Computer Networking

Slide Set 2

Andrew W. Moore

Andrew.Moore@cl.cam.ac.uk

Topic 3.0: The Physical Layer

Our goals:

- · Understand physical channel fundamentals
 - Physical channels can carry data in proportion to the signal and inversely in proportion to noise
 - Modulation represents Digital data in analog channels
 - Baseband vs. Broadband
 - Synchronous vs. Aynchronous

2

3

2

Physical Channel Characteristics - Fundamental Limits -

symbol type: generally, an analog waveform voltage, current, photo intensity etc.

capacity: bandwidth

delay: speed of light in

medium and distance

fidelity: signal to noise

ratio

travelled

5

- measure of the range of frequencies of sinusoidal signal that channel supports
- E.g., a channel that supports sinusoids from 1 MHz to 1.1 MHz has a bandwidth of 100 KHz
- "supports" in this context means "comes out the other end of the channel"
- some frequencies supported better than others

 analysing what happens to an arbitrary waveform is done by examining what happens to its component sinusoids → Fourier analysis

· bandwidth is a resource

(Digital) Channels

R.

• Baud rate is the rate at which symbols can be transmitted

• Data rate (or bit rate) is the equivalent number of binary

• E.g., if symbols represent with rate R then the data rate is 2 ×

10

digits which can be sent

- Physical layer provides a channel
- Fixed rate for now
- Symbols are discrete values sent on the channel at fixed rate
- Symbols need not be binary
- Fidelity of the channel usually measured as a bit error rate the probability that a bit sent as a 1 was interpreted as a 0 by the receiver or vice versa.

10

Code Division Multiple Access (CDMA) (not to be confused with CSMA!)

- used in several wireless broadcast channels (cellular, satellite, etc) standards
- unique "code" assigned to each user; i.e., code set partitioning
- all users share same frequency, but each user has own chipping "sequence (i.e., code) to encode data
- *encoded signal* = (original data) XOR (chipping sequence)
- decoding: inner-product of encoded signal and chipping sequence
- allows multiple users to "coexist" and transmit simultaneously with minimal interference (if codes are "orthogonal")

30

<section-header><section-header><equation-block><equation-block><text>

33

Coding Examples summary

- Common Wired coding

 Block codecs: table-lookups
 fixed overhead, inline control signals
 - Scramblers: shift registers
 overhead free

Like earlier coding schemes and error correction/detection; you can combine these - e.g, 10Gb/s Ethernet may use a hybrid

CDMA (Code Division Multiple Access)

coping intelligently with competing sources

– Mobile phones

34

Error Detection and Correction

Transmission media are not perfect and cause signal impairments:

- 1. Attenuation
- Loss of energy to overcome medium's resistance
- 2. Distortion
 - The signal changes its form or shape, caused in composite signals
- 3. Noise
 - Thermal noise, induced noise, crosstalk, impulse noise

Interference can change the shape or timing of a signal: $0 \rightarrow 1 \text{ or } 1 \rightarrow 0$

35

3/

Error Detection Code: CRC

- CRC means "Cyclic Redundancy Check".
- "A sequence of redundant bits, called CRC, is appended to the end of data so that the resulting data becomes exactly divisible by a second, predetermined binary number."
- CRC:= remainder (data ÷ predetermined divisor)
- More powerful than parity.
 - It can detect various kinds of errors, including 2-bit errors.

- More complex: multiplication, binary division.
- Parameterized by n-bit divisor P.
 - Example: 3-bit divisor 101.
 - Choosing good P is crucial.
- 42

Error Detection vs Correction

Error Correction:

- Cons: More check bits. False recovery.
- Pros: No need to re-send.

Error Detection:

- · Cons: Need to re-send.
- Pros: Less check bits.

Usage:

49

- Correction: A lot of noise. Expensive to re-send.
- Detection: Less noise. Easy to re-send.

• Can be used together.

