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What is a lexer?
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What is lexing?

Lexing converts a sequence of characters into a sequence of tokens.

characters

. [3\njtjhje|n; e|ljsje| |c
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What do lexers look like?

A lexer is typically specified as a sequence mapping regexes to tokens:
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Today's Q: how can we turn this declarative specification into a program?




Regular expressions

(“regexes”)




Regular expression syntax

Regular expressions e over alphabet ¥ are written:

e—0D|e|laleVel|eelex (aeX)

A regular expression e denotes a language (set of strings) L(e). For example,

L((aV b) x abb) = {abb,
aabb,
babb,
aaabb,
ababb,
baabb,
bbabb,
aaaabb,

)




The regular language problem

The L(—) function can be defined inductively:
(X} C Xx

{}

{e}

{a}

L(el) U L(ez)

{W1W2 ‘ wy € L(el), Wo € L(eg)}
{e}

L(ee™)

UnzoL(en)

The regular language problem: is w € L(e)? This is insufficient for lexing.




Finite-state automata




An NFA example

A nondeterministic finite-state automaton for recognising L((aV b) * abb):

NFA, DFA
(

020010




Review of Finite Automata (FA)

states @ start state gy € Q

N

NFA, DFA =

8 AN

alphabet ¥ final state FC Q

For NFAs: For DFAs:
(nondeterministic) (deterministic)
Vg e Q Vg e @
Vae (2 U{e}) Vae X
5(g,a) € Q 5(q,a) € Q




NFA, DFA
000

Notation for DFAs:

Transition notation

Notation for NFAs:

q—q

g1 -2 gs if 5(q1,a) = g2 and go 4 a3
L(M) ={w|3q € F,q = q}

9> q

q1 — g3 if g2 € 6(q1,¢) and g2 — g3
a1 = g3 if g2 € (q1, a) and g2 — g3
L(M) ={w|3q € F,q = q}




Regular expressions —> NFAs




Review of RE — NFA

N(—) takes a regex e to an NFA N(e) accepting L(e) with a single final state.




Review of RE — NFA




Review of RE — NFA

Note: an alternative to this simple construction is Glushkov's (1961) algorithm, which
produces an equivalent automaton without the € transitions.



https://en.wikipedia.org/wiki/Glushkov%27s_construction_algorithm

NFAs — DFAs



Review of NFA — DFA

The powerset construction takes a NFA
M: <Q72757 q07 F>

and constructs an DFA
M/ — <Q,72,76/7 q67 F/>

where the components of M’ are calculated as follows:

Q@ = {S5|5C@}

5'(S, a) e-closure({q € 6(q,a) | g € S})
NFA—DFA
° qy, = e<closure{qo}

F {SCQR|SNF#0}

and the e-closure is:

e-closure(S) = {d€Q|3qe S, g5 ¢}




How do we compute ¢-closure(S)?

e-closure:
push all elements of S onto a stack
result := S
while stack not empty
pop g off the stack
for each u € (q,¢)
if u¢ result

then result := {u}U result
NFA—DFA
o0 push u on stack

return result

(NB: just an instance of transitive closure)




DFA(N((a V b) x abb))

powerset construction

o




The lexing problem




The lexing problem

The regular language problem (i.e. “is w € L(e)?") is insufficient for lexing.
We need to tokenize a string using a lexer specification

[ijf] |a
& :

[3\njtjhjejn| [b] jejljsje] |c i "

e [a-zA-Z]+ as s IDENT s
[0-9]+ as i INT i

[\t\n] skip

EQUAL | 1t

taking into account that

Expressions are ordered by priority.
(treat if as a keyword because the IF rule comes before the IDENT rule)

We should find the longest match.
(treat ifif as a variable, not two keywords)

We should skip whitespace.
(because whitespace is irrelevant to the parser)




Define tokens with regexes (automata)

Finite automaton

G0

@t@h?
0

then

@m [a-2A-Z0-9]

[a-zA-Z][a-zA-70-9]* IDENT S
Lexing [0-91[0-9]*

@W [0-9]
(reprise)
°° : [ \t\n]

[ \t\n] skip

(not really a token)




Constructing a Lexer

Input: e = t1,e = to,..., e = ti, priority-ordered lexing rules, highest first
= Tagged NFA fore=e; Ve V...V e
= DFA with each accepting state tagged for the e; of highest priority.

lexer rules
if = IF

[a-z]+ ass = IDENTs
[\n] = skip

start (T ————(Ewm)

a-hj-z]

[a-Z]

State 3 could be either an IDENT or the keyword 1F. The priority rule
eliminates this ambiguity, associating state 3 with the keyword.




What about longest match?

(| = current position, $ = EOF)

Last
accepting Action
state

Current

Input
2 state

[if ifx$
i|f ifx$
if| ifx$
if [ifx$
if| ifx$
if [ifx$
if i|fx$
Start in initial state, and repeatedly: if [ifx$

Lexing 1. read input until failure (no transition). if i[fx$

(reprise) Emit tag for last accepting state. !f !ﬂX$
0000 if ifx|$
2. reset state to start state if ifx|

emit IF

reset

skip
reset

emit IDENT "ifx”




Lexing with derivatives




Matching with derivatives

Brzozowski (1964)'s formulation of regex matching, based on derivatives.

Derivative of regex r w.r.t. character cis
another regex 0. r that matches s iff r matches cs.

E.g.: consider (bV c)+. After matching ¢, can accept either € or more b/c, so:

Oc(bVeo)+ = eVv(bVo+ = (bVox

Construct DFA for r, taking regexes r as states, adding transition rj — I
whenever O r; = rj. For example, for (bV ¢)+:

b
start —{(bV o)+ c (bV c)x

NB: 0. (bV ¢)x = (bV ¢)x. (Can you see why?) Also: e-matching states are accepting.



Defining 0.

Oc is defined inductively over regexes.

Can you see the similarities with derivatives of numerical functions?
(Hint: read rirp as rp X rp and r; V. rp as rp + ro.)

eif e € L(r)
0ifee L(r)

Regular-expression derivatives re-examined (Owens et al, 2009).



https://doi.org/10.1017/S0956796808007090

Lexing with derivatives

Lexers match input string against multiple regexes in parallel. Automaton for
matching one token; each state corresponds to vector of regexes, one per lexer
rule. J. acts pointwise on the regex vector.

IDENT




Next time: context-free grammars




