
Computer Networking

Slide Set 4

Andrew W. Moore
Andrew.Moore@cl.cam.ac.uk

11

Topic 6 – Applications

• Infrastructure Services (DNS)
– Now with added security…

• Traditional Applications (web)
– Now with added QUIC

• Multimedia Applications (SIP)
– One day (more…)…

• P2P Networks
– Every device serves

2

Some network apps

! social networking

! Web

! text messaging

! e-mail

! multi-user network games

! streaming stored video
(YouTube, Hulu, Netflix)

! P2P file sharing

! voice over IP (e.g., Skype)

! real-time video
conferencing (e.g., Zoom)

! Internet search

! remote login

! …

Q: your favorites?

mobile network

home network

enterprise
network

national or global ISP

local or
regional
ISP

datacenter
network

content
provider
network

applicatio
n

transport
network
data link
physical

applicatio
n

transport
network
data link
physical

applicatio
n

transport
network
data link
physical

Creating a network app
write programs that:
! run on (different) end systems
! communicate over network
! e.g., web server software

communicates with browser software

no need to write software for
network-core devices
! network-core devices do not run user

applications
! applications on end systems allows

for rapid app development,
propagation

mobile network

home network

enterprise
network

national or global ISP

local or
regional
ISP

datacenter
network

content
provider
network

Client-server paradigm
server:
! always-on host
! permanent IP address
! often in data centers, for scaling

clients:
! contact, communicate with server
! may be intermittently connected
! may have dynamic IP addresses
! do not communicate directly with

each other
! examples: HTTP, IMAP, FTP

mobile network

home network

enterprise
network

national or global ISP

local or
regional
ISP

datacenter
network

content
provider
network

Peer-peer architecture
! no always-on server
! arbitrary end systems directly

communicate
! peers request service from other

peers, provide service in return to
other peers
• self scalability – new peers bring new

service capacity, as well as new service
demands

! peers are intermittently connected
and change IP addresses
• complex management

! example: P2P file sharing

An application-layer protocol defines:

! types of messages exchanged,
• e.g., request, response

!message syntax:
• what fields in messages &

how fields are delineated
!message semantics

• meaning of information in
fields

! rules for when and how
processes send & respond to
messages

open protocols:
! defined in RFCs, everyone

has access to protocol
definition

! allows for interoperability
! e.g., HTTP, SMTP
proprietary protocols:
! e.g., Skype, Zoom

8

Relationship Between
Names&Addresses

• Addresses can change underneath

– Move www.bbc.co.uk to 212.58.246.92
– Humans/Apps should be unaffected

• Name could map to multiple IP addresses

– www.bbc.co.uk to multiple replicas of the Web site
– Enables

• Load-balancing
• Reducing latency by picking nearby servers

• Multiple names for the same address

– E.g., aliases like www.bbc.co.uk and bbc.co.uk
– Mnemonic stable name, and dynamic canonical name

• Canonical name = actual name of host

DNS: Domain Name System
people: many identifiers:

• NI #, name, passport #
Internet hosts, routers:

• IP address (32 bit or 128bit) -
used for addressing datagrams

• “name”, e.g., cam.ac.uk- used
by humans

Q: how to map between IP
address and name, and vice
versa ?

Domain Name System (DNS):
! distributed database implemented in

hierarchy of many name servers
! application-layer protocol: hosts, DNS

servers communicate to resolve
names (address/name translation)
• note: core Internet function,

implemented as application-layer
protocol

• complexity at network’s “edge”

DNS: services, structure
Q: Why not centralize DNS?
! single point of failure
! traffic volume
! distant centralized database
! maintenance

DNS services:
!hostname-to-IP-address translation
!host aliasing

• canonical, alias names
! mail server aliasing
! load distribution

• replicated Web servers: many IP
addresses correspond to one
name

A: doesn‘t scale!
! Comcast DNS servers alone:

600B DNS queries/day
! Akamai DNS servers alone:

2.2T DNS queries/day

Thinking about the DNS
humongous distributed database:
! ~ billion records, each simple

handles many trillions of queries/day:
!many more reads than writes
! performance matters: almost every

Internet transaction interacts with
DNS - msecs count!

organizationally, physically decentralized:
!millions of different organizations

responsible for their records

“bulletproof”: reliability, security

DNS: a distributed, hierarchical database

Client wants IP address for www.amazon.com; 1st approximation:
! client queries root server to find .com DNS server
! client queries .com DNS server to get amazon.com DNS server
! client queries amazon.com DNS server to get IP address for www.amazon.com

.com DNS servers .org DNS servers .edu DNS servers

… …

Top Level Domain

Root DNS Servers Root

nyu.edu
DNS servers

umass.edu
DNS servers

yahoo.com
DNS servers

amazon.com
DNS servers

pbs.org
DNS servers Authoritative

…… … …

DNS: root name servers
! official, contact-of-last-resort by

name servers that can not
resolve name

DNS: root name servers
! official, contact-of-last-resort by

name servers that can not resolve
name

! incredibly important Internet
function

• Internet couldn’t function without it!
• DNSSEC – provides security

(authentication, message integrity)

! ICANN (Internet Corporation for Assigned
Names and Numbers) manages root
DNS domain

13 logical root name “servers”
worldwide each “server” replicated

many times (~200 servers in US)

Top-Level Domain, and authoritative servers
Top-Level Domain (TLD) servers:
! responsible for .com, .org, .net, .edu, .aero, .jobs, .museums, and all top-level

country domains, e.g.: .cn, .uk, .fr, .ca, .jp
! Network Solutions: authoritative registry for .com, .net TLD
! Educause: .edu TLD

authoritative DNS servers:
! organization’s own DNS server(s), providing authoritative hostname to IP

mappings for organization’s named hosts
! can be maintained by organization or service provider

16

Using DNS
• Two components

– DNS servers
– Resolver software on each hosts

• Local DNS server (“default name server”)

– Usually near the endhosts that use it
– each ISP has local DNS name server; to find yours:

• MacOS: % scutil --dns
• Windows: >ipconfig /all

• Client application

– Extract server name (e.g., from the URL)
– Do gethostbyname() to trigger resolver code

Local DNS name servers

! when host makes DNS query, it is sent to its local DNS server
• Local DNS server returns reply, answering:

• from its local cache of recent name-to-address translation pairs (possibly out
of date!)

• forwarding request into DNS hierarchy for resolution
• each ISP has local DNS name server; to find yours:

• MacOS: % scutil --dns
• Windows: >ipconfig /all

! local DNS server doesn’t strictly belong to hierarchy, acting as
they do on behalf of other hosts.

local DNS server
dns.cam.ac.uk

18

requesting host
cl.cam.ac.uk www.stanford.edu

root DNS server

1

2
3

4

5

6

authoritative DNS server
dns.stanford.edu

78

TLD DNS server

How Does Resolution Happen?
(Iterative example)

Host at cl.cam.ac.uk
wants IP address for
www.stanford.edu

iterated query:
• Host enquiry is delegated

to local DNS server
• Consider

transactions 2 – 7 only
• contacted server replies

with name of next server
to contact

• “I don’t know this name,
but ask this server”

19

requesting host
cl.cam.ac.uk

www.stanford.edu

root DNS server

local DNS server
dns.cam.ac.uk

1

2

45

6

authoritative DNS server
dns.stanford.edu

7

8

TLD DNS server

3recursive query:
• puts burden of name

resolution on contacted
name server

• heavy load?