FEC: Kurose&Ross P618 §7.3.3 No useful Peterson&Davie reference ⁴⁹

Topic 3: The Data Link Layer

Our goals:

- understand principles behind data link layer services: (these are methods & mechanisms in your networking toolbox)
 - error detection, correction
 - sharing a broadcast channel: multiple access
 - link layer addressing
 - reliable data transfer, flow control
- instantiation and implementation of various link layer technologies
 - Wired Ethernet (aka 802.3)
 - Wireless Ethernet (aka 802.11 WiFi)
- Algorithms
 - Binary Exponential Back-off
 - Spanning Tree (Dijkstra)
- General knowledge
 - Random numbers are important and hard
- 50

Link Layer (Channel) Services - 1/2

50

52

• framing, physical addressing:

- encapsulate datagram into frame, adding header, trailer
- channel access if shared medium
- "MAC" addresses used in frame headers to identify source, destination
 This is **not** an IP address!

• reliable delivery between adjacent nodes

- we revisit this again in the Transport Topic
- seldom used on low bit-error link (fiber, some twisted pair)
- wireless links: high error rates

Link Layer: Introduction

- hosts and routers are nodes
 communication channels that connect adjacent nodes along communication path are links
 - wired links
 - wireless links
 - LANs
- layer-2 packet is a frame, encapsulates datagram

data-link layer has responsibility of transferring datagram from one node to adjacent node over a link

51

Link Layer (Channel) Services – 2/2

• flow control:

51

- pacing between adjacent sending and receiving nodes
- error control:
 - error detection:
 - errors caused by signal attenuation, noise.
 - receiver detects presence of errors:
 signals sender for retransmission or drops frame
 - error correction:
 - receiver identifies and corrects bit error(s) without resorting to retransmission
- access control: half-duplex and full-duplex
 - with half duplex, nodes at both ends of link can transmit, but not at same time

53

53

55

Multiple Access protocols

- single shared broadcast channel
- two or more simultaneous transmissions by nodes: interference
 - collision if node receives two or more signals at the same time

multiple access protocol

- distributed algorithm that determines how nodes share channel, i.e., determine when node can transmit
- communication about channel sharing must use channel itself!
 no out-of-band channel for coordination

57

Ideal Multiple Access Protocol

Broadcast channel of rate *R* bps

1. when one node wants to transmit, it can send at rate R

2. when *M* nodes want to transmit,

each can send at average rate R/M

- 3. fully decentralized:
 - no special node to coordinate transmissions
 - no synchronization of clocks, slots

4. simple

58

59

58

Channel Partitioning MAC protocols: FDMA (we discussed this earlier) FDMA: frequency division multiple access • channel spectrum divided into frequency bands · each station assigned fixed frequency band unused transmission time in frequency bands go idle • example: station LAN, 1,3,4 have pkt, frequency bands 2,5,6 idle time NNN bands n frequency FDM cable

61

Account of the second of the secon

Key Ideas of Random Access

Carrier sense

- Listen before speaking, and don't interrupt
- Checking if someone else is already sending data
- ... and waiting till the other node is done
- Collision detection
 - If someone else starts talking at the same time, stop
 - Realizing when two nodes are transmitting at once
 - ...by detecting that the data on the wire is garbled
- Randomness
 - Don't start talking again right away
 - Waiting for a random time before trying again

70

CSMA/CD (Collision Detection)

- CSMA/CD: carrier sensing, deferral as in CSMA
 Collisions detected within short time
 - Colliding transmissions aborted, reducing wastage
- Collision detection easy in wired LANs:
 - Compare transmitted, received signals
- Collision detection difficult in wireless LANs:
 - Reception shut off while transmitting (well, perhaps not)
 - Not perfect broadcast (limited range) so collisions local
 - Leads to use of collision avoidance instead (later)

75

Ethernet: CSMA/CD Protocol

78

- Carrier sense: wait for link to be idle
- Collision detection: listen while transmitting
 - No collision: transmission is complete
 - Collision: abort transmission & send jam signal
- · Random access: binary exponential back-off
 - After collision, wait a random time before trying again
 - After mth collision, choose K randomly from {0, ..., 2^m-1}
 - ... and wait for K*512 bit times before trying again
 - Using min packet size as "slot"
 - If transmission occurring when ready to send, wait until end of transmission (CSMA)

Benefits of Ethernet

- Easy to administer and maintain
- Inexpensive
- Increasingly higher speed
- Evolvable!

