Compiler Construction

Lecture 3: Context-free grammars

Jeremy Yallop jeremy.yallop@cl.cam.ac.uk

What is a parser?

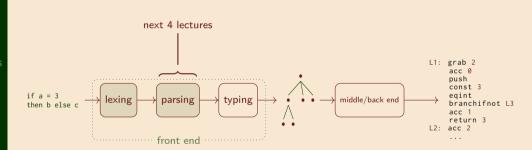
CFGs

Derivations

PDAs

Ambiguity

Top-down &



What are context-free grammars?

A small fragment of the C standard:

CFGs

Derivations

PDAs

Ambiguity

Top-down & bottom-up

6.7 Declarations
Syntax

declaration:

ciaration.

declaration-specifiers init-declarator-list_{opt}; static-assert-declaration

declaration-specifiers:

storage-class-specifier declaration-specifiers_{opt}

type-qualifier declaration-specifiers_{opt}

function-specifier declaration-specifiers_{opt} alignment-specifier declaration-specifiers_{opt}

init-declarator-list:

init-declarator-list . init-declarator

init-declarator:

declarator

declarator = initializer

Today's Q: how can we turn this declarative specification into a program?

Context-free grammars

Context-Free Grammars (CFGs)

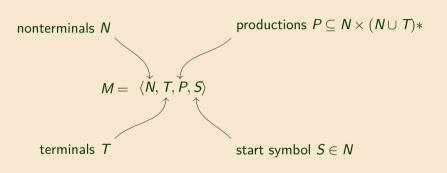
Parsing

Derivations

PDAs

Ambiguit

Top-down & bottom-up



Each $\langle A, \alpha \rangle \in P$ is written as $A \to \alpha$

 $G_1 = \langle N_1, T_1, P_1, E \rangle$

 $T_1 = \{+, *, (,), id\}$

 $P_1 = E \rightarrow \begin{vmatrix} E * E \\ (E) \end{vmatrix}$

 $P_1 = \{\langle E, E + E \rangle, \langle E, E * E \rangle, \langle E, (E) \rangle, \langle E, id \rangle\}$

E+E

 $N_1 = \{E\}$

where

NB: P_1 definition is shorthand for

Ambiguity

Top-down &

bottom-up

Derivations

Derivations

Parsing

CFGs

Notation conventions:

Derivations• • • • •

PDAs

Amhiguit

Top-down &

 $\alpha, \beta, \gamma \ldots \in (N \cup T) *$ $A, B, C, \ldots \in N$

 $\alpha AB \Rightarrow \alpha \gamma \beta$

Given: $\alpha A\beta$ and a production $A \rightarrow \gamma$ a derivation step is written as

 \Rightarrow^+ means one or more derivation steps

 \Rightarrow^* means zero or more derivation steps.

Example derivations

Parsing

CFGs

PDAs

Ambiguity

Top-down & bottom-up

A **leftmost** derivation

$$E \Rightarrow E*E$$

$$\Rightarrow (E)*E$$

$$\Rightarrow (E+E)*E$$

$$\Rightarrow (x+E)*E$$

$$\Rightarrow (x+y)*E$$

$$\Rightarrow (x+y)*(E)$$

$$\Rightarrow (x+y)*(E+E)$$

$$\Rightarrow (x+y)*(z+E)$$

$$\Rightarrow (x+y)*(z+x)$$

A **rightmost** derivation

$$E \Rightarrow E*E$$

$$\Rightarrow E*(E)$$

$$\Rightarrow E*(E+E)$$

$$\Rightarrow E*(E+x)$$

$$\Rightarrow E*(z+x)$$

$$\Rightarrow (E)*(z+x)$$

$$\Rightarrow (E+E)*(z+x)$$

$$\Rightarrow (E+y)*(z+x)$$

$$\Rightarrow (x+y)*(z+x)$$

Derivation Trees

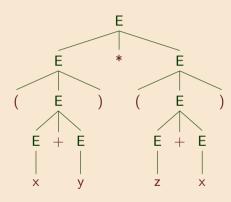
Parsing

CFGs

PDAs

Ambiguity

Top-down & bottom-up



The derivation tree for (x+y) * (z+x). All derivations of this expression will produce the same derivation tree.

