Compiler Construction

Lecture 2: Lexing

Jeremy Yallop jeremy.yallop@cl.cam.ac.uk

What is a lexer?

Regexes

NFA, DFA

 $RE \rightarrow NFA$

 $NFA \rightarrow DFA$

Lexing (reprise)

Regexes

Lexing converts a sequence of characters into a sequence of tokens.

NFA, DFA

 $RE \rightarrow NFA$

 $NFA \rightarrow DFA$

Lexing (reprise)

What do lexers look like?

Regexes

A *lexer* is typically specified as a sequence mapping regexes to tokens:

NFA, DFA

RE→NFA

 $NFA \rightarrow DFA$

Lexing (reprise)

Today's Q: how can we turn this declarative specification into a program?

("regexes")

Regular expressions

Regular expression syntax

Lexing

Regular expressions e over alphabet Σ are written:

$$e \to \emptyset \mid \epsilon \mid a \mid e \lor e \mid ee \mid e* \qquad (a \in \Sigma)$$

A regular expression e denotes a language (set of strings) L(e). For example,

NFA, DFA

 $RE \rightarrow NFA$

 $NFA \rightarrow DFA$

Lexing (reprise) $L((a \lor b) * abb) = \{abb, \\ aabb, \\ babb, \\ aaabb, \\ baabb, \\ baabb, \\ bbabb, \\ aaaabb, \\ ...\}$

The regular language problem

Regexes

NFA. DFA

RE→**NFA**

NFA \rightarrow **DFA**

(reprise)

The L(-) function can be defined inductively:

$$L(e) \subseteq \Sigma *$$

$$L(\emptyset) = \{\}$$

$$L(\epsilon) = \{\epsilon\}$$

$$L(a) = \{a\}$$

$$L(e_1 \lor e_2) = L(e_1) \cup L(e_2)$$

$$L(e_1 e_2) = \{w_1 w_2 \mid w_1 \in L(e_1), w_2 \in L(e_2)\}$$

$$L(e^0) = \{\epsilon\}$$

$$L(e^{n+1}) = L(ee^n)$$

$$L(ee) = L(ee)$$

$$L(e*) = \bigcup_{n \geq 0} L(e^n)$$

The regular language problem: is $w \in L(e)$? This is insufficient for lexing.

Finite-state automata

An NFA example

Lexing

Regexes

NFA, DFA ● ○ ○

 $RE \rightarrow NFA$

 $NFA \rightarrow DFA$

Lexing (reprise)

A nondeterministic finite-state automaton for recognising $L((a \lor b) * abb)$:

Review of Finite Automata (FA)

Lexing

Regexes

NFA, DFA ● ● ○

 $RE \rightarrow NFA$

 $NFA \rightarrow DFA$

Lexing (reprise)

Transition notation

Lexing

Regexes

NFA, DFA ● ● ●

 $\mathsf{RE} {
ightarrow} \mathsf{NFA}$

NFA→DFA

(reprise)

Notation for DFAs:	Notation for NFAs:
$q\stackrel{\epsilon}{ o}q$ $q_1\stackrel{aw}{ o}q_3$ if $\delta(q_1,a)=q_2$ and $q_2\stackrel{w}{ o}q_3$ $L(M)=\{w\mid \exists q\in F,q_0\stackrel{w}{ o}q\}$	$\begin{array}{c} q \overset{\epsilon}{\rightarrow} q \\ q_1 \overset{w}{\rightarrow} q_3 \text{ if } q_2 \in \delta(q_1,\epsilon) \text{ and } q_2 \overset{w}{\rightarrow} q_3 \\ q_1 \overset{aw}{\rightarrow} q_3 \text{ if } q_2 \in \delta(q_1,a) \text{ and } q_2 \overset{w}{\rightarrow} q_3 \\ L(M) = \{w \mid \exists q \in F, q_0 \overset{w}{\rightarrow} q\} \end{array}$

Regular expressions \longrightarrow NFAs

Review of RE --- NFA

N(-) takes a regex e to an NFA N(e) accepting L(e) with a single final state.

NFA, DFA

N(-) is defined by induction on e.

 $\mathsf{Regex} { o} \mathsf{NFA}$ • 0 0

 q_1

NFA \rightarrow **DFA**

Lexing

Regexes

NFA, DFA

 $NFA \rightarrow DFA$

(reprise)

$$N(e_1e_2)$$
 = $N(e_1)$ $N(e_2)$

Lexing

Regexes

NFA, DFA

 $NFA \rightarrow DFA$

(reprise)

N(e*) = ϵ N(e) ϵ

Note: an alternative to this simple construction is Glushkov's (1961) algorithm, which produces an equivalent automaton without the ϵ transitions.

$\mathsf{NFAs} \longrightarrow \mathsf{DFAs}$

Review of NFA --> DFA

The powerset construction takes a NFA

where the components of M' are calculated as follows:

 $Q' = \{S \mid S \subset Q\}$

 $q_0' = \epsilon$ -closure $\{q_0\}$

 $M = \langle Q, \Sigma, \delta, q_0, F \rangle$

 $M' = \langle Q', \Sigma', \delta', q'_0, F' \rangle$

 $\delta'(S, a) = \epsilon$ -closure($\{q' \in \delta(q, a) \mid q \in S\}$)

 $F' = \{S \subset Q \mid S \cap F \neq \emptyset\}$

Regexes

and constructs an DFA

NFA. DFA

RE→**NFA**

NFA \rightarrow **DFA**

(reprise)

and the ϵ -closure is: ϵ -closure(S) = $\{ a' \in Q \mid \exists a \in S, a \xrightarrow{\epsilon} a' \}$

How do we compute ϵ -closure(S)?