79

79

86

Metrics for evaluation / comparison of wireless technologies

- Bitrate or Bandwidth
- Range PAN, LAN, MAN, WAN
- Two-way / One-way
- Multi-Access / Point-to-Point
- Digital / Analog
- Applications and industries
- Frequency Affects most physical properties: Distance (free-space loss) Penetration, Reflection, Absorption Energy proportionality Policy: Licensed / Deregulated
 - Line of Sight (Fresnel zone) Size of antenna
- > Determined by wavelength $\lambda = \frac{v}{\epsilon}$,
- 83

Wireless Communication Standards Cellular (800/900/1700/1800/1900Mhz): 2G: GSM / CDMA / GPRS /EDGE 3G: CDMA2000/UMTS/HSDPA/EVDO 4G: LTE, WiMax IEEE 802.11 (aka WiFi): (some examples) b: 2.4Ghz band, 11Mbps (~4.5 Mbps operating rate) g: 2.4Ghz, 54-108Mbps (~19 Mbps operating rate) a: 5.0Ghz band, 54-108Mbps (~25 Mbps operating rate)

- n: 2.4/5Ghz, 150-600Mbps (4x4 mimo)
- ac: 2.4/5Ghz, 433-1300Mbps (improved coding 256-QAM)
- ad: 60Ghz, 7Gbps
- af: 54/790Mhz, 26-35Mbps (TV whitespace)
- IEEE 802.15 lower power wireless:
 - 802.15.1: 2.4Ghz, 2.1 Mbps (Bluetooth)
 - 802.15.4: 2.4Ghz, 250 Kbps (Sensor Networks)

84

86

What Makes Wireless Different?

- Broadcast and multi-access medium...
 err, so....
- BUT, Signals sent by sender don't always end up at receiver intact
 - Complicated physics involved, which we won't discuss
 - But what can go wrong?

Lets focus on 802.11

aka - WiFi ... What makes it special?

Deregulation > Innovation > Adoption > Lower cost = Ubiquitous technology

JUST LIKE ETHERNET – not lovely but sufficient

85

85

IEEE 802.11 Wireless LAN

IEEE 802.11 standard	Year	Max data rate	Range	Frequency
802.11b	1999	11 Mbps	30 m	2.4 Ghz
802.11g	2003	54 Mbps	30m	2.4 Ghz
802.11n (WiFi 4)	2009	600	70m	2.4, 5 Ghz
802.11ac (WiFi 5)	2013	3.47Gpbs	70m	5 Ghz
802.11ax (WiFi 6)	2020 (exp.)	14 Gbps	70m	2.4, 5 Ghz
802.11af	2014	35 – 560 Mbps	1 Km	unused TV bands (54-790 MHz)
802.11ah	2017	347Mbps	1 Km	900 Mhz

 all use CSMA/CA for multiple access, and have base-station and ad-hoc network versions

87

Summary of MAC protocols

- *channel partitioning*, by time, frequency or code - Time Division (TDMA), Frequency Division (FDMA), Code Division (CDMA)
- random access (dynamic),
 - ALOHA, S-ALOHA, CSMA, CSMA/CD
 - carrier sensing: easy in some technologies (wire), hard in others (wireless)
 - CSMA/CD used in (old-style, coax) Ethernet, and PowerLine
 - CSMA/CA used in 802.11

takina turns

- polling from central site, token passing
- Bluetooth, FDDI, IBM Token Ring

107

107

108

Constructing a Spanning Tree Switches need to elect a root - The switch w/ smallest identifier (MAC addr) Each switch determines if each interface is on the shortest path from the root - Excludes it from the tree if not root

- Messages (Y, d, X)
 - From node X - Proposing Y as the root
 - And the distance is d

123

Three hops2

VPN

Application

Transport

Network

Transport

Network

Data Link (L2)

Physical

128

127

VLAN

Application

Transport

Network

Data Link (L2)

Data Link (L2)

Physical

Datacenter

128

Topic 4: Network Layer

Our goals:

- understand principles behind network layer services:
 - network layer service models
 - forwarding versus routing (versus switching)
 - how a router works
 - routing (path selection)
 - IPv6

For the most part, the Internet is our example – again.

