Category Theory

Andrew Pi,s

University of Cambridge
Computer Science Tripos
Part Il Unit of Assessment
Part Il and MPhil. ACS Module L108
Michaelmas Term 2022

Course web page

Goto
https://www.cl.cam.ac.uk/teaching/2223/CAT/
https://www.cl.cam.ac.uk/teaching/2223/L108/

for

| these slides

| exercise sheets and details of examples classes
(trying the exercises is essential!)

| pointers to some additional material

Recommended text for the course is:

[Awodey] Steve AwodeyCategory theory
Oxford University Press (2nd ed.), 2010.

https://www.cl.cam.ac.uk/teaching/2223/CAT/
https://www.cl.cam.ac.uk/teaching/2223/L108/

| A graded exercise sheet (25% of the final mark).
issued in lecture 10 with a one week deadline

| A take-home test (75% of the final mark).
issued aser the end of the course

There will be two one-hour example class sessions to
provide help with the exercises.

See course web page for dates and deadlines.

Please use the Discussion Forum on the course Moodl!
page if you have questions about the course material 0
the exercise sheets.

00 No g IwIN Ik

Links to the lectures

10
11
12
13
14
15
16

Lecture 1

What we are probably seeking is a \purer" view of
functions a theory of functions in themselves, not a
theory of functions derived from sets. What, then, is a
pure theory of functions? Answercategory theory

Dana Sco,, Relating theories of the.calculugp406

set theory gives an \element-oriented" account of
mathematical structure, whereas

category theory takes a “function-oriented" view {
understand structures not via their elements, but by
how they transform, i.e. vianorphisms

(Both theories are part of Logic, broadly construed.)

GENERAL THEORY OF NATURAL EQUIVALENCES

BY
SAMUEL EILENBERG AND SAUNDERS MacLANE

CONTENTS

Introduction .
1. Categori
1. Definition of categories. .
2. Examples of categories.
3. Functors in two arguments.
4
5.

. Examples of functors.
. Slicing of functors. .

6. Foundations
11. Natural equivalence of functors.
7. Transformations of functors. .

8. Categories of functors. . .

9. Composition of functors
10. Examples of tmmformauons

y
13 Combination of the arguments of functors.

258

111. Functors and groups. 260
14. Subfunctors 260
15. Quotient functors 262
16. Examples of subfunctors. 263
17. The isomorphism theorems. 265
18. Direct products of functors. 267
19, Characters............. 270
272

V. Partially ordered sets and projective limits
20. Quasi-ordered sets.
21. Direct systems as functors
22. Inverse systems as functors.

23. The categories Dir and Jnv. 277
24. The lifting principle. .. . 280
25. Functors which commute with limits . 281
V. Applications to topology . . 283
26. Complexes. 283
21. Homology and cohomology groups 284
28. 287
29. Universal coefficient theorems 288
30. Cech homology groups. 290
31. Miscellaneous remarks. 292
Appendix. Representations of categories . 292

Introduction. The subject matter of this paper is best explained by an
example, such as that of the relation between a vector space L and its “dual”

Presented to the Society, September 8, 1942; received by the editors May 15, 1945.
231

Category Theory emerges

1945 Eilenberd and MacLané
General Theory of Natural Equivalences
Trans AMS 58, 231{294

(algebraic topology, abstract algebra)
1950sGrothendiecK (algebraic geometry)
1960sLawvere(ogic and foundations)
1970sJoyal and Tierne¥ (elementary topos theory)
1980sDana Sco,, Plotkin

(semantics of programming languages)

LambeK (linguistics)

Category Theory and
Computer Science

\Category theory has...become part of the standard
\tool-box" in many areas of theoretical informatics, from
programming languages to automata, from process
calculi to Type Theory"

Dagstuhl Perpectives Workshop dbategorical Methods at the Crossroad
April 2014

Seehttp://www.appliedcategorytheory.org/events for
recent examples of category theory being applied (not just i
computer science).

http://www.appliedcategorytheory.org/events

This course

basic concepts of category theory

adjunction <——natural transformation

category functor

typed lambda-calculus

applied to functional programming

10

Definition
A categoryC is specified by

| asetobj Clwhose elements are calle@-objects

| for each-+. 2 obj C, asetC!-«. °|whose
elements are calle@-morphisms from- to.

| a function assigning to each 2 obj C an element
id. 2 Cl-+- ©|called theidentity morphism for
the C-object-
| a function assigning to each 2 C!-+. °and
62 Cl.e/ °(where-+.¢/ 2 obj C°an element
6 52 C-«/ °|called thecompositionof
C-morphisms5 and6 and satisfying. ..

11

Definition, continued
satisfying.. .

| associativity for all-+.¢/s, 2 obj C,
52Cl-e, 962CLe/ %and 2Cte, ©

16 5°=1 6° 5

| unity: forall-». 2 o0bj Cand52 Ct-e. ©

id 5=5=5 id.

12

Example: category of set§et

obj Set= some fixed universe of sets
(more on universes later)

Set-». 0=
f5 - .] 5issingle-valued and tota

Cartesian product of sets- and. isthe
set of all ordered pairdGe2 with G2 -
and~ 2. .

Equality of ordered pairs:
1GeQ = 1(§)...(b . G= G)/\ ~=-0

13

Example: category of set§et

| obj Set= some fixed universe of sets

(more on universes later)

| Set-e. °=
f5 - . J5issingle-valuedandtotalg
8G2-¢8~eV2 o 8G2-29~2 ..

1Ge225/01GeD 25) ~=-0 1Ge225

13

Example: category of set§et

obj Set= some fixed universe of sets
(more on universes later)

Set-e. 0=

f5 - .] 5issingle-valued and tota

id. =f1G&jG2- ¢

composition of5 2 Set-+. °and6 2 Set.+/ °is

6 5=flGeP |
9~ 2. 1Ge22 5/ 140 2 Bg

(check that associativity and unity properties hold)

13

Example: category of set§et

Notation. Given5 2 Set-«. °andG2 - , itis usual to

write
Thus

5 G

5(or 51@) for the unique~ 2. with 1Ge2 2 5.

id. G=G
16 5°G=65G

14

Domain and codomain

Given a categon(C,

5

write|5:- ! . |or|-!
to mean that5 2 Ct-o. ©

in which case one says
object- is thedomainof the morphism5
object. is thecodomainof the morphism5

and writes
- =donb . =codb5

(Which categoryC we are referring to is lee implicit with this notation.)

15

Commutative diagrams

in a categoryC:

adiagramis
a directed graph whose vertices aré-objects
and whose edges ar€-morphisms

and the diagram iscommutative(or commute9 if
any two finite paths in the graph between any
two vertices determine equal morphisms in the
category under composition

16

Examples:

Commutative diagrams

16

Alternative notations

| will oeen just write
Cforobj C
id forid.

Some people write
Horgl-e. ©°for Cl-, ©
1 forid.
65for6 5

| use \applicative order" for morphism composition;
other people use \diagrammatic order" and write
56(r56for6 5

17

Alternative definition of category

The definition given here is \dependent-type friendly".

See [Awodey, Definition 1.1] for an equivalent
formulation:
One gives the whole set of morphisnmorC
(in bijection with -~ _, 54 ¢ C*-+. ©in my definition)
plus functions
domcod : morC! obj C
id :obj C! morC
and apartial function for composition
_ _:morC morC ™ morC
defined at'5+8 i€ cod 5 = don®6
and satisfying the associativity and unity equations.

18

Lecture 2

19

Recall

A categoryC is specified by

a set obj C|whose elements are calle@-objects

for each-+. 2 obj C, asetC!-+. °/whose
elements are calle@-morphisms from- to.

a function assigning to each 2 obj C an element

id. 2Cl-e- 0

the C-object-

called theidentity morphismfor

a function assigning to each 2 C*-«. °and
62 Cl.e/ °(where-+./ 2 obj C°an element

6 52Cl-e/ 0

called thecompositionof

C-morphisms5 and 6 and satisfyingassociativity
and unity properties.

20

Example:
category of pre-ordersPreord

objects are set%equipped with apre-order_v _
I.e. a binary relation or¥sthat is

reflexive 8G2 % @ G

transitive: 8Ge~eR2 % @ ~*~v 1) Gv I

A partial orderis a pre-order that is also
anti-symmetric 8Ge~2 % @ ~*~v G) G=~

21

Example:
category of pre-ordersPreord

objects are set%equipped with apre-order_v _
morphisms:Preord!1%ev 1% 10pev ,°0 |
f52 Set% %" | 5is monotongy

8Ge&2% Gv.: @) 50Gv,58

21

Example:
category of pre-ordersPreord

objects are set%equipped with apre-order_v _
morphisms:Preord!1%ev 1% 10pev ,°0 |
f52 Set%° %" | 5is monotoney

identities and composition: as fobet
Q: why is this well-defined?

A: because the set of monotone functions contains identity @tions and
is closed under composition.

21

Example:
category of pre-ordersPreord

| objects are set&oequipped with apre-order_v _
| morphisms:Preord!1%ev 10 19pev ,°0 |

f52 Set%° %" | 5is monotoney
| identities and composition: as foBet

Pre- and partial orders are relevant to the denotational
semantics of programming languages (among other
things).