DNS name resolution recursive example

20

Recursive and Iterative Queries - Hybrid case
recursive query:
• Ask server to get

answer for you
• E.g., requests 1,2

and responses 9,10

Interative query:
• Ask server who

to ask next
• E.g., all other

request-response
pairs

requesting host
my-host.cl.cam.ac.uk

root DNS server

3
4

5

6

7

authoritative DNS server
dns.stanford.edu

8

TLD DNS server

Site DNS server
dns.cam.ac.uk

2 9

1 10

Site DNS server
dns0.cl.cam.ac.uk

21

DNS Caching
• Performing all these queries takes time

– And all this before actual communication takes place
– E.g., 1-second latency before starting Web download

• Caching greatly reduces overhead
– The top-level servers very rarely change
– Popular sites (e.g., www.bbc.co.uk) visited often
– Local DNS servers have regularly used information cached

• How DNS caching works
– DNS servers will cache responses to queries
– Responses include a “time to live” (TTL) field
– Server deletes cached entry after TTL expires
– Cached entries may be out-of-date

• if named host changes IP address, may not be known Internet-wide until all TTLs expire!
• best-effort name-to-address translation!

24

Reliability
• DNS servers are replicated

– Name service available if at least one replica is up
– Queries can be load-balanced between replicas

• Anycast provides reliability for ROOT servers
• Usually, UDP is used for queries

– Need reliability: must implement this on top of UDP
– DNS spec. supports TCP too, but not always available

• Try alternate servers on timeout
– Exponential backoff when retrying same server

• Same identifier for all queries
– Don’t care which server responds

DNS records
DNS: distributed database storing resource records (RR)

type=NS
! name is domain (e.g., foo.com)
! value is hostname of

authoritative name server for
this domain

RR format: (name, value, type, ttl)

type=A
! name is hostname
! value is IP address

type=CNAME
! name is alias name for some “canonical”

(the real) name
! www.ibm.com is really

servereast.backup2.ibm.com
! value is canonical name
type=MX

! value is name of SMTP mail
server associated with name

identification flags

questions

questions (variable # of questions)

additional RRs# authority RRs

answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

2 bytes 2 bytes

DNS protocol messages
DNS query and reply messages, both have same format:

message header:
! identification: 16 bit # for query,

reply to query uses same #
! flags:

• query or reply
• recursion desired
• recursion available
• reply is authoritative

identification flags

questions

questions (variable # of questions)

additional RRs# authority RRs

answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

2 bytes 2 bytes

DNS query and reply messages, both have same format:

name, type fields for a query

RRs in response to query

records for authoritative servers

additional “ helpful” info that may
be used

DNS protocol messages

Getting your info into the DNS
example: new startup “Network Utopia”
! register name networkuptopia.com at DNS registrar (e.g., Network

Solutions)
• provide names, IP addresses of authoritative name server (primary and

secondary)
• registrar inserts NS, A RRs into .com TLD server:
(networkutopia.com, dns1.networkutopia.com, NS)
(dns1.networkutopia.com, 212.212.212.1, A)

! create authoritative server locally with IP address 212.212.212.1
• type A record for www.networkuptopia.com
• type MX record for networkutopia.com

Most popular TLD

33

At least WORKGROUP is no
longer here!

It was the top invalid TLD for years…

7 of top 10
invalid!

Secondary
DNS

primary
DNS

Registrars
& Registrants

Registry

Secondary
DNS

Data flow through the DNS
Where are the vulnerable
points?

Server vulnerability

Man in the Middle

spoofing
&

Man in the Middle

DNS attack surface

DDoS attacks
! bombard root servers with

traffic
• not successful to date
• traffic filtering
• local DNS servers cache IPs of TLD

servers, allowing root server
bypass

! bombard TLD servers
• potentially more dangerous

Spoofing attacks
! intercept DNS queries,

returning bogus replies
! DNS cache poisoning
! RFC 4033: DNSSEC

authentication services

DNS Security
• No way to verify answers

– Opens up DNS to many potential attacks
– DNSSEC fixes this

• Most obvious vulnerability: recursive resolution
– Using recursive resolution, host must trust DNS server
– When at Starbucks, server is under their control
– And can return whatever values it wants

• More subtle attack: Cache poisoning
– Those “additional” records can be anything!

36

DNSSEC protects all these end-to-end

• provides message authentication and integrity verification through
cryptographic signatures

– You know who provided the signature

– No modifications between signing and validation

• It does not provide authorization

• It does not provide confidentiality

• It does not provide protection against DDOS

DNSSEC in practice

Problem: Scaling the key signing and key distribution
Solution: Using the DNS to Distribute Keys

• Distribute keys through the DNS hierarchy
– Use one trusted key to establish authenticity of other keys
– Building chains of trust from the root down
– Parents need to sign the keys of their children

• Only the root key needed in ideal world
– Parents always delegate security to child

38

On osx “host –av www.cl.cam.ac.uk
% host -va www.cl.cam.ac.uk

Trying "www.cl.cam.ac.uk"
Trying "www.cl.cam.ac.uk"
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 25214
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 23, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;www.cl.cam.ac.uk. IN ANY

