Compiler Construction

Lecture 15: Linking

Jeremy Yallop
jeremy.yallop@cl.cam.ac.uk
Lent 2023




Recommended book

- LEVIHNE

Linkers & Loaders

John Levine

1st edition (October 25, 1999)
ISBN: 1558604960




Application Binary Interfaces




What happens after compilation?

translate symbolic instructions + addresses
to numeric instructions + addresses resolve names
—
— — relocate addresses

———

-—

push %rbp

— el mov  %rsp,%rbp

— assemble —» 55 48 89 e5

/ link — executable file
sub $0x20,%al

— compile — e — assemble —» 2c 20 77 6f

78 <main+@Qx78>
operating
system

object code
libraries




Application Binary Interface (ABI)

ABI: conventions that programs on a particular OS must follow:
set of system calls (open, read, write, etc.)
procedure for invoking the system calls
what memory addresses a program can use
how registers are used (e.g. passing parameters, returning results)
stack frame layout
data layout: endianness, alignment, etc.
object file layout (e.g. ELF)

linking, loading, name mangling




ABI excerpt

From System V Application Binary Interface: AMDG64 Architecture Processor Supplement:

The control bits of the uxcsr register are callee-saved (preserved across calls), while
the status bits are caller-saved (not preserved). The x87 status word register is caller-saved,
whereas the x87 control word is callee-saved.

3.2.2 The Stack Frame

In addition to registers, each function has a frame on the run-time stack. This stack grows
downwards from high addresses. Figure 3.3 shows the stack organization.

The end of the input argument area shall be aligned on a 16 (32 or 64, if _ m256 or
__m512 is passed on stack) byte boundary. !! In other words, the stack needs to be 16 (32
or 64) byte aligned immediately before the call instruction is executed. Once control has
been transferred to the function entry point, i.e. immediately after the return address has
been pushed, srsp points to the return address, and the value of (3rsp + 8) is a multiple of




Object files



Object files

object file

Header information
(code size, source file name, etc.)

Object files Object code

(binary instructions and data)
s source file

Relocation
(places for the linker to fix up)

168 47 X ——— compile ——
M.g x .

Symbols
(exported & imported)

Debugging information
(line numbers, data structures, etc.)




Object files

ELF (executable and linkable format)

ELF is a common format for both linker input and output. Sections (not

complete):

ELF header

.text

code segment

.data

writable global data

.rodata

read-only global data

.bss

uninitialized data size

.sym

symbol table

.rel.text
.rel.data
.rel.rodata

relocation tables: (offset, symbol) pairs

.line

maps source lines to object code locations

.debug

debugging information

.strtab

string names of symbols




Symbol tables

The symbol table in an object file may include various types of symbols:
e Global symbols defined (& perhaps referenced) in the module
e Global symbols referenced, but not defined
Object files e Segment names

e Optional: non-global symbols, line number information (for debugging purposes)
o000

#include <stdio.h>
int main() {

puts("Hello, world\n"); I complle — Symbol table

export main
import  puts




Linking



(Static) linking

main code

export main
import  puts

main code
puts code

puts code write code

export puts

import  write export main

export puts
resolve symbols .
export write

(match inputs & exports)

Linking

catenate code segments

write code
catenate data segments

export write perform relocations




Static vs dynamic linking

Linking may be static (compile-time) or dynamic (run-time).

Dynamic linking: object files contain stubs; the OS links the code on demand.

Static linking Dynamic linking

- Executables are larger + Executables are smaller

Linkin - Libraries can change unexpectedly + Libraries can easily be changed
€ (silently updating program behaviour) (e.g. for bug fixes)

LA '+ Loading (starting) programs is faster - Loading (starting) programs is slower




Runtime systems




Runtime systems

Runtime system: a library needed to run compiled code
Provides support for a particular language (“the OCaml runtime”)
Implemented for a particular operating system
The runtime system may offer:
e an interface between the language and the operating system (system calls)
e an interface to other languages (foreign function interface)
e efficient implementations of primitive operations
e runtime type checking, method lookup, security checks, &c.

Runtime




Targeting a VM

(e.g. ocamlc)

generated code

Targeting a VM vs targeting a platform

Targeting a platform

(e.g. ocamlopt)

generated code runtime system

;\/_/

linker

|

Virtual machine

includes runtime
system

Executable

Runtime In both cases:

compiler & runtime implementers must agree

on low-level details (memory layout, data representation)



Typical memory layout (UNIX)

high address command-line arguments
and command-line variables

uninitialized data initialized to
(bss) zero by exec

initialized data read from
program file
text by exec

low address

Runtime

(X N J (Adapted from Advanced Programming in the Unix Environment, W. Richard Stevens)