21

Example:
category of monoidsiMon

objects aremonoids"e «# |set " equipped with
a binary operation. _:" " ! " whichis
associative8Ge~eR"e G 1~ |°=1G ~° |

has4 asits unit8G2"+ 4 G=G=G 4

CS-relevant example of a monoidlList <@enil ° where

List
@

set of finite lists of elements of set
list concatenation

nl @ =

0@ =0t @ @
empty list

nil

22

Example:
category of monoidsiMon

objects aremonoidsi"e <2
morphisms:Mon11" qe je 401" se 50 400
f52Set" 12" X j54=4"

8Ge2" 1+ 51G1~°=1508 ,15 g
It's common to denote a monoid"s <2 just by its underlying set' ,

leaving- _and4implicit (hence the same notation gets used for di€erent
instances of monoid operations).

22

Example:
category of monoidsiMon

objects aremonoidsi"e <2
morphisms:Mon11" qe je 401" se 50 400
f52Set" 2" L j54=4"

8Ge~2" 1 B'G 1~°=15Q8 ,15 g
identities and composition: as fobet

Q: why is this well-defined?
A: because the set of functions that are monoid morphisms congai
identity functions and is closed under composition.

22

Example:
category of monoidsiMon

| objects aremonoidst"s 24
| morphisms:Mon1" e 10 40%1" e 56400
f52Set" 1" X j54=4"
8Ge~2" 1 B'G 1~°=15Q8 ,15 g
| identities and composition: as faBet

Monoids are relevant tmutomata theory(among other
things).

22

Example: each pre-order
determines a category

Given a pre-ordered setov°,
we get a categoryCo, by taking

| objectsobj Co,= %

1 ifGv -~
| morphismsColGe2 | .
P ” - if Gew

(wherelis some fixed one-element set andis the empty set)

23

Example: each pre-order
determines a category

Given a pre-ordered setov°,
we get a categoryCo, by taking

| objectsobj Co,= %

. 1 ifGv~
| morphismsColGe 2, I Y
;1 Gow

| identity morphisms and composition are uniquely
determined(why?)

23

Example: each pre-order
determines a category

Given a pre-ordered setov°,
we get a categoryCo, by taking
| objectsobj Cy,= %
1 ifGv -~
;1 Gew
| identity morphisms and composition are uniquely
determined(why?)

| morphismsColGe 2,

E.g. when'%vw®° has just one elemend
0 @ 0
one object, one morphism

C%:

23

Example: each pre-order
determines a category

Given a pre-ordered setov°,
we get a categoryCo, by taking
| objectsobj Cy,= %
1 ifGv -~
;1 Gew
| identity morphisms and composition are uniquely
determined(why?)

| morphismsColGe 2,

E.g. whent%w®° has just two element® v 1
id@ 0— =1 @ .

Co=
7| two objects, one non-identity morphisn

=

23

Example: each pre-order
determines a category

Given a pre-ordered setov°,
we get a categoryCo, by taking
| objectsobj Cy,= %
1 ifGv -~
if Gew~

| identity morphisms and composition are unigquely
determined(why?)

| morphismsColGe 2,

Example of a finite category that does not arise from a pre-oreéiset:
VR =\ .

e 0T o1

two objects, two non-identity morphisms

23

Example: each monoid
determines a category

Given a monoidt'e <2,
we get a categoryC+ by taking

objects:obj C- = 1= f0g(one-element set)
morphisms:C: 100° ="

identity morphism:idg=42" =C 100°
composition of5 2 C+ 10=° and6 2 C- 10(° is
6 52" =C 100

24

Definition of isomorphism

Let C be a category. AC-morphism5:- | . isan
Isomorphismif thereissome ;. | - for which

5
nd\éE
.

IS a commutative diagram.

25

Definition of isomorphism

Let C be a category. AC-morphism5:- | . isan
Isomorphismif thereissome ;. ! - with
6 5=id. and5 6=id .

| Such &6 is uniquely determined byb (why?)and

we write
| Given-e.

-]

51

for it.

2 C, if such an5 exists, we say the
objects- and. areisomorphicin C and write

(There may be many di€erer that witness the fact that- and. are

isomorphic.)

25

Theorem. A function 5 2 Set-+. °is an isomorphism
in the categorySeti€ 5 is a bijection, that is

| injective 8G+&2-« 5G=58) G=C
| surjective 8~2.¢9G2 -+ 5 G=~

Proof...

26

Theorem. A function 5 2 Set-+. °is an isomorphism
in the categorySeti€ 5 is a bijection, that is

| injective; 8G+&2-+ 5G6=58) G=C
| surjective 8~2.¢9G2 -+ 5 G=~
Proof...

Theorem. A monoid morphism
52 Montl" je 10 4%1" e 5490 |5 an isomorphism in
the categoryMon i€ 5 2 Set" 1¢" ,° is a bijection.

Proof...

26

Define Posetto be the category whose objects apmsets
= pre-ordered sets for which the pre-order is
anti-symmetric, but is otherwise defined like the
categoryPreord of pre-ordered sets.

27

Define Posetto be the category whose objects apmsets
= pre-ordered sets for which the pre-order is
anti-symmetric, but is otherwise defined like the
categoryPreord of pre-ordered sets.

Theorem. A monotone function

5 2 Poset1%ev 1%1%ev ,°° is an isomorphism in the
categoryPoseti€ 5 2 Set%e %’ is a surjective function
satisfying

| reflective 8Ge&2 % 5 G/, 58) Gv, &

Proof...

27

Define Posetto be the category whose objects apmsets
= pre-ordered sets for which the pre-order is
anti-symmetric, but is otherwise defined like the
categoryPreord of pre-ordered sets.

Theorem. A monotone function

5 2 Poset1%ev 1%1%ev ,°° is an isomorphism in the
categoryPoseti€ 5 2 Set%e %’ is a surjective function
satisfying

| reflective 8Ge&2 % 5 G/, 58) Gv, &

Proof...

(Why does this characterisation not work fdPreord?)

27

Lecture 3

28

Category-theoretic properties

Any two isomorphic objects in a category should have
the samecategory-theoretic propertie§ statements

that are provable in a formal logic for category theory,
whatever that is.

Instead of trying to formalize such a logic, we will just
look at examples of category-theoretic properties.

Here is our first one. ..

29

Terminal object

An object) of a categoryC isterminal if for all - 2 C,
there is a uniqueC-morphism from- to) , which we
writeas/hi :- !) |
8- 2Cehi 2Ct-») ©

8- 2 Ce852 Cl-¢) % 5=hi
(So in particularidy = hi)

So we have

Sometimes we just writéni ashi.

Some people writé. for hi. {there is no commonly accepted notation;
[Awodey] avoids using one.

30

Examples of terminal objects

In Set any one-element set.

Any one-element set has a unique pre-order and
this makes it terminal inPreord (and Pose}

Any one-element set has a unique monoid structure
and this makes it terminal inMon.

31

Examples of terminal objects

In Set any one-element set.

Any one-element set has a unique pre-order and
this makes it terminal inPreord (and Pose}

Any one-element set has a unique monoid structure
and this makes it terminal inMon.

A pre-ordered set%v°, regarded as a catego1§o,
has a terminal object i€ it has a

greatest element, that is:8G2 %+ @@ >

When does a monoid"e <&, regarded as a
categoryC- , have a terminal object?

31

Terminal object

Theorem. In a categoryC:

(a) If) isterminaland)) © then) %is terminal.

(b) If) and) %are both terminal, theny) %(and
there is only one isomorphism betwegnand) 9.

In summary:terminal objects are unique up to unique
iIsomorphism

Proof...

32

Terminal object

Theorem. In a categoryC:

(a) If) isterminaland)) © then) %is terminal.

(b) If) and) %are both terminal, theny) %(and
there is only one isomorphism betwegnand) 9.

In summary:terminal objects are unique up to unique
iIsomorphism

Proof...

Notation: from now on, if a categoryC has a terminal
object we will write that object as1]

32

Opposite of a category

Given a categon(, its opposite categoryC°P|is defined
by interchanging the operations alomand codin C:

| obj C°P, objC
| COPi © (C1.e- © forall objects and.
| identity morphism on- 2 obj C°Pis
id. 2 Cl-e- 0=COPLle- O
| composition inC°P of 5 2 C°P1-«. ©and
6 2 COP1, ¢/ ©js given by the composition
5 62Cle- °=C®1e/ 0jnC
(associativity and unity properties hold for this
operation, because they do @)

33

The Principle of Duality

Whenever one defines a concept / proves a theorem in
terms of commutative diagrams in a categofy,

one obtains another concept / theorem, called itsal,

by reversing the direction or morphisms throughout,
that is, by replacingC by its opposite categorZ°P.
For example...

34

Initial object

is the dual notion to \terminal object":

An object0 of a categoryC isinitial if for all - 2 C,
there is a uniqueC-morphism0! - , which we write as
»Ya: 0l -

So we have o s
8- 2 Ce852 Cl(0s-09 5= »l,

(So in particularjd o = »%)

By duality, we have that initial objects are unique up to isomaiiism and that
any object isomorphic to an initial object is itself initial.
(N.B.\isomorphism" is a self-dual concept.)

35

Examples of initial objects

| The empty set is initial inSet

| Any one-element set has a uniquely determined
monoid structure and is initial inMon. (why?)
So initial and terminal objects co-incide iMon

An object that is both initial and terminal in a category is sortimmes
called azero object

| A pre-ordered set%v°, regarded as a categoiry,
has an initial object i€ it has deast element?, that
1S:8G2 %®v G

36

Example:
free monoids as initial objects
(relevant to automata and formal languages)

Thefree monoidon a set istList e<@enil ©where

List = set of finite lists of elements of
@ = list concatenation

nil empty list

37

Example:
free monoids as initial objects

(relevant to automata and formal languages)

Thefree monoidon a set istList e<@enil ©where

List = set of finite lists of elements of
@ = list concatenation
nil = empty list

The function
[. ! List
0 7! »0%= 0 :nil (one-element list)

has the following \universal property"...