;; ANSWER SECTION:
www.cl.cam.ac.uk. 1200 IN RRSIG NSEC 5 5 1200 20230317214336 20230215204336 31575 cl.cam.ac.uk.
h2JCZHfF9m+jqvHQR6z67LDC3g1xKoCRDmrss+LVrAXJqWsi+d8+/Gio /U07C2SXKGa3NXj5ByNvqH2HJs6Loc1emEEeiPlSYqkOUSGTLRQhlEqy
bHEfeCPV4hJy/NSuRvcxZCqpgEDSbF5K0JzqI6dnPCoOoMFdSrA4n9OT kDQ=
www.cl.cam.ac.uk. 1200 IN NSEC www-443-120.cl.cam.ac.uk. A PTR TXT AAAA SSHFP RRSIG NSEC CAA
www.cl.cam.ac.uk. 21600 IN RRSIG SSHFP 5 5 21600 20230306104604 20230204102237 31575 cl.cam.ac.uk.
kfCKxAD9cyLJDj/UEJl7Sr8b55yH8dxfYc+BF9tgcqbReo2GNLQelOZN rB5JAhoewZ9HxlASO5rzCX1BR9AP0H+Rk7BNbDp8rvnO9G8PWGQcpKHm
BJWb9nj2a/zi360WCUGH/u8GlPxw0L7b2P460DYxE4wDmL3jNjvw61Ca Y3g=
www.cl.cam.ac.uk. 21600 IN SSHFP 3 2 B7E1DF5B943C481A263307EDEE23F0719858CDF516F2482B54A4B248 0118CAE9
www.cl.cam.ac.uk. 21600 IN SSHFP 2 1 6FB539DBE0E273B56327E619BB1814DB4CE810D8
www.cl.cam.ac.uk. 21600 IN SSHFP 4 2 293F122F4D4970C42B767898C5505C3EB838E0C5BB432EF36AF33C03 1FA792FA
www.cl.cam.ac.uk. 21600 IN SSHFP 4 1 5E0CBE0730922925C446DF1B2DCE336AA7565122
www.cl.cam.ac.uk. 21600 IN SSHFP 1 1 FF45237DF493102CF7478AE0A96DE773FB4877C4
www.cl.cam.ac.uk. 21600 IN SSHFP 1 2 2953D9172EC850D2A46FA0245DFFAE978EE31B3BED233DED77BC937B 115952D7
www.cl.cam.ac.uk. 21600 IN SSHFP 3 1 FD276CF12A0B909533ABFA5931622950308AF099
www.cl.cam.ac.uk. 21600 IN SSHFP 2 2 403A5EE7B8ADD3E16B5973874E54CDFAC82268CC63B4CFD90E74DDC6 4E2EDF6F
www.cl.cam.ac.uk. 21600 IN RRSIG AAAA 5 5 21600 20230316213444 20230214203939 31575 cl.cam.ac.uk.
eVJM0NwnGPVC9y+96IJq48feYCDxTlEZ66fcH83aO2VFXoCblJkLUCoK e0TeobR+mnLad0XJFUocfjKorIV6s1CNzG90nmV1+dxQD1VBxQzBrV9A
k+JqokUQbkvb0UsV4UIWUvRav0M1GccXS5Nxzl/HDITMyVXMZx/Citlr lgU=
www.cl.cam.ac.uk. 21600 IN AAAA 2a05:b400:110::80:14
www.cl.cam.ac.uk. 21600 IN RRSIG TXT 5 5 21600 20230321232700 20230219230148 31575 cl.cam.ac.uk.
Tjlztn2dsdjr5wGAkuPVTy/0V/BBTDEC3K8x7nNnml9dRoy/ncRLWEyA 9XsxENQ2Oei7evt6pelFstpVwny6F9nMs+xAFYDiX0PpcJ4pZMNADOgs
BNXhR2XS0IknnuqUuWPlH1WTFZqBd27gIsQ0F+79Atj3MHQ5hBZlCS0n EoE=
www.cl.cam.ac.uk. 21600 IN TXT "pseudo IP address for cl.cam.ac.uk departmental WWW server (IPv4 and IPv6)"
www.cl.cam.ac.uk. 21600 IN RRSIG PTR 5 5 21600 20230314163841 20230212160205 31575 cl.cam.ac.uk.
gceJom14zzcCsdYuU2ymxuMABhlZO6VDIp8J4seDqDt09924Avcpl2P9 5wlDds02a0JGTqbnnDiydKFgOA6fJHNMCEbAQr6GVjl/Fg+YLWH8YwLx
Uu9q7FgmZyXLk67wC9ji17VZ3V9Co5Kd2kWuDOvp7Xb5OeyPKAll//tL BDk=
www.cl.cam.ac.uk. 21600 IN PTR svr-www-00.cl.cam.ac.uk.
www.cl.cam.ac.uk. 21600 IN RRSIG A 5 5 21600 20230314163841 20230212160205 31575 cl.cam.ac.uk.
j8k+Q8L2C7zzHSvpWpg+1t5WPk9IeTZ9GOvw/0v1pbYVXJfeHuNm9ERM Ff/hEkZm21ooFIBtrbTe/m5b+kBBm2OETDbbGP+na3/DEQyWFp0sHe6j
S2ZS9KeOXENJk92eA+/dBAWe0vFvTpXrZ/thp61ctqm9b3mR8AbnuNgu uHs=
www.cl.cam.ac.uk. 21600 IN A 128.232.0.20
www.cl.cam.ac.uk. 600 IN CAA 0 issuewild ";"
www.cl.cam.ac.uk. 600 IN CAA 0 issue "quovadisglobal.com"
www.cl.cam.ac.uk. 600 IN CAA 0 issue "letsencrypt.org"
www.cl.cam.ac.uk. 600 IN RRSIG CAA 5 5 600 20230324004125 20230222002906 31575 cl.cam.ac.uk.
A930aBg5uKP2l2aYxJ1gbCSnbR/o8n8oOs54fBOSUOkE55YmQWRNkNEW AGuuJltIz0I/lJ9eH4Jf+VL7KO1AimzS2ae6GXnXogP3shaz16jh+psX
rRQhKa2S0LcfRJM2j3ltct88AewpLk4nrv5rlvCS2yumGQlvKaMuEaga R14=

Received 1858 bytes from 2a05:b400:110::d:0#53 in 2 ms
39

Why is the web so
successful?

• What do the web, youtube, facebook, twitter, instagram, …..

have in common?

– The ability to self-publish

• Self-publishing that is easy, independent, free

• No interest in collaborative and idealistic endeavors

– People aren’t looking for Nirvana (or even Xanadu)
– People also aren’t looking for technical perfection

• Want to make their mark, and find something neat

– Two sides of the same coin, creates synergy
– “Performance” more important than dialogue….

40 41

Web and HTTP
First, a quick review…
! web page consists of objects, each of which can be stored on

different Web servers

! object can be HTML file, JPEG image, Java applet, audio
file,…

! web page consists of base HTML-file which includes several
referenced objects, each addressable by a URL, e.g.,

www.university.ac.uk/someDept/pic.gif

host name path name

HTTP overview
HTTP: hypertext transfer protocol
! Web’s application-layer protocol
! client/server model:

• client: browser that requests,
receives, (using HTTP protocol) and
“displays”Web objects

• server: Web server sends (using
HTTP protocol) objects in response
to requests

HTTP requestHTTP response

HTTP re
quest

HTTP re
sponse

iPhone running
Safari browser

PC running
Firefox browser

server running
Apache Web

server

HTTP overview (continued)
HTTP uses TCP:
! client initiates TCP connection

(creates socket) to server, port 80
! server accepts TCP connection

from client
! HTTP messages (application-layer

protocol messages) exchanged
between browser (HTTP client) and
Web server (HTTP server)

! TCP connection closed

HTTP is “stateless”
! server maintains no

information about past client
requests

protocols that maintain “state”
are complex!

! past history (state) must be
maintained

! if server/client crashes, their views
of “state”may be inconsistent,
must be reconciled

Reminder: Distributed Systems are Hard!