Concrete vs Abstract Syntax Trees

Parsing

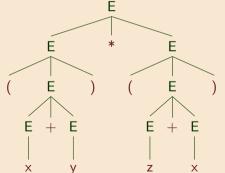
CFGs

Derivations ● ● ● ○

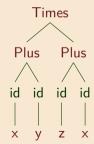
PDAs

Ambiguity

Top-down & bottom-up (Terminology: = parse tree derivation tree = concrete syntax tree)



An **abstract syntax** tree contains only the information needed to generate an intermediate representation



Parsing

CFGs

Derivations

PDAs

Top-down & bottom-up

then

L(G) = The Language Generated by Grammar G

L(G): the language generated by G

For example, if G has productions

So CFGs can capture more than regular languages.

 $L(G) = \{ w \in T* \mid S \Rightarrow^+ w \}$

 $S \rightarrow aSb \mid \epsilon$

 $L(G) = \{a^n b^n \mid n \ge 0\}$

Pushdown automata

Parsing

Regular languages are accepted by finite automata:

CFGs

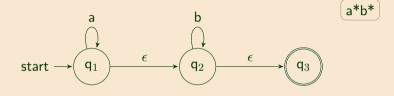
ivation

PDAs

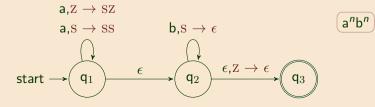
• 0 0

Ambiguit

Top-down &



Context-free languages are accepted by pushdown automata, finite automata augmented with stacks.



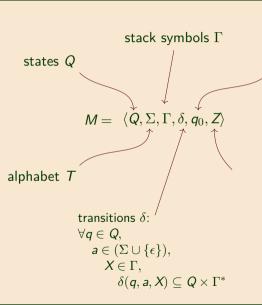
Parsing

CFGs

Derivation

Ambiguit

Top-down &



start state $q_0 \in Q$

initial stack symbol $z \in \Gamma S$

Parsing

 $\langle q', \beta \rangle \in \delta(q, a, X)$ means:

CFGs

Derivations

Ambiguity

Top-down & bottom-up

When the machine is $\begin{cases} \text{in state } q, \text{ and} \\ \text{reading } a \text{ and} \\ \text{with } X \text{ on top of the stack,} \end{cases}$

it can $\begin{cases} \text{move to state } q' \text{ and} \\ \text{replace } X \text{ with } \beta. \end{cases}$

i.e. it pops X from the stack and $pushes \beta$.

Parsing

For $q \in Q, w \in \Sigma^*, \alpha \in \Gamma^*$, $\langle q, w, \alpha \rangle$ is called an **instantaneous description** (ID).

in state q

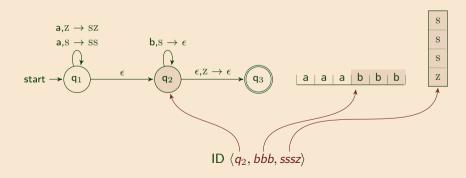
It denotes the PDA looking at the first symbol of w with α on the stack

Derivations

CFGs

Ambiguity

Top-down & bottom-up



Language accepted by a PDA

For $\langle q', \beta \rangle \in \delta(q, a, X), a \in \Sigma$, define the relation \rightarrow on IDs as

and for $\langle q', \beta \rangle \in \delta(q, \epsilon, X)$ as

Then the **language accepted by** M, L(M), is:

 $\langle q, aw, X\alpha \rangle \rightarrow \langle q', w, \beta \alpha \rangle$

 $\langle a, w, X\alpha \rangle \rightarrow \langle a', w, \beta \alpha \rangle$

 $L(M) = \{ w \in \Sigma * \mid \exists q \in Q, \langle q_0, w, Z \rangle \rightarrow^+ \langle q, \epsilon, \epsilon \rangle \}$

Parsing

CFGs

Ambiguity

Top-down &

Parsing

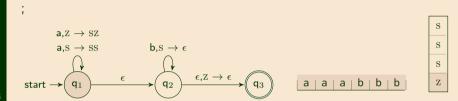
CFGs

Derivations

PDAs ● ● ●

Ambiguity

Top-down & bottom-up



 $\langle q_1, aaabbb, z \rangle$

Parsing

CFGs

Derivations

Ambiguity

Top-down & bottom-up

$$\langle q_1, aaabbb, z
angle \ \langle q_1, aabbb, sz
angle$$

Parsing

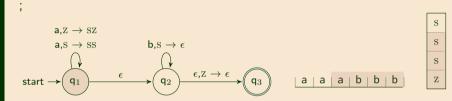
CFGs

Derivations

PDAs ● ● ●

Ambiguity

Top-down &



$$\langle q_1, aaabbb, z
angle \ \langle q_1, aabbb, sz
angle \ \langle q_1, abbb, ssz
angle$$