37

Example:
free monoids as initial objects

(relevant to automata and formal languages)

Theorem. For any monoid'"e <4 and function

5: I " thereis aunigue monoid morphism

52 Mon!lList es@nil %1"s «£°making
$List commute inSet

N

Proof...

37

Example:
free monoids as initial objects

(relevant to automata and formal languages)

Theorem. 8" 2 Mone85 2 Seft «" %9152 MonlList " %5 [=5

The theorem justsaysthdt : ! List isaninitial
object in the category *Mon:

| objects:11"e o e P wherel"s <2 2 obj Mon and
52 Set " °

| morphisms in
e MON111" jo 10 40 50e11" e e 40e 500 gre
52 Monit" je 10 40%1" 5 040 gychthats 5=5
| identities and composition as iMon

37

Example:
free monoids as initial objects

(relevant to automata and formal languages)

Theorem. 8" 2 Mone85 2 Seft «" %9152 MonlList " %5 [=5

The theorem just saysthdt/ : ! List isaninitial
object in the category *MoOn:

So this \universal property" determines the monoldst uniquely up to
isomorphism inMon.

We will see later that 7! List is part of a functor (= morphism of categories
which is les adjoint to the \forgetful functor" Mon! Set

37

Lecture 4

38

Binary products

In a categoryC, aproductfor objects-«. 2 Cisa
diagram- ' 94> . with the universal property:

5 6 .
For all- /T . in C, there is a uniqueC-morphism
-/ ! %such that the foIIowing diagram commutes in

A

39

Binary products

In a categoryC, aproductfor objects-«. 2 Cisa
diagram- ' 94> . with the universal property:

5 6
For all- /T . in C, there is a uniqueC-morphism

:/ 1 %such that
5=c; and6=c>

S01%e ¢* C,° is a terminal object in the category with

5 6
| objects:t/e5+@where- /! . inC

I morphisms :1/ 1236°!1 [»56°are 2 Cl/ ¢/ 2° such that
59=5% and6; = 6,

I composition and identities as i€

So if it exists, the binary product of two objects in a categoig/unique up to
(unique) isomophism.

39

Binary products

In a categoryC, aproductfor objects-«. 2 Cisa
diagram- ' 94> . with the universal property:

5 6

For all- /T . in C, there is a uniqueC-morphism
-/ 1 %such that
5=c; and6=c>

N.B. products of objects in a category do not always exist. For exaenplthe
category

id@O 131

two objects, no non-identity morphisms

the objectsO and 1 do not have a product, because there is no diagram of the
form0 ?! 1inthis category.

39

Notation for binary products

AssumingC has binary products of objects, the product
of-.. 2 Ciswri,en

C1

C
R

5 6
and given- [V . ,theunique :/ ! - . with
ci1 =5andc, =6iswrien

b eb:/ | -

40

Examples of products

In Set category-theoretic products are given by the
usual cartesian product of sets (set of all ordered pairs)

. =fiGe2jG2- A~2. g
C11Ge2=G
CzlG.Q=~

because...

41

Examples of products
In Preord, can take product oft%ev 1° and 1%ev ,° to be

% %eV°

G GOV e,

roduct in Set
P Gvi1"GvVva—

Examples of products
In Preord, can take product oft%ev 1° and 1%ev ,° to be

% %eV°

Gvi~-1"Gvo—

1 ° (0] 1~ [] o
product in Set G G? vt~ |

The projection function®s ' % %!“* % are
monotone for this pre-order o84 % and have the

universal property needed for a product iRreord
(check)

Examples of products

In Mon, can take product of" 1o 1#4°and" 2 »»4° to
be

in 1 n 2. .141.$00

%

1GeG® e

1G 1~1°G 2=°

product in Set

43

Examples of products

In Mon, can take product of" 1o 1#4°and" 2 »»4° to
be
il 1 n 2. .141.$00

s

1Ge (30 1—.,e~0 =
product in Set | GG e

1G 1~1°G 2=°

The projection functions ; "1 " 1> " yare
monoid morphisms for this monoid structure on

"1 " 2and have the universal property needed for a
product in Mon (check)

43

Examples of products

Recall that each pre-ordered s&tv° determines a
categoryCoy,

Given?e @ %= obj Cy, the product? @(if it exists) is
a greatest lower boundor glb, or mee for ? and @n
1%0w°:

lower bound :
? @Qv?N? Q@

greatest among all lower bounds:
BA2% A? N Av@) AV? @

Notation: glbs are osen wri,en or

44

Duality

A binary coproductof two objects in a category is
their product in the categoryC°P.

45

Duality

A binary coproductof two objects in a category is

their product wﬁf’p.

(Thus the coproduct ofs. 2 C
if it exists, _
is a diagram- ! e

with the universal property

g1/ ° o

9l 1 [0
5= inl 6= inr

inr

45

Duality

A binary coproductof two objects in a category is
their product in the categoryC°P.

E.g. inSet the coproduct of and.

| inl inr
= - = 5 .

Is given by theirdisjoint union (tagged sum)

.. =fl0®jG2-g[ft 1e0j~2.g
inl 1@ =100

inr 1~0 = 11s-9

(prove this)

45

Lecture 5

46

Exponentials

Given-«. 2 Setlet. -~ 2 Setdenote the set of all
functions from- to. .

.~ =Set-». °=f5 - . j5issingle-valued and tota
Aim to characterise - category theoretically.

47

Exponentials
Given-«. 2 Setlet. = 2 Setdenote the set of all
functions from- to. .
Aim to characterise - category theoretically.

Function applicationgives a morphism
app:.~ - ! . inSet

appl5¢G=5G 152, «G2-°
SO as a set of ordered pairappis

fli5¢@~° 21" -0 | j1GeR25¢g

47

Exponentials
Given-«. 2 Setlet. = 2 Setdenote the set of all
functions from- to. .
Aim to characterise -~ category theoretically.
Function applicationgives a morphism

app:.~ - ! . inSet
Currying operation transforms morphisms
5:/ - ! . inSetto morphismscur 5:/ !

Ccur5|G=51l°G’ 152.712/G2-°

cur 5 1=f1Ge2j te@e-2 2 5g
cur 5=f11e6° 6= f1Ge2 j 11s s -0 2 5gg

47

48

For each functionrs:/ - ! . we getacommutative
diagram inSet

app

- —

cur 5 id-T /
/ -
Icur 51¢BG——=cur 51G= 53

| —

e P

49

For each functionrs:/ - ! . we getacommutative
diagram inSet

app

-

cur5id_T /
5

/ -
Furthermore, if any functior6 :/ ! .~ also satisfies

_app

GM 7

/ -

then6 = cur 5, because ofunction extensionality..

49

Function Extensionality

Two functions5+62 . - are equal if (and only if)
8G2-« 5G=6G

This is true of the set-theoretic notion of function, becagighen

flGe5GG2- g=f1G*66GjG2-¢g
i.e. flGe2j1Ge2 2 5g=f1Ge2j 1Ge2 2 6g
i.e. 5=6

(in other words it reduces to the extensionality property oftse two sets are
equal i€ they have the same elements).

50

Exponential objects

Suppose a categor§ has binary productsthat is, for

every pair ofC-objects- and. there is a product

. C C
diagram- ‘- .17

Notation: given52 Ct-e- ®and5°2 Ct.e, ®, then‘5 50.. .1 -0 .0‘
stands fort5 c1+ 5 cai,
that is, the unique morphisné 2 Ct- .«- 0 ® satisfying

c1 6=5 ciandc, 6=5° c,.

51

Exponential objects

Suppose a categor§ has binary products

An exponentialfor C-objects- and. is specified by
object. = + morphismapp:. -~ - !

satisfying the universal property

forall/ 2Cand52 CY -e. © thereis a unique

62Cie. "°suchthat .-~ - L.
commutes inC. /-

Notation: we write|cur 5| for the unique6 such that
app 6 id.°=5.

51

Exponential objects

The universal property ofpp:.~ - ! . saysthat
there is a bijection

Cte, "0 CY o .0
67'app 6 id.°
cur5 [5
app cur5 id.°=5
6=-curlapp 6 id.°°

52

Exponential objects

The universal property ofpp:.~ - ! . saysthat
there is a bijection...
It also says that!. - eapp is a terminal object in the following category:

I objects:l/e5°where52 CY -e. ©

| morphisms6 : /e5° 11 / %52 gre6 2 Ct/«/ ® such that
50 16 id.°=5

I composition and identities as iIT.

So when they exist, exponential objects are unique up to @ure) isomorphism.

52

Cartesian closed category

Definition. Cis acartesian closed categorfgcg if it is
a category with a terminal object, binary products and
exponentials of any pair of objects.

This is a key concept for the semantics of lambda calculus andffierfoundations
of functional programming languages.

Notation: an exponential object = is osen wri,en as |:|

53

Cartesian closed category

Definition. Cis acartesian closed categorfgcg if it is
a category with a terminal object, binary products and
exponentials of any pair of objects.

Examples:

I Setis a ccc | as we have seen.

I Preordis a ccc: we already saw that it has a terminal object and binary
products; the exponential 0f%ev 1° and1%ev° is1% %ev° where

% % = Preord!19%sev 1%¢10pey ;00
5v6,8 G2% 5G/,6G

(check that this is a pre-order and does give an exponentialPireord)

53

Lecture 6

54

Course assessment|heads up

Graded exercise sheet (Ex.Sh.#4) for 25% credit

| issued 12:00 on Friday 28 October 2022 via Moodls

| your answers are due (via Moodle) by 12:00 on
Friday 4 November 2022

Take-home exam, 75% credit, will be available via
Moodle from 12:00 on Friday 25 November 2022, with
solutions to be submi,ed by 12:00 on Friday 2 Decembe
2022.