1

Addressing (at a conceptual level) Assume all hosts have unique IDs No particular structure to those IDs Later in topic I will talk about real IP addressing Do I route on location or identifier? If a host moves, should its address change? If not, how can you build scalable Internet? If so, then what good is an address for identification?

Recall: Network layer is responsible for *GLOBAL* delivery

Name: a something

Address: Where is a something

Routing: How do I get to the something

Forwarding: What path do I take next to get to the *something*

2

Δ

Packets (at a conceptual level)

- Assume packet headers contain:
 - Source ID, Destination ID, and perhaps other

Information Identifier Source Identifier Payload

Forwarding Decisions

- When packet arrives..
 - Must decide which outgoing port to use
 - In single transmission time
 - Forwarding decisions must be <u>simple</u>
- Routing state dictates where to forward packets
 Assume decisions are deterministic
- *Global routing state* is the collection of routing state in each of the routers
 - Will focus on where this routing state comes from
 - But first, a few preliminaries....

9

Forwarding vs Routing

- Forwarding: "data plane"
 - Directing a data packet to an outgoing link
 - Individual router using routing state
- Routing: "control plane"
 - Computing paths the packets will follow
 - Routers talking amongst themselves
 - Jointly creating the routing state
- Two very different timescales....

Switching via a bus datagram from input port memory to output port memory via a shared bus bus contention: switching speed limited by bus bandwidth 32 Gbps bus, Cisco 5600: sufficient speed for access routers

Internet Routing

Internet Routing works at two levels

- Each AS runs an intra-domain routing protocol that establishes routes within its domain
 - (AS -- region of network under a single administrative entity)
 - Link State, e.g., Open Shortest Path First (OSPF)
 - Distance Vector, e.g., Routing Information Protocol (RIP)
- ASes participate in an inter-domain routing protocol that establishes routes between domains

Outline

- Path Vector, e.g., Border Gateway Protocol (BGP)

• Popular Routing Algorithms:

Distance Vector AlgorithmRouting: goals and metrics

- Link State Routing

42

Recall each host has a unique ID (address)
No particular structure to those IDs (e.g. *Ethernet*)
IP addressing – in contrast – has implicit structure

43

45

12

44

Addressing (to date)

- a reminder -

Dijkstra's Shortest Path Algorithm

• INPUT:

- Network topology (graph), with link costs

- OUTPUT: - Least cost paths from one node to all other nodes
- Iterative: after *k* iterations, a node knows the least cost path to its *k* closest neighbors
- This is covered in Algorithms

49

The Forwarding Table

- Running Dijkstra at node A gives the shortest path from A to all destinations
- We then construct the forwarding table

50

50

Topic 4

A few other inconvenient truths

- What if we use a non-additive metric?
 E.g., maximal capacity
- What if routers don't use the same metric?
 I want low delay, you want low loss rate?
- What happens if nodes lie?

59

Can You Use Any Metric?

- I said that we can pick any metric. Really?
- What about maximizing capacity?

60

61

60

What happens when routers lie?

- What if a router claims a 1-hop path to everywhere?
- All traffic from nearby routers gets sent there
- How can you tell if they are lying?
- Can this happen in real life?
 It has, several times....

