

80

File distribution time: P2P

us

u2d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

F• server must send one copy:
F/us time

• client i takes F/di time to
download

• NF bits must be
downloaded (aggregate)
r fastest possible upload rate: us + Sui

dP2P = max { F/us, F/min(di) , NF/(us + Sui) }
i

81

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

N

M
in

im
um

 D
is

tri
bu

tio
n

Ti
m

e P2P
Client-Server

Server-client vs. P2P: example

Client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us

82

File distribution: BitTorrent*
*rather old BitTorrent

tracker: tracks peers
participating in torrent

torrent: group of
peers exchanging
chunks of a file

obtain list
of peers

trading
chunks

peer

r P2P file distribution

83

BitTorrent (1)
• file divided into 256KB chunks.
• peer joining torrent:

– has no chunks, but will accumulate them over time
– registers with tracker to get list of peers, connects to

subset of peers (“neighbors”)
• while downloading, peer uploads chunks to other peers.
• peers may come and go
• once peer has entire file, it may (selfishly) leave or

(altruistically) remain

84

BitTorrent (2)
Pulling Chunks
• at any given time, different

peers have different
subsets of file chunks

• periodically, a peer (Alice)
asks each neighbor for list
of chunks that they have.

• Alice sends requests for her
missing chunks
– rarest first

Sending Chunks: tit-for-tat
r Alice sends chunks to four neighbors

currently sending her chunks at the
highest rate
$ re-evaluate top 4 every 10 secs

r every 30 secs: randomly select another
peer, starts sending chunks
$ newly chosen peer may join top 4
$ “optimistically unchoke”

85

BitTorrent: Tit-for-tat
(1) Alice “optimistically unchokes” Bob
(2) Alice becomes one of Bob’s top-four providers; Bob reciprocates
(3) Bob becomes one of Alice’s top-four providers

With higher upload rate,
can find better trading
partners & get file faster!

Distributed Hash Table (DHT)

• DHT = distributed P2P database
• Database has (key, value) pairs;
– key: ss number; value: human name
– key: content type; value: IP address

• Peers query DB with key
– DB returns values that match the key

• Peers can also insert (key, value) peers

86

Distributed Hash Table (DHT)

• DHT = distributed P2P database
• Database has (key, value) pairs;
– key: ss number; value: human name
– key: content type; value: IP address

• Peers query DB with key
– DB returns values that match the key

• Peers can also insert (key, value) peers

87

DHT Identifiers

• Assign integer identifier to each peer in range
[0,2n-1].
– Each identifier can be represented by n bits.

• Require each key to be an integer in same range.
• To get integer keys, hash original key.
– eg, key = h(“Game of Thrones season 29”)
– This is why they call it a distributed “hash” table

How to assign keys to peers?

• Central issue:
– Assigning (key, value) pairs to peers.

• Rule: assign key to the peer that has the
closest ID.

• Convention in lecture: closest is the
immediate successor of the key.

• Ex: n=4; peers: 1,3,4,5,8,10,12,14;
– key = 13, then successor peer = 14
– key = 15, then successor peer = 1

1

3

4

5

8
10

12

15

Circular DHT (1)

• Each peer only aware of immediate successor
and predecessor.

• “Overlay network” – logical structure

Circle DHT (2)

0001

0011

0100

0101

1000
1010

1100

1111

Who’s resp
for key 1110 ?

I am

O(N) messages
on avg to resolve
query, when there
are N peers

1110

1110

1110

1110

1110

1110

Define closest
as closest
successor

Circular DHT with Shortcuts

• Each peer keeps track of IP addresses of predecessor, successor,
short cuts.

• Reduced from 6 to 2 messages.
• Possible to design shortcuts so O(log N) neighbors, O(log N)

messages in query

1

3

4

5

8
10

12

15

Who’s resp
for key 1110?

Peer Churn

• Peer 5 abruptly leaves
• Peer 4 detects; makes 8 its immediate successor; asks 8

who its immediate successor is; makes 8’s immediate
successor its second successor.

• What if peer 13 wants to join?

1

3

4

5

8
10

12

15

•To handle peer churn, require
each peer to know the IP address
of its two successors.
• Each peer periodically pings its
two successors to see if they
are still alive.

94

P2P Case study: Skype (pre-Microsoft)

• inherently P2P: pairs of
users communicate.

• proprietary application-
layer protocol (inferred
via reverse engineering)

• hierarchical overlay with
SNs

• Index maps usernames to
IP addresses; distributed
over SNs

Skype clients (SC)

Supernode
(SN)

Skype
login server

95

Peers as relays
• Problem when both Alice

and Bob are behind
“NATs”.
– NAT prevents an outside peer

from initiating a call to
insider peer

• Solution:
– Using Alice’s and Bob’s SNs,

Relay is chosen
– Each peer initiates session

with relay.
– Peers can now communicate

through NATs via relay

Summary.
• Applications have protocols too

• We covered examples from
– Traditional Applications (web)
– Scaling and Speeding the web (CDN/Cache tricks)

• Infrastructure Services (DNS)
– Cache and Hierarchy

• Multimedia Applications (SIP)
– Extremely hard to do better than worst-effort

• P2P Network examples
96