55

CCC

Recall:

Definition. Cis acartesian closed categorfgcqg if it is
a category with a terminal object, binary products and
exponentials of any pair of objects.

56

Non-example of a ccc
The categoryMon of monoids has a terminal object and
binary products, but is nota ccc

because of the following bijections between sets, whérdenotes a one-element
set and the corresponding one-element monoid:

SetleListl © MontListl eListl ©
Monl Listl eListl ©

by Ex.Sh. 2, qu. 2
(1 is terminal inMon)

by universal property of
the free monoidList 1
on the one-element set

57

Non-example of a ccc

The categoryMon of monoids has a terminal object and
binary products, but is nota ccc

because of the following bijections between sets, whérédenotes a one-element
set and the corresponding one-element monoid:

SetleListl © MontListl eListl ©
Montl List1 eListl ©

SinceSetleList1l °is countably infinite, so isMon®1 List1 eList1l °.

Since the one-element monoid is initial (see Lect. 3Mon, for any” 2 Mon we
have thatMon'1+" © has just one element and hence

Mon®1l Listl eListl © 6 Montle"?©°

Therefore nd” can be the exponential of the objectsst1 andListl in Mon.
57

Cartesian closed pre-order

Recall that each pre-ordered s&v° gives a category
Co, Itis a ccc i€%has

| agreatest element:8? 2 %e ¥ >
| binary meets?* @
BA2%e A ?" @, AV?"Av @

| Heyting implications? @
BA2% A? @, AMN?V@

58

Cartesian closed pre-order

Recall that each pre-ordered s&v° gives a category
Co, Itis a ccc i€%has

| agreatest element:8? 2 %e ¥ >
| binary meets?* @
BA2%e A ?" @, AV?"Av @
| Heyting implications? @
BA2% A? @, AMN?V@

E.g. any Boolean algebra (with @=:?_ @.

(
E.g.1x0:1%° with > = 1,7~ @ minf?«@and? @= 1if? @
' @ if@v?

58

Intuitionistic Propositional Logic (IPL)

We present it in \natural deduction" style and only consider tHfeagment with

conjunction and implication, with the following syntax:

Formulas of IPL:ieke\e”"”"::=
?¢ @+ A" ptopositional identifiers

true truth

I &k conjunction

i =k implication
Sequentsof IPL: = empty

«q non=empty

(so sequents are finite snoc-lists of formulas)

59

IPL entailment |
The intended meaning of " i is \the conjunction of the formulas in implies
the formulai ". The relation. " _is inductively generated by the following rules:
3 3 i
T (ax) RN (wk) X (cut)
T _ i "k _
" true (true) i &k (&) i o=k &9
Ti&k i &k Tio=k T
— (&e1) R (&&2) K (=e)

60

For example, if = «i =>kek =\, then " i =>\is
provable in IPL, because:

(ax)
| ?ﬁ :Lkik (Wk)
k =\ (ax)k i i =k (k) (ax)
ik =\ (wk) i "k (=€)
i\ (=€)

61

Semantics of IPL
In a cartesian closed pre-odéfowv®

Given a function" assigning a meaning to each propositional
identifier ? as an element 1?° 2 % we can assign meanings to IPL
formulai and sequents as element' J k" J K2 %by recursion
on their structure:
" JPK=" 170
" Jtrue K= > greatest element
"J &kK=" J K" kK binary meet
“J =>kK=" J K " XK Heyting implication
" JK=> greatest element
"JeiK="J KM" J K binary meet

62

Semantics of IPL
In a cartesian closed pre-odéfowv®

Soundness Theorem.If " i is provable from the
rules of IPL, therd" J Kv " J Kholds in any cartesian
closed pre-order.

Proof. exercisgshow thatft «i°j" J Kv " J Kgis closed under the rules
defining IPL entailment and hence contairis «i°j i g)

62

Example

Peirce's Law ~ 11 i =>k°% =i 0 =>j
IS not provable in IPL.
(whereas the formuldti =>k°=>i °=>i is a classical tautology)

63

Example

Peirce's Law ~ 11| =>Kk©° =>j 0 =>j

IS not provable in IPL.

(whereas the formuldti =>k°=>i °=>i is a classical tautology)

Forif ~11i =>k°=>i °=>i were provable in IPL, then by the

Soundness Theorem we would have
>="JKv" 1 ko= K

But in the cartesian closed partial ordém0»1%.° , taking
" 1?20 =b2and" 1@ =0, we get

"I S@=707K= 11k (P bR b

=10 1o 20 o
=1 B>
= 1lep

1

63

Semantics of IPL
In a cartesian closed pre-odéfowv®

Completeness Theorem. Given ei, if for all cartesian
closed pre-order$%v® and all interpretations’ of the
propositional identifiers as elements 64 it is the case
that" J Kv " J Kholdsin%then i is provablein
IPL.

64

Semantics of IPL
In a cartesian closed pre-odéfowv®

Completeness Theorem. Given ei, if for all cartesian
closed pre-order$%v® and all interpretations’ of the
propositional identifiers as elements 64 it is the case
that" J Kv " J Kholdsin%then i is provablein
IPL.

Proof. Define

% , fformulas of IPlg
i vk , i "k isprovableinIPL

Then one can show that%v®° is a cartesian closed pre-ordered set.
For this1%v?°, taking" to be" 1?°=7?, one can showthat J Kv " J Kholds
in%i€ i isprovableinIPL.

64

Lecture 7

65

IPL entailment

Recall the rules:

AN =

T T i "k
(@) |~ (wk) —— (cut
T k i Tk ,
* true (true) T &k (&) i o=k &)
T &k T &k o=k i
— (&e1) = (&) = (=e)

66

Proof theory

Two IPL proofs of ei =>kek =\ " i =\

o (@)
— (ax) i Ti =k ei T
TS K =)
TR =)
T N where , i =kek =\
— — @)
i :>EI\<%)Q2WK) @ e :&:()y @)
. (=) < (=)
K N
q : (cut)
G skeks) =y O
where , i =>kek =>\ej

67

Proof theory

Two IPL proofs of ei =>kek =\ " i =\

:E“W)(wk) (@)
(&) 1 =K o
N K =)
TR =)
= & where , i =kek =\
R — (ax
ﬁf\k%)ae""k) @) -kT:E\:(Q)(Wk) Kk @
- (=e) e (=9)
q : (cut)
G skeks) =y O
where , i =>kek =>\ej

Why is the first proof simpler than the second one?

67

Proof theory

i i oi
Y (ax) R (wk) X (cut)
e | —— @ =
true i &k i =k
i &k i &k o=k T

FACT:if an IPL sequent " q is provable from the rules, it is
provable without using the ¢ut) rule.

Proof theory

i ik
o (ax) R (WK) X (cut)
T ko i "k)
" true (true) Ti&k (&) i =k =D
T &k i &k o=k T
%i(&el) T(&ez) K (=e)

FACT:if an IPL sequent " q is provable from the rules, it is
provable without using the ¢ut) rule.

Simply-Typed Lambda Calculus provides a language for dibéeg
proofs in IPL and their properties. ..

Slmply Typed Lambda Calculus (STLC

Types: "moE

& 00 \ground" types

unit unit type
product type
function type

69

Simply-Typed Lambda Calculus (STLC

Types: e o """ =
« & 00»»\ground" types
unit unit type
product type

function type
Terms: BeCeAe’2”

2 constants (of given type)
G variable (countably many)
10 unit value
BT pair
fst C sndC projections

G:"C function abstraction

BC function application

69

STLC

Some examples of terms:

I o1 " G 7 1ifst |1°G dsndl°@°
(has Wpell o 1 (e]0} 1 1 00)

N 1 "1 G: " fst 1 GPe ~: " sndi~©°°
(hastype1 1 00 11 o 1 oo)

I 1 o G 7 st |0G dsndI°@
(has no type)

70

STLC typing relation, " C:
ranges ovetyping environments
=] G

(so typing environments are comma-separated snoc-lists ofiedae,type)-pairs
| in fact only the lists whose variables are mutually distinct gt used)

The typing relation ~ C: isinductively defined by the
following rules, which make use of the following
notation

means: no variable occurs more than once in
= finite set of variables occurring in

71

STLC typing relation, " C:

Typing rules for variables
ok G8dom
G ~G:
" G: G°8 dom
Q0 G (var’)
Typing rules for constants and unit value
ok

B — (cons)

(var)

ok
10 - ynit

(unit)

72

STLC typing relation,

Typing rules for pairs and projections

" B: T C _
IR . (pair)
T C f
t

" fst C: (fs9

T C

N (snd)

sndC:

" C

73

STLC typing relation, " C:
Typing rules for function abstraction & application
G " C
T _G:C:
" B: " C
"BC

(fun)

(app)

74

STLC typing relation, " C:

Example typing derivation:

- ~=- (var)
5 e 5 (var')
— (var) ﬁ (var') - G — (var)
G 6 (var') G "5G (app
‘G 65G: (@Pp
~ G 615G (fun)
e5: R " G:"615@:1 ° 1 o (fun)
_5: " 6 " G:"615@:t o 1 o 1 o (fun)
where , ¢5: °6 :

N.B. the STLC typing rules are \syntax-directed", by the structuo¢ termsCand
then in the case of variable§ by the structure of typing environments.