66

Link State vs. Distance Vector

- LS: each node learns the complete network map; each node computes shortest paths independently and in parallel
- DV: no node has the complete picture; nodes cooperate to compute shortest paths in a distributed manner
 - →LS has higher messaging overhead
 →LS has higher processing complexity
 →LS is less vulnerable to looping

Link State vs. Distance Vector

- Core idea
 - LS: tell all nodes about your immediate neighbors
 - DV: tell your immediate neighbors about (your least cost distance to) all nodes

67

69

66

68

Link State vs. Distance Vector Message complexity Robustness: what happens if router malfunctions? LS: O(NxE) messages; - N is #nodes; E is #edges LS: DV: O(#Iterations x E) node can advertise incorrect link cost where #Iterations is ideally O(network diameter) but varies due - each node computes only its own to routing loops or the table count-to-infinity problem • DV: node can advertise incorrect path Processing complexity cost LS: O(N²) each node's table used by others; error propagates through network • DV: O(#Iterations x N) 69

Routing: Just the Beginning

- Link state and distance-vector are the deployed routing paradigms for intra-domain routing
- Inter-domain routing (BGP)
 - more Part II (Principles of Communications)
 - A version of DV

70

72

Delivery models What if a node wants to send to more than one destination? broadcast: send to all multicast: send to all members of a group anycast: send to any member of a group What if a node wants to send along more than one path?

What are desirable goals for a routing solution? "Good" paths (least cost) Fast convergence after change/failures no/rare loops Scalable #messages table size processing complexity Secure Policy Rich metrics (more later)

Metrics

- Propagation delay
- Congestion
- Load balance
- Bandwidth (available, capacity, maximal, bbw)
- Price
- Reliability
- Loss rate
- Combinations of the above

In practice, operators set abstract "weights" (much like our costs); how exactly is a bit of a black art

From Routing back to Forwarding

- Routing: "control plane"
 - Computing paths the packets will follow
 - Routers talking amongst themselves
 - Jointly creating the routing state
- Forwarding: "data plane"
 - Directing a data packet to an outgoing link
 - Individual router using routing state
- Two very different timescales....
- 74

Per-packet processing in an IP Router

- 1. Accept packet arriving on an incoming link.
- 2. Lookup packet destination address in the forwarding table, to identify outgoing port(s).
- 3. Manipulate packet header: e.g., decrement TTL, update header checksum.
- 4. Send packet to the outgoing port(s).
- 5. Buffer packet in the queue.
- 6. Transmit packet onto outgoing link.

(Packet) Network Tasks One-by-One

- Read packet correctly
- Get packet to the destination
- Get responses to the packet back to source
- Carry data
- Tell host what to do with packet once arrived
- Specify any special network handling of the packet
- Deal with problems that arise along the path

88

88

87

89

Topic 4

MAC Addresses (and IPv4 ARP) or How do I glue my network to my data-link? • 32-bit IP address: – *network-layer* address – used to get datagram to destination IP subnet • MAC (or LAN or physical or Ethernet) address: – function: *get frame from one interface to another physically-connected interface (same network)* – 48 bit MAC address (for most LANs) • burned in NIC ROM, firmware, etc.

Security Analysis of ARP

Impersonation

- Any node that hears request can answer ...
- ... and can say whatever they want
- Actual legit receiver never sees a problem
 - Because even though later packets carry its IP address, its NIC doesn't capture them since the (naughty) packets are not its MAC address

131

131

Why Not Use DNS-Like Tables?

- When host arrives:
 - Assign it an IP address that will last as long it is present
- Answer:
 - Names: explicit creation, and are plentiful
 - Hosts: come and go without informing network · Must do mapping on demand
 - Addresses: not plentiful, need to reuse and remap

133

133

Key Ideas in Both ARP and DHCP

- Broadcasting: Can use broadcast to make contact - Scalable because of limited size
- Caching: remember the past for a while
 - Store the information you learn to reduce overhead
 - Remember your own address & other host's addresses
- Soft state: eventually forget the past
 - Associate a time-to-live field with the information
 - ... and either refresh or discard the information
 - Key for robustness in the face of unpredictable change

132

132

WOLF!!

. . . .