HTTP connections: two types
Non-persistent HTTP
1. TCP connection opened

2. at most one object sent
over TCP connection

3. TCP connection closed

downloading multiple
objects required multiple
connections

Persistent HTTP
!TCP connection opened to

a server

!multiple objects can be
sent over single TCP
connection between
client, and that server

!TCP connection closed

Non-persistent HTTP: example
User enters URL:

1a. HTTP client initiates TCP
connection to HTTP server
(process) at www.university.ac.uk on
port 80

2. HTTP client sends HTTP
request message (containing
URL) into TCP connection
socket. Message indicates
that client wants object
someDepartment/home.index

1b. HTTP server at host www.university.ac.uk
waiting for TCP connection at port 80
“accepts” connection, notifying client

3. HTTP server receives request message,
forms response message containing
requested object, and sends message
into its socket

time

(containing text, references to 10 jpeg images)
www.university.ac.uk/someDepartment/home.index

Non-persistent HTTP: example (cont.)
User enters URL:

(containing text, references to 10 jpeg images)
www.university.ac.uk/someDepartment/home.index

5. HTTP client receives response
message containing html file,
displays html. Parsing html file,
finds 10 referenced jpeg objects

6. Steps 1-5 repeated for
each of 10 jpeg objects

4. HTTP server closes TCP
connection.

time

Non-persistent HTTP: response time

RTT (definition): time for a small
packet to travel from client to
server and back

HTTP response time (per object):
! one RTT to initiate TCP connection
! one RTT for HTTP request and first few

bytes of HTTP response to return
! object/file transmission time

time to
transmit
file

initiate TCP
connection

RTT

request file

RTT

file received

time time

Non-persistent HTTP response time = 2RTT+ file transmission time

Persistent HTTP (HTTP 1.1)

Non-persistent HTTP issues:
! requires 2 RTTs per object
!OS overhead for each TCP

connection
! browsers often open multiple

parallel TCP connections to
fetch referenced objects in
parallel

Persistent HTTP (HTTP1.1):

! server leaves connection open
after sending response

! subsequent HTTP messages
between same client/server sent
over open connection

! client sends requests as soon as it
encounters a referenced object

! as little as one RTT for all the
referenced objects (cutting
response time in half)

HTTP request message
! two types of HTTP messages: request, response
! HTTP request message:

• ASCII (human-readable format)

header
lines

GET /index.html HTTP/1.1\r\n
Host: www-net.cs.umass.edu\r\n
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X

10.15; rv:80.0) Gecko/20100101 Firefox/80.0 \r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Connection: keep-alive\r\n
\r\n

carriage return character
line-feed characterrequest line (GET,

POST,
HEAD commands)

carriage return, line
feed at start of line
indicates end of header
lines

* Check out the online interactive exercises for more
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

HTTP request message: general format

request
line

header
lines

body

method sp sp cr lfversionURL

cr lfvalueheader field name

cr lfvalueheader field name

~~ ~~

cr lf

entity body~~ ~~

Other HTTP request messages

POST method:
! web page often includes form

input
! user input sent from client to

server in entity body of HTTP
POST request message

GET method (for sending data to
server):
! include user data in URL field of HTTP

GET request message (following a ‘?’):www.somesite.com/animalsearch?monkeys&banana

HEAD method:
! requests headers (only) that

would be returned if specified
URL were requested with an
HTTP GET method.

PUT method:
! uploads new file (object) to

server
! completely replaces file that

exists at specified URL with
content in entity body of POST
HTTP request message

HTTP response message
status line (protocol
status code status phrase)

header
lines

data, e.g., requested
HTML file

HTTP/1.1 200 OK
Date: Tue, 08 Sep 2020 00:53:20 GMT
Server: Apache/2.4.6 (CentOS)

OpenSSL/1.0.2k-fips PHP/7.4.9
mod_perl/2.0.11 Perl/v5.16.3

Last-Modified: Tue, 01 Mar 2016 18:57:50 GMT
ETag: "a5b-52d015789ee9e"
Accept-Ranges: bytes
Content-Length: 2651
Content-Type: text/html; charset=UTF-8
\r\n
data data data data data ...

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

HTTP response status codes

200 OK
• request succeeded, requested object later in this message

301 Moved Permanently
• requested object moved, new location specified later in this message (in

Location: field)
400 Bad Request

• request msg not understood by server
404 Not Found

• requested document not found on this server
505 HTTP Version Not Supported

! status code appears in 1st line in server-to-client response message.
! some sample codes:

Trying out HTTP (client side) for yourself
1. netcat to your favorite Web server:

! opens TCP connection to port 80 (default HTTP server
port) at gaia.cs.umass. edu.

! anything typed in will be sent to port 80 at
gaia.cs.umass.edu

% nc -c -v www.cl.cam.ac.uk 80

3. look at response message sent by HTTP server!
(or use Wireshark to look at captured HTTP request/response)

2. type in a GET HTTP request:
GET /~awm22/index.php HTTP/1.1
Host: www.cl.cam.ac.uk ! by typing this in (hit carriage return twice), you send

this minimal (but complete) GET request to HTTP
server

Although in readable asciii – you will notice this is not the webpage but a redirect
Automatically moving to an https secure connection

Maintaining user/server state: cookies
Recall: HTTP GET/response

interaction is stateless
! no notion of multi-step exchanges

of HTTP messages to complete a
Web “transaction”
• no need for client/server to track

“state” of multi-step exchange
• all HTTP requests are independent of

each other
• no need for client/server to “recover”

from a partial-but-never-entirely-
completed transaction

a stateful protocol: client makes
two changes to X, or none at all

time time

OK

OK
unlock X

OK

update X X’

update X X’’

lock data record X

OK
X

X

X
’

X
’’

X’’

t’

Q: what happens if network connection or
client crashes at t’ ?

Maintaining user/server state: cookies
Web sites and client browser use

cookies to maintain some state
between transactions

four components:
1) cookie header line of HTTP response

message
2) cookie header line in next HTTP

request message
3) cookie file kept on user’s host,

managed by user’s browser
4) back-end database at Web site

Example:
! Susan uses browser on laptop,

visits specific e-commerce site
for first time

! when initial HTTP requests
arrives at site, site creates:

• unique ID (aka “cookie”)
• entry in backend database

for ID
• subsequent HTTP requests

from Susan to this site will
contain cookie ID value,
allowing site to “identify”
Susan

Maintaining user/server state: cookies
client

server

usual HTTP response msg

usual HTTP response msg

cookie file

one week later:

usual HTTP request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734 usual HTTP request msg Amazon server
creates ID

1678 for user create
entry

usual HTTP response
set-cookie: 1678 ebay 8734

amazon 1678

usual HTTP request msg
cookie: 1678 cookie-

specific
action

access
ebay 8734
amazon 1678

backend
database

time time

HTTP cookies: comments
What cookies can be used for:
! authorization
! shopping carts
! recommendations
! user session state (Web e-mail)

cookies and privacy:
! cookies permit sites to

learn a lot about you on
their site.