Semantics of STLC types in a ccc

Given a cartesian closed catego@y
any function” mapping ground types to objects" * °2C

extends to function 7! " J K2Cand 7! " J K2 Cfrom STLC
types and typing environments t&-objects, by recursion on the
structure of :

"J K="10
" Junit K=1 terminal object inC
" J K="J K " J K productinC
N K=" J K " J K exponential inC

"JK=1 terminal object inC
"JeG K="JK " JK productinC

76

Lecture 8

77

Semantics of STLC terms in a ccc
Given a cartesian closed categogy
given any function" mapping

| ground types to C-objects" 1 °
(which extends to a function mapping all types to objects, 7! " J K as
we have seen)

78

Semantics of STLC terms in a ccc

Given a cartesian closed categogy
given any function"” mapping

| ground types to C-objects" * °

| constants2 to C-morphisms" 12 °:1! " J K
(In a category with a terminal object, given an object 2 C, morphisms
1! - are sometimes calledlobal element®of- .)

78

Semantics of STLC terms in a ccc
Given a cartesian closed categogy
given any function" mapping

| ground types to C-objects" 1 ©
| constants2 to C-morphisms" 12 °:1! " J K

we get a function mapping provable instances of the
typing relation ~ C: to C-morphisms

"J C Ki"mJK!I "JK

defined by recursing over the proof of * C: from the
typing rules (which follows the structure of):

78

Semantics of STLC terms in a ccc

Variables:
C2

"JeG "G: K="JK "JK"JK
"Je@: 9 G: K=

"J'G K
"JK"JOchl"JIQ "J K
Constants:
. hi "1p o
"J 2 : K="JK 1! "J K
Unit value:

h
"J T unitK="JK 1

79

Semantics of STLC terms in a ccc

Pairing:
"J 1B-T =
HJ'B K J'CHK
"J K "J K
Projections:
"J " fst C K=
" J K "J K "JK

"J K

"J K

80

Semantics of STLC terms in a ccc
Pairing:
") 1B T K=

HJ'B k' J'CHK
" J K "J K "JK

Giventhat ° fst C: holds,
there is a unique type
suchthat "~ C: already
holds.

Projections:

"J fst C: K= g

"J'C K
" J Kl "J K "JK

C1 "

J K

Lemma.If "~ C: and ° C: areprovable,then = .

80

Semantics of STLC terms in a ccc

Pairing:

"J 1B.T K=
HJ'B k'J CHK
n J K! n J K " J K
Projections:
"J "~ sndC: K=
"J'C K Co
" J K "I K "JK " "JK
(As for the case ofst ,if ~sndC: ,then ° C: already holds for a

unigque type .)
80

Semantics of STLC terms in a ccc

Function abstraction:

"J _G:"C: K=
cur5:" JKIt "JK "JR

where

5="JG "C KK"JK "JKI "JK

Semantics of STLC terms in a ccc
Function application:
"J "BC K=
"Ik gk ke IRk
where

= unique type such that " B: and " C:
already holds (exists because’ B C holds)

5="J " B: Ki"JKIt"JK "JR
6="J C Ki"JK!I "JK

82

Example

C, G:"615G|sothat " C: when

, "' J K=. and" J K=/ in C. Then

"JK=11 ."° /-

Suppose' J K=-

K=111 "o /o .

K=c,

K=c, c1

K=c2 c1 C1

K=app ez, ¢1 ciec

K=app hcy, cpeapp e, c1 ciecii
K=curlapp fcy cieapp Ity c1 ciecii®

83

STLC equations

take the form| "~ B=C: |where “B: and " C:
are provable.

Such an equation isatisfiedby the semantics in a ccc if
“J " B: Kand" J " C: Kare equalC-morphisms
"J K "JK

which equations are always satisfied in any ccc?

84

STLC equations

take the form| "~ B=C: |where “B: and " C:
are provable.

Such an equation isatisfiedby the semantics in a ccc if
“J " B: Kand" J " C: Kare equalC-morphisms
"J K "JK

[: which equations are always satisfied in any ccc?

Ans: 1LPV[-equivalencq to define this, first have to
definealpha-equivalencgsubstitution and its
semantics.

84

Alpha equivalence of STLC terms

The names of -bound variables should not a€ect
meaning.

E.g. 5: " G: "5 Gshould have the same
meaning as G: T~ "G~

85

Alpha equivalence of STLC terms

The names of -bound variables should not a€ect
meaning.

E.g. 5: " G: "5 Gshould have the same
meaning as G: T~ "G~

This issue is best dealt with at the level of syntax rather
than semantics: from now on we re-define \STLC term"
to mean not an abstract syntax tree (generated as
described before), but rather an equivalence class of
such trees with respect talpha-equivalencéB=y G,
defined as follows. ..

(Alternatively, one can use a \nameless" (de Bruijn) represdion of terms.)
85

Alpha equivalence of STLC terms

B:U é) C:U é

C:U é

2 =2 ||G=yG|| o =y1o| BT, ¥

-®

fst C=yfst &

C:U é B:U é)

C:U é

sndC=y sndC® B Gy B

~@® C=y~ 3 @ ~doesnotoccurifGe&Cg

G:"C=y@:"c°

86

Alpha equivalence of STLC terms

B:U é) C:U é

C:U é

2 =u2 G=yG

10 =, 10 || 1B eC= He @

fst C=yfst &

C:U é B:U é) C:U é

sndC=y sndC® B Gy B

~ does not occur ifGs & Cg

G:"C=y@:"c°

\\ result of replacing all

occurrences oGwith ~in C

86

Alpha equivalence of STLC terms

B:U é) C:U é

C:U é

2 =2 ||G=yG|| o =y1o| BT, ¥

-®

fst C=yfst &

C:U é B:U é)

C:U é

sndC=y sndC® B Gy B

~@® C=y~ 3 @ ~doesnotoccurifGe&Cg

G:"C=y@:"c°

E.g.
G "GG=y_~:"~~6y_G: "G~
1~ 7~0G=y 1. G: "G°GBy 1_G: "G°~

86

Substitution

CB G/4= result of replacing all free occurrences of
variableGin term C(i.e. those not occurring within the
scope of a G: ” _binder) by the termB
alpha-converting -bound variables irCto avoid them
\capturing" any free variables o€

E.g.l ~: 7" 1~e®»eG/is | : " He~%andisnot ~: " 1~

87

CB G/4= result of replacing all free occurrences of
variableGin term C(i.e. those not occurring within the
scope of a G: ” _binder) by the termB
alpha-converting -bound variables irCto avoid them
\capturing" any free variables o€

E.g.l ~: 7" 1~e®»eG/is | : " He~%andisnot ~: " 1~

The relationGB G/= €@ can be inductively defined by
the following rules. ..

87

Substitution

~< G
2 >BG/=2 ||GBG/EB||~>BG/FE~| 9B G/F& 1°

GBG=CE GBGEQJ cBG/=C
1Ge@BG/F G+ & || st @BG/Ffst @
cBG/FC GBGFE GBGEQ

1snd @B G/= sndC 1GGHB G/ GO

cBG/=C¢ ~< Gand~ does not occur irB
1~ "COHOBG/E _~: "CO

Semantics of substitution in a ccc

Substitution Lemma If "~ B: and «G: "~ C: are
provable, thensois = CB G/

Substitution Theorem If "~ B: and G ~C:
are provable, then in any ccc the following diagram
commutes:

Hd+" J "B K

BRI "JK "JK

X l JG CK
"J CBGa

J K

89

Lecture 9

90

STLC equations

take the form| "~ B=C: |where “B: and " C:
are provable.

Such an equation is satisfied by the semantics in a ccc |
“J " B: Kand" J " C: Kare equalC-morphisms
"J K "JK

which equations are always satisfied in any ccc?
Ans: V[-equivalence..

91

STLCV[-Equality

Therelation ~ B=y; C: |(where ranges over typing

environmentsBand Cover terms and over types) is
inductively defined by the following rules:

92

STLCV[-Equality

The relation

) B:V[C.

(where ranges over typing

environmentsBand Cover terms and over types) is
inductively defined by the following rules:

| V-conversions

G:

T C

" B:

" B: T C

"1_G: "CB=y| CBG/xL

" fst 1B «T=y B:

" B:

T C

" sndB «C=y; C:

92

The relation ~ B=y[C:

STLCV[-Equality

(where ranges over typing

environmentsBand Cover terms and over types) is
inductively defined by the following rules:

| V-conversions
| [-conversions

" C G does not occurirC
TCey LG 'CE:
T C * C: unit
" C=y st CendC: © C=yp 2 unit

92

STLCV[-Equality

The relation

) B:V[C.

(where ranges over typing

environmentsBand Cover terms and over types) is
inductively defined by the following rules:

| V-conversions
| [-conversions
| congruence rules

°G:

) C:\/[(92

©_G:"C=y _G:"C%

) B:\/[B)Z

~

C:V[é . otc

0 B@V[é)é):

92

STLCV[-Equality

The relation ~ B=y[C:

(where ranges over typing

environmentsBand Cover terms and over types) is
inductively defined by the following rules:

| V-conversions
| [-conversions
| congruence rules
I

=y is reflexive, symmetric and transitive

" C " B=y C
" Cey C " C=y; B:
" A=y B: " B=y[C:
) A:V[C.

92

STLCV[-Equality

Soundness Theorem for semantics of STLC in a ccc.

If ~ B=y;C: isprovable, then inany ccc
"J "B K="J "C K
are equalC-morphisms" J K!' " J K

Proof is by induction on the structure of the proof of * B=y; C:
Here we just check the case &fconversion for functions.