- prematurely Motivated by address exhaustion
 - addresses are larger

IPv6

- packet headers are laid out differently
- address management and configuration are completely different
- some DNS behavior changes
- some sockets code changes
- everybody now has a hard time parsing IP addresses
- Steve Deering focused on simplifying IP
 - Got rid of all fields that were not absolutely necessary
 - "Spring Cleaning" for IP
- Result is an elegant, if unambitious, protocol

IPv4	IPv6
Addresses are 32 bits (4 bytes) in length.	Addresses are 128 bits (16 bytes) in length
Address (A) resource records in DNS to map host names to IPv4 addresses.	Address (AAAA) resource records in DNS to map host names to IPv6 addresses.
Pointer (PTR) resource records in the IN- ADDR.ARPA DNS domain to map IPv4 addresses to host names.	Pointer (PTR) resource records in the IP6.ARPA DNS domain to map IPv6 addresses to host names.
IPSec is optional and should be supported externally	IPSec support is not optional
Header does not identify packet flow for QoS handling by routers	Header contains Flow Label field, which Identifies packet flow for QoS handling by router.
Both routers and the sending host fragment packets.	Routers do not support packet fragmentation. Sending host fragments packets
Header includes a checksum.	Header does not include a checksum.
Header includes options.	Optional data is supported as extension headers.
ARP uses broadcast ARP request to resolve IP to MAC/Hardware address.	Multicast Neighbor Solicitation messages resolve IP addresses to MAC addresses.
Internet Group Management Protocol (IGMP) manages membership in local subnet groups.	Multicast Listener Discovery (MLD) messages manage membership in local subnet groups.
Broadcast addresses are used to send traffic to all nodes on a subnet.	IPv6 uses a link-local scope all-nodes multicast address.
Configured either manually or through DHCP.	Does not require manual configuration or DHCP.
Must support a 576-byte packet size (possibly fragmented).	Must support a 1280-byte packet size (without fragmentation).

138

Other Significant Protocol Changes - 2

operation is intended to be simpler within the network:

- no in-network fragmentation
- · no checksums in IPv6 header
- UDP checksum required (wasn't in IPv4) rfc6936: No more zero
- optional state carried in extension headers
 - Extension headers notionally replace IP options
 - Each extension header indicates the type of the *following* header, so they can be chained
 - The final 'next header' either indicates there is no 'next', or escapes into an transport-layer header (e.g., TCP)

142

IPv6 Address Representation (quick)

IPv6 addresses represented as eight 16-bit blocks (4 hex chars) separated by colons:

2001:4998:000c:0a06:0000:0000:0002:4011

But we can condense the representation by removing leading zeros in each block:

2001:4998:c:a06:0:0:2:4011

And by reducing the consecutive block of zeros to a "::"

- (this double colon rule can only be applied once)
- 2001:4998:c:a06::2:4011

141

Problem with /64 Subnets

- Scanning a subnet becomes a DoS attack!
 - Creates IPv6 version of 2⁶⁴ ARP entries in routers
 - Exhaust address-translation table space
- So now we have:

ping6 ff02::1 All nodes in broadcast domain ping6 ff02::2 All routers in broadcast domain

- Solutions
 - RFC 6164 recommends use of /127 to protect router-router links
 - RFC 3756 suggest "clever cache management" to address more generally

143

147

Neighbour Discovery

- The Neighbour Discovery Protocol² specifies a set of ICMPv6 message types that allow hosts to discover other hosts or routing hardware on the network
 - neighbour solicitation
 - neighbour advertisement
 - router solicitation
 - router advertisement
 - redirect
- In short, a host can *solicit* neighbour (host) state to determine the layer-2 address of a host *or* to check whether an address is in use
- or it can solicit router state to learn more about the network configuration
- In both cases, the solicit message is sent to a well-known multicast address

2 http://tools.ietf.org/html/rfc4861

144

SLAAC: overview

SLAAC is:

- ... intended to make network configuration easy without manual configuration or even a DHCP server
- ... an algorithm for hosts to automatically configure their network interfaces (set up addresses, learn routes) without intervention

IPv6 Dynamic Address Assignment

We have the two halves of the IPv6 address: the network component and the host component. Those are derived in different ways.