Parsing

CFGs

Derivations

PDAs ● ● ●

Ambiguity

Top-down &



 $\langle q_1, aaabbb, z
angle \ \langle q_1, aabbb, sz
angle \ \langle q_1, abbb, ssz
angle \ \langle q_2, bbb, sssz
angle$

Parsing

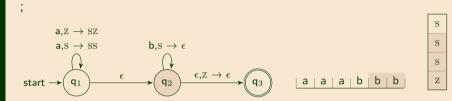
CFGs

Derivations

PDAs ● ● ●

Ambiguity

Top-down &



 $\langle q_1, aaabbb, \mathbb{Z} \rangle$ $\langle q_1, aabbb, \mathbb{SZ} \rangle$ $\langle q_1, abbb, \mathbb{SSZ} \rangle$ $\langle q_2, bbb, \mathbb{SSZ} \rangle$ $\langle q_2, bb, \mathbb{SSZ} \rangle$

Parsing

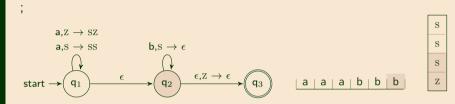
CFGs

Derivations

PDAs ● ● ●

Ambiguity

Top-down & bottom-up



 $\langle q_1, aaabbb, z
angle \ \langle q_1, aabbb, sz
angle \ \langle q_1, abbb, ssz
angle \ \langle q_2, bbb, sssz
angle \ \langle q_2, bb, ssz
angle \ \langle q_2, b, sz
angle \ \langle q_2, b, sz
angle$

Parsing

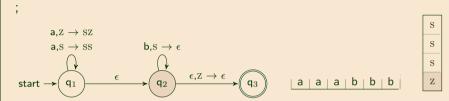
CFGs

Derivations

PDAs ● ● ●

Ambiguity

Top-down &



$$\langle q_1, aaabbb, z
angle \ \langle q_1, aabbb, sz
angle \ \langle q_1, abbb, ssz
angle \ \langle q_2, bbb, sssz
angle \ \langle q_2, bb, ssz
angle \ \langle q_2, b, sz
angle \ \langle q_2, \epsilon, z
angle$$

Parsing

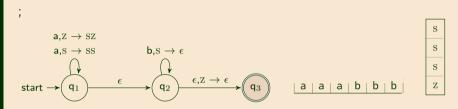
CFGs

Derivations

PDAs ● ● ●

Ambiguity

Top-down &



$$\langle q_1, aaabbb, \mathbb{Z}
angle \ \langle q_1, aabbb, \mathbb{SZ}
angle \ \langle q_1, abbb, \mathbb{SSZ}
angle \ \langle q_2, bbb, \mathbb{SSZ}
angle \ \langle q_2, bb, \mathbb{SSZ}
angle \ \langle q_2, b, \mathbb{SZ}
angle \ \langle q_2, \epsilon, \mathbb{Z}
angle \ \langle q_3, \epsilon, \epsilon
angle$$

PDA and CFG facts (without proof)

Parsing

such that L(G) = L(M)

CFGs PDA and CFG facts.

For every CFG G there is a PDA M For every PDA M there is a CFG G such that L(G) = L(M)

Is the parsing problem solved? Given a CFG G we can construct the PDA M. No! For programming languages we want M to be **deterministic**

PDAs •••

Top-down &

bottom-up

Ambiguity

The origin of nondeterminism is ambiguity

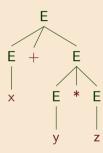
Parsing

CFGs

Derivations

PDAs

Top-down & bottom-up



Both derivation trees correspond to x + y * z.

But (x + y) * z is not the same as x + (y * z).

Ambiguity causes problems going from program texts to derivation trees.

We can often modify the grammar in order to eliminate ambiguity

Parsing

CFGs

Derivations

We can often modify the grammar to eliminate ambiguity.

$$G_2 = \langle N_2, T_1, P_2, E \rangle$$

where

$$P_2 = egin{array}{cccc} E &
ightarrow & E+T \mid T & ext{(expressions)} \ T &
ightarrow & T*F \mid F & ext{(terms)} \ F &
ightarrow & (E) \mid id & ext{(factors)} \end{array}$$

PDAs

Ambiguity

Top-down &

(Can you prove that $L(G_1) = L(G_2)$?)