So suppose we haveG: ~ C: and °~ B: .We have to see that

"J T1_G:"C°B: K="J 0BGk K

93

Suppose

" J G
"J

Then

and hence

" J K=-
"J K=,
"J K=/
"C. K=5:-
"B: K=6:-!

"J 1 G:"C%B: K

=app hcur 5
=app *cur 5
=5 Hd. -6

.6
id ° hd. +@

="J "OoBG4 K

as required.

/

/
K=cur5:- 1! [~
sincel0 1° R e3 =1 21 3i

by definition of cur 5
by the Substitution Theorem

94

The internal language of a cc€

| one ground type for eaclC-object-

| for each- 2 C, one constants™ for each
C-morphism5:1! - (\global element" of the
object-)

The types and terms of STLC over this language usefully degcdbnstructions
on the objects and morphisms df using its cartesian closed structure, butin an
\element-theoretic" way.

For example...

95

Example

In any cccC, for any-+.«/ 2 Cthere is an isomorphism

/1_ .0 1/.0_

Example

In any cccC, for any-+.+/ 2 Cthere is an isomorphism
/ 1. .0 1/ . O-

which in the internal language o€ is described by the terms

N B:ll_ .0 /0 1_ 1_ /00
N C: 1_ 1_ / (o]0} 11_ . (o] / (o]
(
where , 51 0 /7 G:-" ~:."51G 0 and
, (_6:- 1 /[° 1:- .76 st 1°isndl®
)) «5:1- % ["CGBB=y5
which satis
fy °6:- 1, /° BCB=y6

96

Free cartesian closed categories

The Soundness Theorehas a converse|completeness.

In fact for a given set of ground types and typed constants tkas a single cc
(the free ccdor that language) with an interpretation functio! so that
"B=y{ C. isprovablei€" J "B: K="J " C: KinF.

97

Free cartesian closed categories

The Soundness Theorehas a converse|completeness.

In fact for a given set of ground types and typed constants tkas a single cc
(the free ccdor that language) with an interpretation functio’ so that
"B=y{ C. isprovablei€" J "B: K="J " C: KinF.

I F-objects are the STLC types over the given set of ground types

I F-morphisms ! are equivalence classes of STLC ter@satisfying
TG (soCis aclosederml|it has no free variables) with respect to
the equivalence relation equatingandCif ~ B=y C: is provable.

I identity morphism on is the equivalence classof _G: "G :

I composition of a morphism ! represented by © B: and a
morphism ! represented by * C: is represented by
G: "CBG:

97

Curry-Howard

Correspondence
Type
Logic Theory

propositions $ types
proofs $ terms

E.g. IPLversusSTLC.

98

Curry-Howard for IPLvSSTLC

Proof of «i =kek =\ " i =\ inIPL

p—
(@) ik W (@)
) \ (=€)
i =>ke k =\ i =\)

where = ¢ | =>ke Kk =>\e |

99

Curry-Howard for IPLvSSTLC

and a corresponding STLC term

— &R
— &)
e N B S T 4
Tk =\ T ~G:k
T =9
TSkl k= GrTma g = O

where = e~ :| =Ke| :k =>\e G|

99

Curry-Howard-Lawvere/Lambek

Correspondence
Type Category
Logic Theory Theory

propositions $ types $ objects
proofs $ terms $ morphisms

E.g. IPLversusSTLCversusCCCs

100

Curry-Howard-Lawvere/Lambek

Correspondence
Type Category
Logic Theory Theory

propositions $ types $ objects
proofs $ terms $ morphisms

E.g. IPLversusSTLCversusCCCs

These correspondences can be made into category-theoretitvatpnces|we
first need to define the notions ofunctor and natural transformationin order to
define the notion ofequivalence of categories

100

Lecture 10

101

are the appropriate notion of morphism between categories

Given categorie€ and D, afunctor is
specified by:

a functionobj C! obj D whose value at is
wri,en

forall--. 2 C, afunctionCl-e, °! D1 - ©
whose valueab:- ! . iswrien
5: - 1
and which is required to preserve composition and
identity morphisms:
6 5° = 6 5
id.° = id .

102

Examples of functors

\Forgetful" functorsfrom categories of
set-with-structure back toSet
E.g/* :Mon! Set

(

* 1'e 04) =1n

5
AT e e 4T T e 0400 =1 2

103

Examples of functors
\Forgetful" functorsfrom categories of
set-with-structure back toSet
E.g/* :Mon! Set
(

* 1" o fp ="

5
AT e e 4T T e 0400 =1 2

Similarly* : Preord! Set

103

Examples of functors

Free monoid functor : Set! Mon]

Given 2 Set

=1l st

e@enil ©°, the free monoid on

104

Examples of functors

Free monoid functor : Set! Mon]
Given 2 Set

= 1List e@enil °, the free monoid on

Given a function5: 1! », we get a function
5:List 1! List »bymapping5 over finite lists:

5 052" " "o 0/ »5 Qo """ ¢ 5.0,

This gives a monoid morphism ;! 2; and mapping over lists preserves
composition (16 5°= 6 5)andidentities(id =id). Sowedogeta
functor from Setto Mon.

104

Examples of functors

If Cis a category with binary products and 2 C, then

the function?® - :0bj C! obj Cextendstoa
functor|t° - :C! C mapping morphisms
5:. 1 .%to

5 id.:. -1 .9 .

. . . ., C1 5 6° =5 ¢ '
recall that5 6 is the unique morphism with ! !
c 15 6° =6 c»

gince it is the case that
id. id =id.
150 5o jd. =150 jd_° 15 jd_°

(see Exercise Sheet 2, question 1c).
105

Examples of functors

If Cis a cartesian closed category and?2 C, then the
function1 > :obj C! obj Cextends to a functor

10 :C! C|/mapping morphismss:. ! . %to
5 , curts appP:. ! . ©
lid. © =id -

since it is the case that
16 5 =6 &

(see Exercise Sheet 3, question 4).

106

Contravariance

Given categorie€ andD, a functor :C°P! Dis
called acontravariant functor fromC to D.

5 6 5 6
Note thatif-! .! / inC, then- . / in C°P

5 6
SO - . / in D and hence

16(;50: 5 D 6

(contravariant functorsreverse the order of compositign

AfunctorC! D is sometimes called aovariant functor fromC to D.

107

Example of a contravariant functor

If Cis a cartesian closed category and?2 C, then the
function- = :obj C! obj C extends to a functor

- 2 C%P1 C|/mapping morphisms:. ! . %to

-5, curtapp tid_ o 500:-- 1 -
(

sinceitisthecasethat o, _ 5 g

(see Exercise Sheet 3, question 5).

108

Note that since a functor : C! D preserves domains,
codomains, composition and identity morphisms

it sends commutative diagrams i€ to commutative
diagrams inD

E.g.

;4 2

7! , = 165=6 5

109

Note that since a functor : C! D preserves domains,
codomains, composition and identity morphisms

it sends isomorphisms i€ to isomorphisms inD,
because

SO 1510:1 501

109

Composing functors

Given functors :C! Dand :D! E wegeta

functor| :C! E|with
_ 1 _ O
QlS%: l L 5o
«. = 1,0

(this preserves composition and identity morphisms, becausend do)

110

|dentity functor

on a categonyC is

idC:C!

C

where

idc-@)ls%): -l5

«.

111

Functor composition and identity functors satisfy

associativity 1 0=1 0
unity idp = = idc

So we can get categories whose objects are categories
and whose morphisms are functors

but we have to be a bit careful abouwdize ..

112

Size
One of the axioms of set theory is

set membership is a well-founded relatipthat is, there
IS no infinite sequence of setsge - 12- 2* 7 7 {with

2-212-22 2-22-12-9

So in particular there is no set with - 2 - .

So we cannot form the \set of all sets" or the \category of alitegories".

113

Size
One of the axioms of set theory is

set membership is a well-founded relatipthat is, there
IS no infinite sequence of setsge - 12- 2* 7 7 {with

2-212-22 2-22-12-9

So in particular there is no set with - 2 - .
So we cannot form the \set of all sets" or the \category of alitegories".

But we do assume there are (lots of) big sets
02 12 22

where \big" means each - is a Grothendieck universe.

113

Grothendieck universes

A Grothendieck universe is a set of sets satisfying

| - 2.2) -2

| —e. 2)f -s. g2

I -2) -, f . -9g2

| - 2x A 9)
f~j9G2-+ ~2 Gg?2
(hencealsge. 2) - .2 ~ .2)

The above properties are satisfied by = ; , but we will always assume

I N2

114

We assume
there is an infinite sequence g2 12 5,2 of
bigger and bigger Grothendieck universes

and revise the previous definition of \the" category of setacfunctions:

Set = category whose objects are all the sets in- and
with Set-«. °=_. " = all functions from- to. .

Notation: |Set, Set|| its objects are calledsmall sets
(and other sets we calbrge).

115

Size
Setis the category of small sets.

Definition. A categoryC is locally smallif for all
-e. 2 C, the set ofC-morphisms- ! . issmall, that
IS, Ct-e. © 2 Set

Cis asmall categonyif it is both locally small and
obj C 2 Set

E.g.Set Preordand Mon are all locally small (but not small).

Given%?2 Preord, the categoryCy, it determines is small; similarly, the category
C. determined by' 2 Mon is small.