Network (top 64 bits):

 Router Advertisements (RAs) Interface

Identifier (bottom 64 bits):

- Stateless, automatic: SLAAC
- Stateful, automatic: DHCPv6

145

147

SLAAC: overview

- When a host goes live or an interface comes up, the system wants to know more about its environment
- It *can* configure link-local addresses for its interfaces: it uses the interface identifier, the EUI-64
- It uses this to ask (solicit) router advertisements sooner than the next periodic announcements; ask the network for information

146

144

SLAAC: overview

The algorithm (assuming one interface):

- 1. Generate potential link-local address
- 2. Ask the network (multicast⁴) if that address is in use: *neighbour solicitation*
- 3. Assuming no responses, assign to interface

⁴<u>https://tools.ietf.org/html/rfc2373</u>

148

SLAAC: overview; Router Solicitation

Then,

- Once the host has a unique *link-local* address, it can send packets to anything else sharing that link substrate

 but the host doesn't yet know any routers, or public routes
 - ... bootstrap: routers listen to a well-known multicast address
- 4.host asks the network (multicast) for router information: *router* solicitation
- 5.responses from the routers are sent directly (unicast) to the host that sent the router solicitation
- 6.the responses *may* indicate that the host should do more (e.g., use DHCP to get DNS information)

150

148

75 87

0 = local admin 1 = universal admin

eb

ff fe 18

³http://tools.ietf.org/html/rfc2373

e0

са

Cancel OK

1/10

Uh-oh

What problem(s) arises from totally decentralised address configuration?

Concerns that arise from using an EUI-64:

- Privacy: SLAAC interface identifiers don't change over time, so a host can be identified across networks
- Security: embedding a MAC address into an IPv6 address will carry that vendor's ID(s)⁵, a possible threat vector

⁵http://standards.ieee.org/develop/regauth/oui/public.html

152

Address Configuration: SLAAC Privacy Addresses

The algorithm:

- Assume: a stored 64-bit input value from previous iterations, or a pseudorandomly generated value
- 1.take that input value and append it to the EUI-64 2.compute the MD5 message digest of that value
- 3.set bit 6 to zero
- 4.compare the leftmost 64-bits against a list of reserved interface identifiers and those already assigned to an address on the local device. If the value is unacceptable, re-run using the rightmost 64 bits of the result instead of the historic input value in step 1
- 5.use the leftmost 64-bits as the randomised interface identifier6.store the rightmost 64-bits as the history value to be used in the next iteration of the algorithm

154

Address Configuration: SLAAC Privacy Addresses Privacy extensions for SLAAC⁶

- temporary addresses for initiating outgoing sessions
- generate one temporary address per prefix
- when they expire, they are not used for new sessions, but can continue to be used for existing sessions
- the addresses should appear random, such that they are difficult to predict
- lifetime is configurable; this OSX machine sets an 86,400s timer (1 day)

https://tools.ietf.org/html/rfc4941

153

156

161

Dual-Stack Services: Common Deployment

Aim is to reduce the pain:

- You can dual-stack the edge hosts, and carry state in, say, HTTP headers indicating the user's IP address (common over v4 anyway)
- You can dual-stack the backend opportunistically, over a longer period of time
- You use DNS to enable/disable the v6 side last (if there is no AAAA record in DNS, no real users will connect to the IPv6 infrastructure

160

160

Happy Eyeballs and DNS

- The introduction of IPv6 carried with it an obligation that applications attempt to use IPv6 before falling back to IPv4.
- What happens though if you try to connect to a host which doesn't exist?⁹
- But the presence of IPv6 modifies the behaviour of DNS responses and response preference¹⁰

9https://tools.ietf.org/html/rfc5461
10https://tools.ietf.org/html/rfc3484

161

464XLAT

- Problem: IPv6-only to the host, but an IPv4-only app trying to access an IPv4-only service
- Some applications do not understand IPv6, so having an IPv6 address doesn't help
- 464XLAT¹² solves this problem
- In essence, DNS64 + NAT64 + a shim layer on the host itself to offer IPv4 addresses to apps

¹²https://tools.ietf.org/html/rfc6877

164

167

164

167