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Background

® Cloud-scale jobs

= Jobs are written using SCOPE, a SQL-like high-level scripting
language, augmented with user-defined processing logic.

= Job’s are represented by DAGs

= Tasks are the basic unit of computation
= Tasks are grouped in stages

= Execution is driven by the scheduler



Scheduling at Cloud Scale

minimize job latency while maximizing cluster utilization

® Challenges:

= Scale
= Jobs process gigabytes to petabytes of data, 100K scheduling req/sec
= Clusters run 170K tasks in parallel and each has over 20K servers

= Heterogeneous workload

Tasks run secs to hours

Can be IO or CPU bound

Require 100MB to 10GB of memory

Short tasks are scheduling sensitive 4,
= Long tasks are locality sensitive

= Maximize utilization

= Workload fluctuates
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Apollo Overview

1. Distributed and coordinated architecture
/. Estimation-based scheduling

3. Conflict Resolution
4

. Opportunistic Scheduling



Distributed and coordinated architecture

Resource Monitor(RM

Job Manager(JM

[[] Status Update

Resource

CICICD  monitoring
LD o

(1 Hardware

| Global

o \/7 @

Status
Updates

I:I]I health

N

& \ i

Process Node (PN)

Server,

Queue

Serverp

[] Status Updates
& Wait-time matrix

Queue

Servers



Different factors for optimization
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Figure 4: A task scheduling example.



Estimation-based scheduling

Estimated task completion time

Esuce=1+W+ R

C = Psucc * Esucc + Kfail™*(1—Psucc)*Esucc

E: Estimated task completion time
I: initialization time: fetching files for the task
W: wait time: a lookup in the wait-time matrix of the target server

R: Runtime: both I/O and CPU time



Conflicts Resolution

1. Apollo defers the correction of conflicts
- (vs Omega where conflicts are handled at scheduling time)

2. Re-evaluates prior decisions

3. Triggers a duplicate if the decision is not optimal with up-to-date data



Opportunistic Scheduling

“ Maximize utilization

= Use the remaining capacity

= Dispatch more that the resource allocation
= Tasks only consume idle resources

= Tasks can be preempted or terminated

= Tasks can be upgraded

= Limit capacity share of each job
= Random queueing
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Evaluation

1. Apollo runs on Microsoft production clusters with over 20K servers each
2. It runs 170K tasks in parallel
3. Tracks 14M pending tasks
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Figure 9: Job latencies with different schedulers.



Apollo’s Resource Efficiency
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Figure 7: Apollo in production.
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Conclusions
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Loosely Coordinated Distributed Architecture
Deployed to clusters with over 20K servers
High Quality Scheduling

Mininizes task completion time

Consistent performance

Maximizes resource utilization

Opportunistic scheduling

90% median CPU utilization
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