! third party persistent
cookies (tracking cookies)
allow common identity
(cookie value) to be
tracked across multiple
web sites

aside

Challenge: How to keep state?
! at protocol endpoints: maintain state at

sender/receiver over multiple
transactions

! in messages: cookies inHTTP messages
carry state

Example: displaying a NY Times web page

nytimes.com

AdX.com

1HTTP
GET 2 HTTP

reply

43

56

NY times page with
embedded ad

displayed

GET base html file
from nytimes.com

1
2

fetch ad from
AdX.com

4
5

display composed
page

7

nytimes.com (sports)

AdX.com

1634: sports, 2/15/22

NY Times: 1634

7493: NY Times sports, 2/15/22

HTTP
reply
Set cookie: 1634

4

HTTP GET
Referer: NY Times Sports

5
HTTP reply
Set cookie: 7493

HTTP
GET

AdX: 7493

Cookies: tracking a user’s browsing behavior

“first party” cookie –
from website you chose
to visit (provides base
html file)

“third party” cookie –
from website you did
not choose to visit

Cookies: tracking a user’s browsing behavior

nytimes.com

AdX.com

1634: sports, 2/15/22

NY Times: 1634

7493: NY Times sports, 2/15/22

AdX: 7493

socks.com

1HTTP
GET

2

HTTP
reply

4

HTTP GET
Referer: socks.com, cookie: 7493

5
HTTP reply
Set cookie: 7493

7493: socks.com, 2/16/22

AdX:
! tracks my web browsing

over sites with AdX ads
! can return targeted ads

based on browsing history

Cookies: tracking a user’s browsing behavior (one day later)

nytimes.com (arts)

AdX.com

1634: sports, 2/15/22

NY Times: 1634

7493: NY Times sports, 2/15/22

AdX: 7493

socks.com

4

HTTP GET
Referer:nytimes.com, cookie:

7493

5
HTTP reply
Set cookie: 7493

7493: socks.com, 2/16/22

cookie: 1634

HTTP
reply

HTTP
GET

Set cookie: 1634

1634: arts, 2/17/22

7493: NY Times arts, 2/15/22

Returned ad for socks!

Cookies: tracking a user’s browsing behavior
Cookies can be used to:
! track user behavior on a given website (first party cookies)
! track user behavior across multiple websites (third party

cookies) without user ever choosing to visit tracker site (!)
! tracking may be invisible to user:

–rather than displayed ad triggering HTTP GET to tracker, could be an
invisible link

third party tracking via cookies:
! disabled by default in Firefox, Safari browsers
! to be disabled in Chrome browser in 2023

GDPR (EU General Data Protection Regulation) and cookies

“Natural persons may be associated with online
identifiers […] such as internet protocol addresses,
cookie identifiers or other identifiers […].
This may leave traces which, in particular when
combined with unique identifiers and other
information received by the servers, may be used to
create profiles of the natural persons and identify
them.”

GDPR, recital 30 (May 2018)

User has explicit control
over whether or not cookies

are allowed
when cookies can identify an individual, cookies
are considered personal data, subject to GDPR

personal data regulations

Web caches

! user configures browser to
point to a (local) Web cache

! browser sends all HTTP
requests to cache

• if object in cache: cache
returns object to client

• else cache requests object
from origin server, caches
received object, then
returns object to client

Goal: satisfy client requests without involving origin server

client

Web
cache

client

HTTP request

HTTP response

HTTP request HTTP request

origin
server

HTTP response HTTP response

Web caches (aka proxy servers)
! Web cache acts as both

client and server
• server for original

requesting client
• client to origin server

Why Web caching?

! reduce response time for client
request
• cache is closer to client

! reduce traffic on an institution’s
access link

! Internet is dense with caches
• enables “poor” content providers

to more effectively deliver content

! server tells cache about
object’s allowable caching
in response header:

Caching example

origin
servers

public
Internet

institutional
network

1 Gbps LAN

1.54 Mbps
access linkPerformance:

! access link utilization = .97
! LAN utilization: .0015
! end-end delay = Internet delay +

access link delay + LAN delay
= 2 sec + minutes + usecs

Scenario:
! access link rate: 1.54 Mbps
! RTT from institutional router to server: 2 sec
! web object size: 100K bits
! average request rate from browsers to origin

servers: 15/sec
! avg data rate to browsers: 1.50 Mbps

problem: large
queueing delays
at high
utilization!

Performance:
! access link utilization = .97
! LAN utilization: .0015
! end-end delay = Internet delay +

access link delay + LAN delay
= 2 sec + minutes + usecs

Option 1: buy a faster access link

origin
servers

public
Internet

institutional
network

1 Gbps LAN

1.54 Mbps
access link

Scenario:
! access link rate: 1.54 Mbps
! RTT from institutional router to server: 2 sec
! web object size: 100K bits
! average request rate from browsers to origin

servers: 15/sec
! avg data rate to browsers: 1.50 Mbps

154 Mbps

154 Mbps

.0097

msecsCost: faster access link (expensive!)

Performance:
! LAN utilization: .?
! access link utilization = ?
! average end-end delay = ?

Option 2: install a web cache

origin
servers

public
Internet

institutional
network

1 Gbps LAN

1.54 Mbps
access link

Scenario:
! access link rate: 1.54 Mbps
! RTT from institutional router to server: 2 sec
! web object size: 100K bits
! average request rate from browsers to origin

servers: 15/sec
! avg data rate to browsers: 1.50 Mbps

How to compute link
utilization, delay?

Cost: web cache (cheap!)

local web cache

Calculating access link utilization,
end-end delay with cache:

origin
servers

public
Internet

institutional
network

1 Gbps LAN

1.54 Mbps
access link

local web cache

suppose cache hit rate is 0.4:
! 40% requests served by cache, with low

(msec) delay
! 60% requests satisfied at origin

• rate to browsers over access link
= 0.6 * 1.50 Mbps = .9 Mbps

• access link utilization = 0.9/1.54 = .58
means low (msec) queueing delay at access
link! average end-end delay:

= 0.6 * (delay from origin servers)
+ 0.4 * (delay when satisfied at cache)

= 0.6 (2.01) + 0.4 (~msecs) = ~ 1.2 secs
lower average end-end delay than with 154 Mbps link (and cheaper too!)

Browser caching: Conditional GET

Goal: don’t send object if browser
has up-to-date cached version

• no object transmission delay (or use
of network resources)

! client: specify date of browser-
cached copy in HTTP request
If-modified-since: <date>

! server: response contains no
object if browser-cached copy is
up-to-date:
HTTP/1.0 304 Not Modified

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified
before
<date>

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0 200 OK

<data>

object
modified

after
<date>

client server

73

Improving HTTP Performance:
Caching with Reverse Proxies

Cache documents close to server
" decrease server load

• Typically done by content providers

• Only works for static(*) content
(*) static can also be snapshots
of dynamic content

Clients

Backbone ISP

ISP-1 ISP-2

Server

Reverse proxies

74

Improving HTTP Performance:
Caching with Forward Proxies

Cache documents close to clients
" reduce network traffic and decrease latency

• Typically done by ISPs or corporate LANs

Clients

Backbone ISP

ISP-1 ISP-2

Server

Reverse proxies

Forward proxies

75

Improving HTTP Performance:
Caching w/ Content Distribution Networks

• Integrate forward and reverse caching functionality
– One overlay network (usually) administered by one entity
– e.g., Akamai

• Provide document caching
– Pull: Direct result of clients’ requests
– Push: Expectation of high access rate

• Also do some processing
– Handle dynamic web pages
– Transcoding
– Maybe do some security function – watermark IP

76

Improving HTTP Performance:
Caching with CDNs (cont.)