116

The category of small categorie€at

| objects are all small categories
| morphisms inCat'!CeD° are all functorsC! D
| composition and identity morphisms as for functors

Catis a locally small category

117

Lecture 11

118

The category of small categories

Recall definition ofCat:

| objects are all small categories
| morphisms inCat*CsD° are all functorsC! D
| composition and identity morphisms as for functors

119

Cat has a terminal object

The category
0ido
~

one object, one morphisn

=1

is terminal in Cat

Cat has binary products

Given small categorie€+D 2 Cat, their product
c ““c DI” Dis:

121

Cat has binary products

Given small categorie€+D 2 Cat, their product

CC

'c DI Dis

objects ofC D are pairst-¢. °where- 2Cand. 2D

morphismst-. ©11 - & ®jnC D are pairst5+8 where
52Ct-e- ®and62Dte. @

composition and identity morphisms are given by those Gf
(in the first component) and (in the second component)

15 of
écl PSR SR

121

Catnot only has finite products, it is also cartesian
closed.

Exponentials inCat are calledfunctor categories

To define them we need to consider
natural transformations which are the appropriate
notion of morphism between functors.

122

Natural transformations

Motivating example: fix a set(2 Setand consider the
two functors « :Set! Setgiven by

5 Iid(5

T = - (

5 5id(

T =

123

Natural transformations

Motivating example: fix a set(2 Setand consider the
two functors « :Set! Setgiven by

5 Iid(5

T = - (

5 5id(

T =

For each- 2 Setthere is an isomorphism (bijection). : - -
in Setgiven bytcyecii :(- ! - (.

These isomorphisms do not depend on the particular naturesath
set- (they are \polymorphic in- *). One way to make this precise
is. ..

123

...If we change from to. along a function5:- !

then we get a commutative diagram ifet

(-
id Sl lS id
(e ooyl (

The square commutes because forBR (andG2 -

fcoecrittid 5°Be@ =tryeCiitBe5G
=15 GB
=15 id°iG-B
=15 id°cyeciitBe®@

124

...If we change from to. along a function5:- !
then we get a commutative diagram ifet

\- -

5.1 .ls

\

We say that the family\ . j- 2 Sef isnaturalin- .

124

Natural transformations
Definition. Given categories and functors :C! D,

anatural transformation\ : ! |is a family of

D-morphisms\. 2 D* -« - © one foreach 2 C,
such that for allC-morphisms5 :- ! . | the diagram

commutes inD, that is,\ 5= 5 .

125

Example

Recall forgetful{) and free () functors:

Set— —_~Mon

There is a natural transformatiof : id get!
where for each 2 Set

[! *1 o=Ljst

02 7! »0% Aist (one-element list)

(Easy to see that [*1 ©°o commutes.)

126

Example

Thecovariant powerset functor : Set! Setis

-, 010 -9
_I5 -1 >

(7' 5(, f5GG2(g

127

Example

Thecovariant powerset functor : Set! Setis

-, fCjC -9
_I5 -1 >
(7' 5(, f5GG2(g

There is a natural transformatiof : ! whose
componentat 2 Setsends 2 ! -°to

[. , fG2- j9(2 +G2(g2 -
(check that[- is natural in-)

127

The classic example of an \un-natural transformation”
(the one that caused Eilenburg and MacLane to invent
the concept of naturality) is the linear isomorphism
between a finite dimensional real vectorspaeeand its
dual+ (=vectorspace of linear functions ! R).

Both+ and+ have the same finite dimension, so are
isomorphic by choosing bases; but there is no choice of
basis for eaclr that makes the family of isomorphisms
natural in +.

For a similar, more elementary non-example, see
Ex. Sh. 5, question 4.

128

Composing natural transformations

Given functors « :C! D and natural
transformations\ : ! andi : !

wegeti \|: ! with

e = 1ol

129

Composing natural transformations

Given functors « :C! D and natural

transformations\ : ! andi : ! ,
wegeti \|: ! with
e = 1ol

Check naturality:

5 14 \° , 5 ji_ \.
=i, 5 \. naturality of i
=i\ 5 naturality of \

129

|dentity natural transformation

Given afunctor :C! D, we geta natural
transformationid : ! with

fid o = - 19

130

|dentity natural transformation

Given a functor :C! D, we get a natural
transformationjid : ! with

i o = - 170 -

Check naturality:

5 %d °, 5 id. = 5=id . 5,1t ° 5

130

Functor categories

It is easy to see that composition and identities for naturakinsformations
satisfy
K oio\ =k % \°
id \=\ id

so that we get a category:
Definition. Given categorie€ and D, the functor
category D¢ | has

| objects are all functor€! D

| given e :C! D, morphismfrom to inDC®

are the natural transformations !
| composition and identity morphisms as above

131

If is a Grothendieck universe, then foreaeh2 and 2
we have that theirdependent producand dependent functiorsets

I
@ G, flG-%jGZ- N~2 Gg
o G, f5 G j 5is single-valued and totaj
-

. . I .
are alsoin ; and as a special case (of, when is a constant
function with value.) we also have thate. 2 implies. = 2

132

If is a Grothendieck universe, then foreach2 and 2
we have that theirdependent producand dependent functiorsets

|
S @ G, MG4jG2- "~2 Gg

o G, f5 G j 5is single-valued and totaj
-

. . I .
are alsoin ; and as a special case (of, when is a constant
function with value.) we also have thate. 2 implies. = 2
Hence

If C and D are small categories, then so BC.

because
i 1
R C 1.6 O
ObJ D~ 21obj ©0biC e 20bj CDl - . oCt-e.
DCte © © ppcDt e - @

132

If is a Grothendieck universe, then foreach2 and 2

we have that theirdependent producand dependent functiorsets

|
S @ G, MG4jG2- "~2 Gg

o G, f5 G j 5is single-valued and totaj
-

. . I .
are alsoin ; and as a special case (of, when is a constant
function with value.) we also have thate. 2 implies. = 2
Hence

If C and D are small categories, then so BC.

because
i 1
R C 1.6 O
ObJ D~ 21obj ©0biC e 20bj CDl - . oCt-e.
DCte © © ppcDt e - @

Aim to show that functor categoryDC is the exponential ofC and D in Cat...

132

Catis cartesian closed

Theorem. There is amapplication functor
app:D¢ C! D

that makesD® the exponential forC and D in Cat.

Given! - © 2 D¢ C, we define
appt +- °,
and given\e5°:1e- 011 o ©°jnDC C, we define

ne50 5 \
app te-01t . 0, -1 .!

(
Capptid eid.° =id .

Check:) .
appti \e6 5° =apptie6° appt\e5°

133

Catis cartesian closed
Theorem. There is amapplication functor
app:D¢ C! D
that makesD® the exponential forC and D in Cat.
Definition of currying: given functor : E C! D, we get a functor
cur :E! DCasfollows. Foreach 2 E cur / 2 DCisthe functor

1/._ o

©'a

cur / - 5 1id, «5°
- ®)’
« - 0 = 1/" o

Foreact6:/ ! /C%inEcur 6 :cur / ! cur / Cisthe natural
transformation whose component at each 2 Cis

icur 6° , 16eid.°: Ye- 01 1/ G0

(Check that this is natural in- ; and thatcur preserves composition and
identities inE.)

Catis cartesian closed

Theorem. There is amapplication functor
app:D¢ C! D
that makesD® the exponential forC and D in Cat.

Have to check thatur is the unique functor :E! D¢ that makes

E C————=D

id CJ/ aop

D¢ C

commute inCat (exercise)

133

Lecture 12

134

The concepts of \category", \functor" and \natural
transformation” were invented by Eilenberg and
MacLane in order to formalise \adjoint situations".

They appear everywhere in mathematics, logic and
(hence) computer science.

Examples of adjoint situations that we have already
seen...

135

Free monoids

I * 1'e

o p morphisms inSet

Il n

o ofp morphisms inMon

bijection
Set o* 1" o0 Mon?
571 5
6 [[6
(where[@ ! = List
The bijectionis \natural in and1"e

ol'e o /O

isO 7! »0%

* " (to be explained))

136

Binary product in a categoryC

e/ O11 -, Omorphismsinc C

[- . morphisms inC
bijection
1C (COl1l/e/ Oel_e 00 Cl/e- .o
1587/ h5 «6

1Cl °C 2 (o] [
This bijection is \natural in-+.«/ " (to be explained)

137

Exponentials in a categoryC with binary products

/ - morphisms inC

[! . morphismsinC

bijection
Cl -e. 0 Cte "0°
57! cur5
app 6 id.°[6

The bijectionis \natural in-=.«/ " (to be explained)

Adjunction

Definition. An adjunction between two categorie€
andD is specified by:

| functors C D

| foreach- 2 Cand. 2 D a bijection
\.. :Dl-e, 0 (Cl.e O
which isnatural in- and. .

139

Adjunction

Definition. An adjunction between two categorie€
andD is specified by:

functors C D

foreach- 2 Cand. 2 D a bijection
\.. Dt -e, © (Clo ©
which isnatural in- and. .

what has this to do with the concept of natural
transformation between functors?

139

Hom functors

If Cis alocally smalikcategory, then we get a functor

Horg:C°P C! Set

with Homt-«. © Cl-e ©°3nd

!
Hom 1. 010 0 _G ® cu. o™ g o

Hom!5<8 , 6 5

140

Hom functors

If Cis alocally smalikcategory, then we get a functor

Horg:C°P C! Set

with Homt-«. © Cl-e ©°3nd

Hom - 011 0 -G ® cr. o™ oig o
Hom'5+8

[f 158 ; 1-0, °!1 -6 ®jpcor Ccand - ! . inC,
then in C we haves : - -,6:. ! .%ndso6 5:-01 0

140

Natural isomorphisms

Given functorse :C! D, anatural isomorphism
\ is simply an isomorphism between and
the functor categoryDC.

in

141

Natural isomorphisms

Given functorse :C! D, anatural isomorphism

\ Is simply an isomorphism betweenand in
the functor categoryDC.

