
Cloud Computing

Large-scale 
Resource Management II

Eva Kalyvianaki
ek264@cam.ac.uk



Contents
Apollo: Scalable and Coordinated Scheduling 

for Cloud-Scale Computing, 

by Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, and Jingren
Zhou, Zhengping Qian, Ming Wu, and Lidong Zhou, in OSDI 2014

Slides and material from the OSDI paper and its presentation from:
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/boutin

2

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/boutin


Background 
§ Cloud-scale jobs

§ Jobs are written using SCOPE, a SQL-like high-level scripting 
language, augmented with user-defined processing logic.

§ Job’s are represented by DAGs
§ Tasks are the basic unit of computation
§ Tasks are grouped in stages
§ Execution is driven by the scheduler

3



Scheduling at Cloud Scale
minimize job latency while maximizing cluster utilization

§ Challenges:
§ Scale

§ Jobs process gigabytes to petabytes of data, 100K scheduling req/sec
§ Clusters run 170K tasks in parallel and each has over 20K servers

§ Heterogeneous workload
§ Tasks run secs to hours
§ Can be IO or CPU bound
§ Require 100MB to 10GB of memory
§ Short tasks are scheduling sensitive
§ Long tasks are locality sensitive

§ Maximize utilization
§ Workload fluctuates

4



Apollo Overview

5

1. Distributed and coordinated architecture

2. Estimation-based scheduling

3. Conflict Resolution

4. Opportunistic Scheduling



Distributed and coordinated architecture

6



Different factors for optimization

7



Estimation-based scheduling
Estimated task completion time

Esucc = I + W + R

C = Psucc * Esucc + Kfail*(1−Psucc)*Esucc

E: Estimated task completion time
I: initialization time: fetching files for the task
W: wait time: a lookup in the wait-time matrix of the target server
R: Runtime: both I/O and CPU time

8



Conflicts Resolution

9

1. Apollo defers the correction of conflicts 
à (vs Omega where conflicts are handled at scheduling time)

2. Re-evaluates prior decisions

3. Triggers a duplicate if the decision is not optimal with up-to-date data



Opportunistic Scheduling

10

§ Maximize utilization

§ Use the remaining capacity
§ Dispatch more that the resource allocation
§ Tasks only consume idle resources
§ Tasks can be preempted or terminated
§ Tasks can be upgraded

§ Limit capacity share of each job
§ Random queueing



Evaluation

11

1. Apollo runs on Microsoft production clusters with over 20K servers each
2. It runs 170K tasks in parallel
3. Tracks 14M pending tasks



Apollo’s Resource Efficiency

12



Conclusions

13

1. Loosely Coordinated Distributed Architecture
2. Deployed to clusters with over 20K servers
3. High Quality Scheduling
4. Mininizes task completion time
5. Consistent performance
6. Maximizes resource utilization
7. Opportunistic scheduling 
8. 90% median CPU utilization