Clients

ISP-1

Server

Forward proxies

Backbone ISP

ISP-2

CDN

77

Improving HTTP Performance:
CDN Example – Akamai

• Akamai creates new domain names for each client

content provider.

– e.g., a128.g.akamai.net

• The CDN’s DNS servers are authoritative for the new

domains

• The client content provider modifies its content so

that embedded URLs reference the new domains.

– “Akamaize” content
– e.g.: http://www.bbc.co.uk/popular-image.jpg becomes

http://a128.g.akamai.net/popular-image.jpg

• Requests now sent to CDN’s infrastructure…

78

Hosting: Multiple Sites Per
Machine

• Multiple Web sites on a single machine
– Hosting company runs the Web server on behalf of

multiple sites (e.g., www.foo.com and www.bar.com)
• Problem: GET /index.html

– www.foo.com/index.html or www.bar.com/index.html?
• Solutions:

– Multiple server processes on the same machine
• Have a separate IP address (or port) for each server

– Include site name in HTTP request
• Single Web server process with a single IP address
• Client includes “Host” header (e.g., Host: www.foo.com)
• Required header with HTTP/1.1

79

Hosting: Multiple Machines Per Site

• Replicate popular Web site across many machines

– Helps to handle the load
– Places content closer to clients

• Helps when content isn’t cacheable

• Problem: Want to direct client to particular replica

– Balance load across server replicas
– Pair clients with nearby servers

80

Multi-Hosting at Single Location
• Single IP address, multiple machines

– Run multiple machines behind a single IP address

– Ensure all packets from a single
TCP connection go to the same replica

Load Balancer
64.236.16.20

81

Multi-Hosting at Several Locations

• Multiple addresses, multiple machines
– Same name but different addresses for all of the replicas
– Configure DNS server to return closest address

Internet
64.236.16.20

173.72.54.131

12.1.1.1

CDN examples round-up

• CDN using DNS
DNS has information on loading/distribution/location
(akami uses this one)

• CDN using anycast
same address from DNS name but local routes
(ROOT DNS servers and 8.8.8.8 use this one)

• CDN based on rewriting HTML URLs
(akami example in previous slides)

82

After HTTP/1.1

SPDY (speedy) and its moral successor HTTP/2

• Binary protocol

• Multiplexing

• Priority control over Frames

• Header Compression

• Server Push

83

After HTTP/1.1

SPDY (speedy) and its moral successor HTTP/2

• Binary protocol

• Multiplexing

• Priority control over Frames

• Header Compression

• Server Push

– Proactively push stuff to client that it will need

84

After HTTP/1.1

SPDY (speedy) and its moral successor HTTP/2

• Binary protocol

– More efficient to parse
– More compact on the wire
– Much less error prone as compared
– to textual protocols

85

HTTP/2
Key goal: decreased delay in multi-object HTTP requests

HTTP1.1: introduced multiple, pipelined GETs over single TCP
connection
! server responds in-order (FCFS: first-come-first-served scheduling) to

GET requests
!with FCFS, small object may have to wait for transmission (head-of-

line (HOL) blocking) behind large object(s)
! loss recovery (retransmitting lost TCP segments) stalls object

transmission

HTTP/2

HTTP/2: [RFC 7540, 2015] increased flexibility at server in sending
objects to client:
! methods, status codes, most header fields unchanged from HTTP

1.1
! transmission order of requested objects based on client-specified

object priority (not necessarily FCFS)

! push unrequested objects to client
! divide objects into frames, schedule frames to mitigate HOL

blocking

Key goal: decreased delay in multi-object HTTP requests

HTTP/2: mitigating HOL blocking
HTTP 1.1: client requests 1 large object (e.g., video file) and 3 smaller
objects

client

server

GET O1
GET O2

GET O3
GET O4

O1
O2

O3O4

object data requested

O1

O2

O3
O4

objects delivered in order requested: O2, O3, O4 wait behind O1

HTTP/2: mitigating HOL blocking
HTTP/2: objects divided into frames, frame transmission interleaved

client

server

GET O1
GET O2

GET O3
GET O4

O2

O4

object data requested

O1

O2

O3
O4

O2, O3, O4 delivered quickly, O1 slightly delayed

O3

O1

HTTP/2 to HTTP/3

HTTP/2 over single TCP connection means:

! recovery from packet loss still stalls all object transmissions
• as in HTTP 1.1, browsers have incentive to open multiple parallel

TCP connections to reduce stalling, increase overall throughput
! no security over vanilla TCP connection

! HTTP/3: adds security, per object error- and congestion-
control (more pipelining) over UDP

As at 2021

91

Other ongoing work includes QUIC for datagrams
Seriously! It adds QUIC crypto to “UDP” so isn’t totally silly.

Add QUIC and stir…
Quick UDP Internet Connections

Objective: Combine speed of UDP protocol with TCP’s
reliability
Problem: Very hard to make changes to TCP
• Faster to implement new protocol on top of UDP
• (Roll out features in TCP if they prove theory)

QUIC (First presented to IETF in ~2013):
• Reliable transport over UDP (seriously)
• Uses FEC
• Default crypto
• Restartable connections

93

3-Way Handshake

Without TLS With TLS

UDP

• Fire and forget
– Less time spent to

validate packets

– Downside - no reliability,
this has to be added on
top of UDP

QUIC

• UDP does NOT depend on order of arriving packets

• Lost packets will only impact an individual resource,

e.g., CSS or JS file.

• QUIC combined the best parts of HTTP/2 over UDP:
– Multiplexing on top of non-blocking transport protocol

QUIC: Quick UDP Internet Connections

adopts approaches we’ve studied in this topic for connection
establishment, error control, congestion control

• multiple application-level “streams” multiplexed over single QUIC
connection
– separate reliable data transfer, security
– common congestion control

• error and congestion control: “Readers familiar with TCP’s loss
detection and congestion control will find algorithms here that parallel
well-known TCP ones.” [from QUIC specification]

• connection establishment: reliability, congestion control,
authentication, encryption, state established in one RTT

QUIC: streams – parallelism
no HOL blocking in transport or application

(a) HTTP 1.1

TLS encryption

TCP RDT

TCP Cong.
Contr.

tr
an

sp
or

t
ap

pl
ica

tio
n

(b) HTTP/2 with QUIC: no HOL blocking

TCP RDT

TCP Cong.
Contr.

TLS encryption

error
!

HTTP
GET

HTTP
GET

HTTP
GET

QUIC Cong. Cont.

QUIC
encrypt

QUIC
RDT

QUIC
RDT

QUIC
RDT

QUIC
encrypt

QUIC
encrypt

UDP UDP

QUIC Cong. Cont.