Lexing

Regexes

NFA, DFA

RE→NFA

Lexing (reprise)

```
\epsilon-closure:
  push all elements of S onto a stack
   result := S
  while stack not empty
     pop q off the stack
     for each u \in \delta(q, \epsilon)
        if u \notin \text{result}
        then result := \{u\} \cup \text{result}
            push u on stack
   return result
(NB: just an instance of transitive closure)
```

DFA(N($(a \lor b) * abb$ **))**

Lexing

Regexes

NFA, DFA

 $RE \rightarrow NFA$

(reprise

The lexing problem

The lexing problem

Regexes

The regular language problem (i.e. "is $w \in L(e)$?") is insufficient for lexing. We need to tokenize a string using a lexer specification

$[i \mid f]$	a	=	3 \	n t h e n	b	e 1	s e c
IF	IDENT "a"	EQUAL	INT "3"	THEN	IDENT "b"	ELSE	IDENT "c"

[a-zA-Z]+ as s IDENT S [0-9]+ as i ⇒ INT i [\t\n] ⇒ skip

RE→**NFA**

NFA. DFA

NFA \rightarrow **DFA**

Lexing (reprise) taking into account that

Expressions are ordered by priority.

(treat if as a keyword because the IF rule comes before the IDENT rule)

We should find the longest match. (treat if if as a variable, not two keywords)

We should skip whitespace.

(because whitespace is irrelevant to the parser)

Define tokens with regexes (automata)

Lexing

Regexe

NFA, DFA

 $\mathsf{RE} { o} \mathsf{NFA}$

 $\textbf{NFA} {\rightarrow} \textbf{DFA}$

Regex	Finite automaton	Token
if	$\begin{array}{c c} \hline 1 & \hline & 2 & \hline & 3 \\ \hline \end{array}$	IF
	$\begin{array}{ c c c }\hline 1 & \hline & 2 & \hline & 3 \\ \hline & & & \\ \hline \end{array}$	
	e	
then	5 • n • 4	THEN
[a-zA-Z][a-zA-Z0-9]*	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	IDENT S
[0-9][0-9]*	[0-9]	INT n
[\t\n]	1 (\t\n) 2	skip (not really a token)

 ∂

Constructing a Lexer

Lexing

Regexes

Input: $e_1 \Rightarrow t_1, e_2 \Rightarrow t_2, \dots, e_k \Rightarrow t_k$, priority-ordered lexing rules, highest first \Rightarrow Tagged NFA for $e = e_1 \lor e_2 \lor \dots \lor e_k$ \Rightarrow DFA with each accepting state tagged for the e_i of highest priority.

NFA, DFA

 $RE \rightarrow NFA$

 $NFA \rightarrow DFA$

State 3 could be either an IDENT or the keyword IF. The priority rule eliminates this ambiguity, associating state 3 with the keyword.

What about longest match?

Lexing

Regexes

NFA, DFA

 $RE \rightarrow NFA$

NFA \rightarrow **DFA**

Start in initial state, and repeatedly:

- read input until failure (no transition).
 Emit tag for last accepting state.
- 2. reset state to start state

(| = current position, \$ = EOF)

Input	Current state	Last accepting state	Action
if ifx\$	1	Τ	
i f ifx\$	2	2	
if ifx\$	3	3	
if ifx\$	1	3	emit IF
if ifx\$	1	\perp	reset
if ifx\$	4	4	
if i fx\$	\perp	4	skip
if ifx\$	1	\perp	reset
if i fx\$	2	2	
if if x\$	3	3	
if ifx \$	5	5	
if if x \$	\perp	5	emit IDENT "ifx"

Lexing with derivatives

Matching with derivatives

Lexing

Regexes

NFA, DFA

RE→NFA

RE→NFA NFA→DFA

Lexing (reprise)

E.g.: consider $(b \lor c)+$. After matching c, can accept either ϵ or more b/c, so: $\partial_c (b \lor c)+ = \epsilon \lor (b \lor c)+ = (b \lor c)*$

Construct DFA for
$$r$$
, taking regexes r as states, adding transition $r_i \xrightarrow{c} r_j$ whenever $\partial_c r_i = r_j$. For example, for $(b \lor c)+$:

start
$$\rightarrow (b \lor c) + b \rightarrow (b \lor c) * b$$

Brzozowski (1964)'s formulation of regex matching, based on derivatives.

Derivative of regex r w.r.t. character c is another regex $\partial_c r$ that matches s iff r matches cs.

Defining ∂_c

 $\nu(r) = \epsilon \text{ if } \epsilon \in L(r)$

 $= \emptyset \text{ if } \epsilon \notin L(r)$

 ∂_c is defined inductively over regexes.

 $\partial_{c} \emptyset = \emptyset$ $\partial_{c} \epsilon = \emptyset$

 $\partial_c (r \vee s) = \partial_c r \vee \partial_c s$

 $\partial_c r * = (\partial_c r) r *$

Regexes

NFA. DFA

RE→**NFA**

 $\partial_c b = \emptyset$ $\partial_c c = \epsilon$

NFA \rightarrow **DFA**

More information: Regular-expression derivatives re-examined (Owens et al, 2009).

Can you see the similarities with derivatives of numerical functions?

(Hint: read r_1r_2 as $r_1 \times r_2$ and $r_1 \vee r_2$ as $r_1 + r_2$.)

 $\partial_{c}(rs) = (\partial_{c} r)s | \nu(r)(\partial_{c} s)$

Lexing with derivatives

Lexing

Regexe

Lexers match input string against multiple regexes in parallel. Automaton for matching one token; each state corresponds to vector of regexes, one per lexer rule. ∂_c acts pointwise on the regex vector.

NFA, DFA

 $RE \rightarrow NFA$

 $NFA \rightarrow DFA$

Lexing (reprise)

Next time: context-free grammars