
Compiler Construction
Lecture 15: Linking

Jeremy Yallop
jeremy.yallop@cl.cam.ac.uk

Lent 2023

Recommended book

Linkers & Loaders
John Levine
1st edition (October 25, 1999)
ISBN: 1558604960

Application Binary Interfaces

What happens after compilation?

ABI

Object files

Linking

Runtime

55 48 89 e5

2c 20 77 6f

object code
libraries

push %rbp
mov %rsp ,%rbp

sub $0x20 ,%al
ja 78 <main+0x78 >

link executable file

operating
system

assemble

assemble

compile

compile

} }translate symbolic instructions + addresses
to numeric instructions + addresses resolve names

relocate addresses

Application Binary Interface (ABI)

ABI

Object files

Linking

Runtime

ABI: conventions that programs on a particular OS must follow:
• set of system calls (open, read, write, etc.)
• procedure for invoking the system calls
• what memory addresses a program can use
• how registers are used (e.g. passing parameters, returning results)
• stack frame layout
• data layout: endianness, alignment, etc.
• object file layout (e.g. ELF)
• linking, loading, name mangling

ABI excerpt

ABI

Object files

Linking

Runtime

From System V Application Binary Interface: AMD64 Architecture Processor Supplement:

Figure 3.3: Stack Frame with Base Pointer

Position Contents Frame
8n+16(%rbp) memory argument eightbyte n

. . . Previous
16(%rbp) memory argument eightbyte 0
8(%rbp) return address
0(%rbp) previous %rbp value

-8(%rbp) unspecified Current
. . .

0(%rsp) variable size
-128(%rsp) red zone

that uses the MMX registers is required to issue an emms or femms instruction after using
MMX registers, before returning or calling another function. 10 The direction flag DF

in the %rFLAGS register must be clear (set to “forward” direction) on function entry and
return. Other user flags have no specified role in the standard calling sequence and are not
preserved across calls.

The control bits of the MXCSR register are callee-saved (preserved across calls), while
the status bits are caller-saved (not preserved). The x87 status word register is caller-saved,
whereas the x87 control word is callee-saved.

3.2.2 The Stack Frame
In addition to registers, each function has a frame on the run-time stack. This stack grows
downwards from high addresses. Figure 3.3 shows the stack organization.

The end of the input argument area shall be aligned on a 16 (32 or 64, if __m256 or
__m512 is passed on stack) byte boundary. 11 In other words, the stack needs to be 16 (32
or 64) byte aligned immediately before the call instruction is executed. Once control has
been transferred to the function entry point, i.e. immediately after the return address has
been pushed, %rsp points to the return address, and the value of (%rsp+ 8) is a multiple of

10All x87 registers are caller-saved, so callees that make use of the MMX registers may use the faster
femms instruction.

11The maximum aligned boundary is the maximum alignment of all variables passed on stack. In C11,
variable of type typedef struct { _Alignas (512) int i; } var_t; is aligned to 512 bytes.

21

AMD64 ABI 1.0 – December 6, 2022 – 21:07

Object files

Object files

ABI

Object files

Linking

Runtime

l e t f x =
M.g x + M.h x

compile

Header information
(code size, source file name, etc.)

source file

object file

Object code
(binary instructions and data)

Relocation
(places for the linker to fix up)

Symbols
(exported & imported)

Debugging information
(line numbers, data structures, etc.)

ELF (executable and linkable format)

ABI

Object files

Linking

Runtime

ELF is a common format for both linker input and output. Sections (not
complete):

ELF header
.text code segment
.data writable global data
.rodata read-only global data
.bss uninitialized data size
.sym symbol table
.rel.text

relocation tables: (offset, symbol) pairs.rel.data
.rel.rodata

.line maps source lines to object code locations

.debug debugging information

.strtab string names of symbols

Symbol tables

ABI

Object files

Linking

Runtime

The symbol table in an object file may include various types of symbols:
• Global symbols defined (& perhaps referenced) in the module
• Global symbols referenced, but not defined
• Segment names
• Optional: non-global symbols, line number information (for debugging purposes)

#inc lude <stdio.h>
i n t main() {
puts("Hello , world\n");

}

compile

...

...

...

Symbol table
export main
import puts

...

Linking

(Static) linking

ABI

Object files

Linking

Runtime

...
main code

...

export main
import puts

...

...
puts code

...

export puts
import write

...

...
write code

...

export write
...

linker

...

main code
puts code
write code

...

export main
export puts
export write

...

resolve symbols
(match inputs & exports)

catenate code segments

catenate data segments

perform relocations

Static vs dynamic linking

ABI

Object files

Linking

Runtime

Linking may be static (compile-time) or dynamic (run-time).
Dynamic linking: object files contain stubs; the OS links the code on demand.

- Executables are larger

- Libraries can change unexpectedly
(silently updating program behaviour)

+ Loading (starting) programs is faster

+ Executables are smaller

+ Libraries can easily be changed
(e.g. for bug fixes)

- Loading (starting) programs is slower

Static linking Dynamic linking

Runtime systems

Runtime systems

ABI

Object files

Linking

Runtime

Runtime system: a library needed to run compiled code
Provides support for a particular language (“the OCaml runtime”)
Implemented for a particular operating system

The runtime system may offer:
• an interface between the language and the operating system (system calls)
• an interface to other languages (foreign function interface)
• efficient implementations of primitive operations
• runtime type checking, method lookup, security checks, &c.

Targeting a VM vs targeting a platform

ABI

Object files

Linking

Runtime

Targeting a VM
(e.g. ocamlc)

Targeting a platform
(e.g. ocamlopt)

Virtual machine
includes runtime

system

generated code
linker

generated code runtime system

Executable

In both cases: compiler & runtime implementers must agree
on low-level details (memory layout, data representation)

Typical memory layout (UNIX)

ABI

Object files

Linking

Runtime
text

initialized data

uninitialized data
(bss)

heap

stack

low address

high address

}
}

}

read from
program file
by exec

initialized to
zero by exec

command-line arguments
and command-line variables

(Adapted from Advanced Programming in the Unix Environment, W. Richard Stevens)