QUIC
encrypt

QUIC
RDT

QUIC
RDT

QUIC
RDT

QUIC
encrypt

QUIC
encrypt

error
!

HTTP
GET HTTP

GET HTTP
GET

QUIC – more than just UDP

• QUIC outshines TCP under poor network
conditions, shaving a full second off the

Google Search page load time for the slowest
1% of connections.

• These benefits are even more apparent for

video services like YouTube

– Users report 30% fewer rebuffers with QUIC.

100

Why QUIC over UDP and not a new
proto

• IP proto value for new transport layer

• Change the protocol – risk the wraith of

– Legacy code
– Firewalls
– Load-balancer
– NATs (the high-priest of middlebox)

• Same problem faces any significant TCP change

101Honda M. et al. “Is it still possible to extend TCP?”, IMC’11
https://dl.acm.org/doi/abs/10.1145/2068816.2068834

Every host is a server:
Peer-2-Peer

154

mobile network

home network

enterprise
network

national or global ISP

local or
regional
ISP

datacenter
network

content
provider
network

Peer-to-peer (P2P) architecture

! no always-on server
! arbitrary end systems directly

communicate
! peers request service from other

peers, provide service in return to
other peers

• self scalability – new peers bring new
service capacity, and new service
demands

! peers are intermittently connected
and change IP addresses
• complex management

! examples: P2P file sharing (BitTorrent),
streaming (KanKan), VoIP (Skype)

File distribution: client-server vs P2P
Q: how much time to distribute file (size F) from one server to

N peers?
• peer upload/download capacity is limited resource

us

uN

dN

server

network (with abundant
bandwidth)

file, size F

us: server upload
capacity

ui: peer i upload
capacity

di: peer i download
capacityu2 d2

u1 d1

di

ui

File distribution time: client-server
! server transmission: must

sequentially send (upload) N file
copies:
• time to send one copy: F/us
• time to send N copies: NF/us

! client: each client must download
file copy
• dmin = min client download rate
• min client download time: F/dmin

us

network
di

ui

F

increases linearly in N

time to distribute F
to N clients using

client-server approach
Dc-s > max{NF/us,,F/dmin}

File distribution time: P2P
! server transmission: must upload at

least one copy:
• time to send one copy: F/us

! client: each client must download
file copy
• min client download time: F/dmin

us

network
di

ui

F

! clients: as aggregate must download NF bits
• max upload rate (limiting max download rate) is us + Sui

time to distribute F
to N clients using

P2P approach
DP2P > max{F/us,,F/dmin,,NF/(us + Sui)}

… but so does this, as each peer brings service capacity
increases linearly in N …

Client-server vs. P2P: example
client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

N

M
in

im
um

 D
is

tri
bu

tio
n

Ti
m

e P2P
Client-Server

P2P file distribution: BitTorrent
! file divided into 256Kb chunks
! peers in torrent send/receive file chunks

tracker: tracks peers
participating in torrent

torrent: group of peers
exchanging chunks of a file

Alice arrives …
… obtains list
of peers from tracker
… and begins exchanging
file chunks with peers in torrent

P2P file distribution: BitTorrent

! peer joining torrent:
• has no chunks, but will accumulate them

over time from other peers
• registers with tracker to get list of peers,

connects to subset of peers
(“neighbors”)

! while downloading, peer uploads chunks to other peers
! peer may change peers with whom it exchanges chunks
! peer exchanges prioritize rarer blocks
! churn: peers may come and go
! once peer has entire file, it may (selfishly) leave or (altruistically)

remain in torrent

BitTorrent: requesting, sending file chunks
Requesting chunks:
! at any given time, different

peers have different
subsets of file chunks

! periodically, Alice asks
each peer for list of chunks
that they have

! Alice requests missing
chunks from peers, rarest
first

Sending chunks: tit-for-tat
! Alice sends chunks to those four

peers currently sending her chunks
at highest rate

• other peers are choked by Alice (do
not receive chunks from her)

• re-evaluate top 4 every10 secs
! every 30 secs: randomly select

another peer, starts sending
chunks
• “optimistically unchoke” this peer
• newly chosen peer may join top 4

BitTorrent: tit-for-tat
(1) Alice “optimistically unchokes” Bob
(2) Alice becomes one of Bob’s top-four providers; Bob reciprocates
(3) Bob becomes one of Alice’s top-four providers

higher upload rate: find better
trading partners, get file faster !

Rare blocks have priority
Making each host a
better network partner

Email

Still the best/worst most useful/useless service

Email was the exemplar of the Electronic Office

Because every business thought in memo

183

E-mail
Three major components:
!user agents
!mail servers
! simple mail transfer protocol: SMTP

User Agent
! a.k.a. “mail reader”
! composing, editing, reading mail messages
! e.g., Outlook, iPhone mail client
!outgoing, incoming messages stored on

server user mailbox

outgoing
message queue

mail
server

mail
server

mail
server

SMTP

SMTP

SMTP

user
agent

user
agent

user
agent

user
agent

user
agent

user
agent

E-mail: mail servers

user mailbox

outgoing
message queue

mail
server

mail
server

mail
server

SMTP

SMTP

SMTP

user
agent

user
agent

user
agent

user
agent

user
agent

user
agent

mail servers:
!mailbox contains incoming

messages for user
!message queue of outgoing (to be

sent) mail messages
SMTP protocol between mail
servers to send email messages
! client: sending mail server
! “server”: receiving mail server

SMTP RFC (5321)

! uses TCP to reliably transfer email message
from client (mail server initiating
connection) to server, port 25
! direct transfer: sending server (acting like

client) to receiving server
! three phases of transfer

• SMTP handshaking (greeting)
• SMTP transfer of messages
• SMTP closure

! command/response interaction (like HTTP)
• commands: ASCII text
• response: status code and phrase

initiate TCP
connection

RTT

time

22
0

250 Hello

HEL
O

SMTP
handshaking

TCP connection
initiated

“client”
SMTP server

“server”
SMTP server

SMTP
transfers

Scenario: Alice sends e-mail to Bob
1) Alice uses UA to compose e-mail

message “to”
bob@someschool.edu

4) SMTP client sends Alice’s message
over the TCP connection

user
agent

mail
server

mail
server

1

2 3 4

5

6

Alice’s mail server Bob’s mail server

user
agent

2) Alice’s UA sends message to her
mail server using SMTP; message
placed in message queue

3) client side of SMTP at mail server
opens TCP connection with Bob’s mail
server

5) Bob’s mail server places
the message in Bob’s
mailbox

6) Bob invokes his user
agent to read message

Sample SMTP interaction
S: 220 hamburger.edu
C: HELO crepes.fr
S: 250 Hello crepes.fr, pleased to meet you
C: MAIL FROM: <alice@crepes.fr>
S: 250 alice@crepes.fr... Sender ok
C: RCPT TO: <bob@hamburger.edu>
S: 250 bob@hamburger.edu ... Recipient ok
C: DATA
S: 354 Enter mail, end with "." on a line by itself
C: Do you like ketchup?
C: How about pickles?
C: .
S: 250 Message accepted for delivery
C: QUIT
S: 221 hamburger.edu closing connection

SMTP: observations

! SMTP uses persistent
connections

! SMTP requires message
(header & body) to be in
7-bit ASCII

! SMTP server uses
CRLF.CRLF to determine
end of message

comparison with HTTP:
! HTTP: client pull
! SMTP: client push

! both have ASCII command/response
interaction, status codes

! HTTP: each object encapsulated in
its own response message

! SMTP: multiple objects sent in
multipart message

Mail message format

SMTP: protocol for exchanging e-mail messages, defined in RFC 5321
(like RFC 7231 defines HTTP)
RFC 2822 defines syntax for e-mail message itself (like HTML defines
syntax for web documents)

header

body

blank
line

! header lines, e.g.,
• To:
• From:
• Subject:
these lines, within the body of the email
message area different from SMTP MAIL
FROM:, RCPT TO: commands!