The modified grammar eliminates ambiguity

Parsing

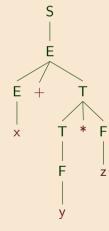
The modified grammar eliminates ambiguity. The following is now the unique derivation tree for x + y * z:

CFGs

Derivations

PDAs

Top-down &



Parsing

CFGs

Derivations

PDAs

Ambiguity

• • • •

Top-down & bottom-up

1. Some context-free languages are inherently ambiguous — every CFG for them is ambiguous. For example

$$L = \{a^{n}b^{n}c^{m}d^{m} \mid m \ge 1, n \ge 1\}$$

$$\cup \{a^{n}b^{m}c^{m}d^{n} \mid m \ge 1, n \ge 1\}$$

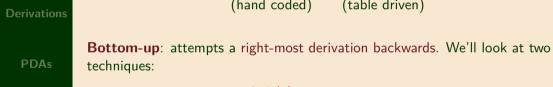
- 2. Checking for ambiguity in an arbitrary CFG is not decidable.
- 3. Given two grammars G1 and G2, checking L(G1) = L(G2) is not decidable.

(See Hopcroft & Ullman, "Introduction to Automata Theory, Languages, and Computation")

Top-down & bottom-up

	Two approaches to balleting stack based parsing machines
Parsing	
	Top-down: attempts a left-most derivation. We'll look at two techniques:
CFGs	Recursive Predictive
	descent parsing
Derivations	(hand coded) (table driven)

Two approaches to building stack-based parsing machines



SLR(1) LR(1)

```
(Simple LR(1))
```

Bottom-up techniques are strictly more powerful (can parse more grammars) Top-down & bottom-up

Recursive Descent Parsing

```
Parsing
```

CFGs

Derivations

PDAs

Ambiguity

```
type token =
  ADD | MUL | LPAREN | RPAREN | IDENT of string
let rec
    e toks = e' (t toks)
and e' = function
   ADD :: toks \rightarrow e' (t toks)
   toks \rightarrow toks (* \epsilon *)
and t toks = t' (f toks)
and t' = function
    MUL :: toks \rightarrow t' (f toks)
    toks \rightarrow toks (* \epsilon *)
and f = function
    I LPAREN :: toks \rightarrow
      (match e toks with
       I RPAREN .. toks -> toks
               → failwith "RPAREN")
     IDENT \_ :: toks \rightarrow toks
               → failwith "F"
```

Parse corresponds to a left-most derivation constructed in a top-down manner

Recursive descent parsing is not suitable for G_2 .

Left recursion & recursive-descent parsing

Parsing

CFGs

PDAs

Left-recursion
$$E \rightarrow E + T$$
 will lead to an infinite loop:

| PLUS :: toks \rightarrow ...

$$\begin{array}{ccc}
E & \rightarrow & E+T \mid T \\
T & \rightarrow & T*F \mid F \\
F & \rightarrow & (E) \mid id
\end{array}$$

Eliminating left recursion

Parsing

CFGs

where

PDAs

Ambiguity

Top-down & bottom-up ● ● ● ●

 $G_2 = \langle N_2, T_1, P_2, E \rangle$

 $E \rightarrow E + T \mid T$

 $P_2 = T \rightarrow T*F \mid F$ $F \rightarrow (E) \mid id$

 $G_3 = \langle N_3, T_1, P_3, E \rangle$

...

 $egin{array}{cccc} E &
ightarrow & T \, E' \ E' &
ightarrow & + \, T \, E' \, \mid \, \epsilon \end{array}$

 $P_{3} = \begin{array}{ccc} E' & \rightarrow & + T E' \mid \epsilon \\ T & \rightarrow & F T' \\ T' & \rightarrow & * F T' \mid \epsilon \end{array}$

 $F \rightarrow (E) \mid id$

(Can you prove that $L(G_2) = L(G_3)$?)

where

The stack machine is *implicit in the call stack*

```
Parsing
```

```
CFGs
```

let rec

and e' = function

Derivations

PDAs

Ambiguity

```
and f = function
    LPAREN :: toks \rightarrow
     (match e toks with
     I RPAREN :: toks \rightarrow toks
     \mid \_ \rightarrow failwith "RPAREN")
    IDENT :: toks \rightarrow toks
                   → failwith "F"
```

and t toks = t' (f toks) and t' = function

e toks = e' (t toks)

ADD :: toks \rightarrow e' (t toks)

toks \rightarrow toks (* ϵ *)

MUL :: toks \rightarrow t' (f toks) toks \rightarrow toks (* ϵ *)

```
Parsing x + y * z, i.e.
  [IDENT "x";
   PLUS:
   IDENT "v":
   TIMES:
   IDENT "z"]
Evaluation trace:
     e toks
 \rightsquigarrow e' (t toks)
 \rightsquigarrow e' (t' (f toks))
```

Next time: LL parsing