! Body: the “message” , ASCII characters only

Retrieving email: mail access protocols

sender’s e-mail
server

SMTP SMTP

receiver’s e-mail
server

e-mail
access
protocol(e.g., IMAP,

HTTP)

user
agent

user
agent

! SMTP: delivery/storage of e-mail messages to receiver’s server
!mail access protocol: retrieval from server

• IMAP: Internet Mail Access Protocol [RFC 3501]: messages stored on server, IMAP
provides retrieval, deletion, folders of stored messages on server

! HTTP: gmail, Hotmail, Yahoo!Mail, etc. provides web-based interface on
top of STMP (to send), IMAP (or POP) to retrieve e-mail messages

Internet
(current data is $$$ or hard to get)

This info taken from an annual Sandvine report for 2022 https://www.sandvine.com

Video Streaming and CDNs: context

! stream video traffic: major
consumer of Internet bandwidth
• Netflix, YouTube, Amazon Prime: 80% of

residential ISP traffic (2020)

! challenge: scale - how to reach
~1B users?

! challenge: heterogeneity
! different users have different capabilities (e.g., wired

versus mobile; bandwidth rich versus bandwidth poor)
! solution: distributed, application-level infrastructure

Multimedia: video
! video: sequence of images

displayed at constant rate
• e.g., 24 images/sec

! digital image: array of pixels
• each pixel represented by bits

! coding: use redundancy within and
between images to decrease # bits
used to encode image
• spatial (within image)
• temporal (from one image to

next)

……………………..

spatial coding example: instead
of sending N values of same
color (all purple), send only two
values: color value (purple)
and number of repeated values
(N)

……………….…….

frame i

frame i+1

temporal coding
example: instead of
sending complete frame
at i+1, send only
differences from frame i

Multimedia: video

……………………..

spatial coding example: instead
of sending N values of same
color (all purple), send only two
values: color value (purple)
and number of repeated values
(N)

……………….…….

frame i

frame i+1

temporal coding
example: instead of
sending complete frame
at i+1, send only
differences from frame i

! CBR: (constant bit rate): video
encoding rate fixed

! VBR: (variable bit rate): video
encoding rate changes as
amount of spatial, temporal
coding changes

! examples:
• MPEG 1 (CD-ROM) 1.5 Mbps
• MPEG2 (DVD) 3-6 Mbps
• MPEG4 (often used in

Internet, 64Kbps – 12 Mbps)

Main challenges:

• server-to-client bandwidth will vary over time, with changing
network congestion levels (in house, access network, network core,
video server)

• packet loss, delay due to congestion will delay playout, or result in
poor video quality

Streaming stored video

simple scenario:

video server
(stored video)

client

Internet

Streaming stored video

1. video
recorded
(e.g., 30
frames/sec)

2. video
sentC

um
ul

at
iv

e
da

ta

streaming: at this time, client playing out
early part of video, while server still sending
later part of video

time

3. video received, played out at
client
(30 frames/sec)network delay

(fixed in this
example)

Streaming stored video: challenges
! continuous playout constraint: during client

video playout, playout timing must match
original timing
• … but network delays are variable (jitter), so will

need client-side buffer to match continuous playout
constraint

! other challenges:
• client interactivity: pause, fast-forward, rewind,

jump through video
• video packets may be lost, retransmitted

Streaming stored video: playout buffering

constant bit
rate video

transmission

Cu
m

ul
at

iv
e

da
ta

time

variable
network

delay

client video
reception

constant bit
rate video

playout at client

client playout
delay

bu
ffe

re
d

vid
eo

!client-side buffering and playout delay: compensate for
network-added delay, delay jitter

Streaming multimedia: DASH

server:
! divides video file into multiple chunks
! each chunk encoded at multiple different rates
! different rate encodings stored in different files
! files replicated in various CDN nodes
! manifest file: provides URLs for different chunks client

?

client:
! periodically estimates server-to-client bandwidth
! consulting manifest, requests one chunk at a time

• chooses maximum coding rate sustainable given current bandwidth
• can choose different coding rates at different points in time (depending

on available bandwidth at time), and from different servers

...
...

...

Dynamic, Adaptive
Streaming over HTTP

...
...

...

Streaming multimedia: DASH

!“intelligence” at client: client
determines
• when to request chunk (so that buffer

starvation, or overflow does not occur)
• what encoding rate to request (higher

quality when more bandwidth
available)

• where to request chunk (can request
from URL server that is “close” to
client or has high available
bandwidth)

Streaming video = encoding + DASH + playout buffering

client

?

Content distribution networks (CDNs)

challenge: how to stream content (selected from millions of
videos) to hundreds of thousands of simultaneous users?

! option 1: single, large “mega-
server”
• single point of failure
• point of network congestion
• long (and possibly congested)

path to distant clients

….quite simply: this solution doesn’t scale

Content distribution networks (CDNs)

challenge: how to stream content (selected from millions of
videos) to hundreds of thousands of simultaneous users?

• enter deep: push CDN servers deep into many access networks
• close to users
• Akamai: 240,000 servers deployed

in > 120 countries (2015)

! option 2: store/serve multiple copies of videos at multiple
geographically distributed sites (CDN)

• bring home: smaller number (10’s) of
larger clusters in POPs near access nets

• used by Limelight

…

…

……

…

…

! subscriber requests content, service provider returns manifest

Content distribution networks (CDNs)

! CDN: stores copies of content (e.g. MADMEN) at CDN nodes

where’s Madmen?
manifest file

• using manifest, client retrieves content at highest supportable rate
• may choose different rate or copy if network path congested

…

…

……

…

…
Internet host-host communication as a service

OTT challenges: coping with a congested Internet from the “edge”
! what content to place in which CDN node?
! from which CDN node to retrieve content? At which rate?

OTT: “over the top”

Content distribution networks (CDNs)

Summary.
• Applications have protocols too

• We covered examples from
– Traditional Applications (web)
– Scaling and Speeding the web (CDN/Cache tricks)

• Infrastructure Services (DNS)
– Cache and Hierarchy

• P2P Network examples

• Evolving standards (Email)

• Video CDN Stream challenges

206