Lemma. If\ : ! is a natural transformation and for each 2 C,

\. : - I - isanisomorphismirD, then the family of morphisms

3\ 1: - 1 - j- 2C°gives anatural transformatioh ': ! whichis

inverse to\ in D¢ and henca is a natural isomorphism.

141

An adjunction between locally small categori€sand D
is simply a triple! ¢\ °where

| C D

|\ is a natural isomorphism between the functors

M/

cop

142

Terminology:

Given C D

IS there is some natural isomorphism
\ :Homp ! %P idp° Hom tidco 0

one says

Is alees adjoint for
is aright adjoint for

and writes

N

143

Notation associated with an adjunctiohe ¢\ ©

Co_
Given 6: '
5:- 1
.) \-o 160:_ ! .
we write — '
,\ tiso: o

ThusB = 6, 5 = 5 and naturality of\ . in- and.

means that
E6 D=E 6D

144

Notation associated with an adjunctiohe ¢\ ©
The existence of is sometimes indicated by writing

Using this notation, one can split the naturality
condition for\ into two:

6
.9 P 0 17 f o

5
_9P % N

145

Lecture 13

146

Recall:

Given categories and functor€ D,

an adjunction| a |is specified by functions

~a P S

R R

147

Theorem. A categoryC has binary products i€ the
diagonal functor =hdceid i :C! C Chasaright
adjoint.

Theorem. A categoryC with binary products also has
all exponentials of pairs of objects i€ for all 2 C, the
functor® - :C! Chasaright adjoint.

Common situation: we are given a functor: C! D and want to know whether
it has aright adjoint : D! C (and dually for les adjoints).

Q: what is the least info we need to specify the existence of ar ight
adjoint?

148

Theorem. A categoryC has binary products i€ the
diagonal functor =hdceid i :C! C Chasaright
adjoint.

Theorem. A categoryC with binary products also has
all exponentials of pairs of objects i€ for all 2 C, the
functor® - :C! Chasaright adjoint.

Common situation: we are given a functor: C! D and want to know whether
it has aright adjoint : D! C (and dually for les adjoints).

Q: what is the least info we need to specify the existence of ar ight
adjoint?

Both the above theorems are instances of the following themrevhich is a very
useful characterisation of when a functor has a right adjoi(dr dually, a lee
adjoint).

148

Characterisation of right adjoints

Theorem. Afunctor :C! D has aright adjoint i€
for all D-objects. 2 D, there isaC-object . 2 Cand a
D-morphismY : 1. °I _ withthe following
\universal property":

forall- 2Cand62D?! -, ©
(UP)|thereisa uniques 2 Ct-» . ©
satisfyingY 16°=6

149

Characterisation of right adjoints

Theorem. Afunctor :C! D has aright adjoint i€
for all D-objects. 2 D, there isaC-object . 2 Cand a
D-morphismY : 1. °I _ withthe following
\universal property":

forall- 2Cand62D?! -, ©
(UP)|thereisa uniques 2 Ct-» . ©
satisfyingY 16°=6

8_/'

Characterisation of right adjoints

Theorem. Afunctor :C! D has aright adjoint i€
for all D-objects. 2 D, there isaC-object . 2 Cand a
D-morphismY : 1. °I _ withthe following
\universal property":

forall- 2Cand62D?! -, ©
(UP)|thereisa uniques 2 Ct-» . ©
satisfyingY 16°=6

. 3
8 / 9! 6 : with

149

Characterisation of right adjoints

Theorem. Afunctor :C! D has aright adjoint i€
for all D-objects. 2 D, there isaC-object . 2 Cand a
D-morphismY : 1. °I _ withthe following
\universal property":

forall- 2Cand62D?! -, ©
(UP)|thereisa uniques 2 Ct-» . ©
satisfyingY 16°=6

. 3 | :
8 / 9! 3 : with 5 /
!

149

Proof of the Theorem |\only if" part:

Given an adjunctiont ¢ ¢\ ©°, for each. 2 D we produceY :
satisfying(UP)

1

o]

. inD

150

Proof of the Theorem |\only if" part:

Given an adjunctiont ¢ ¢\ ©°, for each. 2 D we produceY :
satisfying(UP)

We are given ..,

1 0]

D1 -, © (Cl-e . © paturalin- and. . Define

Y ,\ 1 td ©o: 1, ol

In other wordsY =id .

. inD

150

Proof of the Theorem |\only if" part:

Given an adjunctiont ¢ ¢\ © foreach. 2 D we produceY : 1. ©!
satisfying(UP)

We are given .. :Dt -e. © (Cl-e . © naturalin- and. . Define

Y ,\ 1 td ©o: 1, ol

In other wordsY =id .

. 6: - ! . inD :
Given any ., by naturality of\ we have
5:- 1 . inC
0 ° Y 5:-1° 1 09f
5 and = =

Hence6=Y ©Band6=Y 5) B6=5.
Thus we do indeed havéJP)

. inD

150

Proof of the Theorem |\if" part:

We are given :C!

D and foreach 2 D aC-object .

Y : 1. °l | satisfying(UP) We have to

1. extend 7!

2. construct a natural isomorphism Horg °P

toafunctor :D! C

and C-morphism

id p® Hom lid Cop

(o]

151

Proof of the Theorem |\if" part:

We are given :C! Dandforeach 2D aC-object. andC-morphism
Y : 1. °l | satisfying(UP) We have to

1. extend 7! . toafunctor :D! C
. Y 6
For eachD-morphism6:. ©1 . weget . ®1"° @° . andcan apply(UP)
to get

6,6 Yo: . 9
The uniqueness part dfuP)implies
id =id and 16° 6°=6° 6

so thatwe getafunctor :D! C.

151

Proof of the Theorem |\if" part:

We are given :C! Dandforeach 2D aC-object. andC-morphism
Y : 1. °l | satisfying(UP) We have to

2. construct a natural isomorphismHorg * °° idp® Hom tid cor o
Sinceforalb: - ! . thereisauniques:- ! . with6=Y 5,
57'5,Y 5
determines a bijectiorCt-« . ° C! -, © anditis naturalin- & . because

E 5D, Yo 'E 5D

=1%o 1E% 5 D since is a functor
=IEY® 5 D by definition of E
=E5 D by definition of 5

So we can také to be the inverse of this natural isomorphism.

151

Dual of the Theorem :

:C Dhasales adjointi€ for all - 2 Cthere are
- 2Dand[. 2 Cl-e 1 - 99with the universal

property:

forall. 2Dand52Ct-s . ©
there is a unique5 2 D* -». °
satisfying 5 [. =5

Dual of the Theorem :

:C Dhasales adjointi€ for all - 2 Cthere are
- 2Dand[. 2 Cl-e 1 - 99with the universal

property:

forall. 2Dand52Ct-s . ©
there is a unique5 2 D* -». °
satisfying 5 [. =5

E.g. we can conclude thdhe forgetful functor* : Mon! Sethas a les adjoint
: Set! Mon, because of the universal property of

, lList e@enil © and [: ! List

noted in Lecture 3

152

Why are adjoint functors
Important/useful?

Their universal propertyf UP)usually embodies some
useful mathematical construction

(e.g. \freely generated structures are les adjoints for faegng-stucture”)

and pins it down uniquely up to isomorphism.

153

Lecture 14

154

Dependent Types
A brief look at some category theory for modelling type
theories withdependent types
Will restrict a,ention to the case ofSet rather than in
full generality.

Further reading:
M. Hofmann,Syntax and Semantics of Dependent TyimeA.M. Pi,s and
P. Dybjer (eds)Semantics and Logics of Computati@uP, 1997).

155

Simple types
*G:)p") GG B)
Dependent types
cGi)1r" "G)= CGe" e B 1) G 8

and more generally

tGOr GG GGG T
CGGG""1) G GG

156

If type expressions denote sets, then
atype) 1@ dependent upori:)
should denote

an indexed family of set$ 8 |82 ©
(where is the set denoted by typée)

l.e. : | Setis aset-valued function on a set

157

For each 2 Set let

Set

be the category with

| objiSet®, 'obj Sef, so objects are-indexed
families of sets; =1-gj82 °

| morphisms5 : - !
of functions5 =152 Set- ¢.8)82 ©

| composition:16 5°, 163 5j82 °
(i.e. use composition of functions iBetat each index82)

| identity: id. , %id.,j82 ©

(i.e. use identity functions irSetat each index82)

. In Set are -indexed families

158

For each? : ! in Set let|? :Set! Set|be the
functor defined by:

?

| I | I@
@D ©
| I | I@
g‘ o)
(00]

N
@@ ©

. 9
l@ 92
0
9

J
A
J

i.e.? takes -indexed families of sets/functions toindexed ones by
precomposing with?

159

Dependent products

of families of sets

For « 2 Set consider the functorc, : Set ! Set
induced by precomposition with the first projection
functioncy : !

Theorem. c; has ale- adjoint :Set ! Set.

Proof. We apply the Theorenfrom Lecture 13: for each 2 Set we define
2Setand[: ! c;* °inSet withthe required universal property...

160

Theorem. c; has ale- adjoint :Set ! Set.

Foreach 2 Set ,define 2 Set to be the function mapping eacB2 to the
set 1

1% @ e9=119°8]92 " 42 g

161

Theorem. c; has ale- adjoint :Set ! Set.

Foreach 2 Set ,define
set i

2 Set to be the function mapping eacB2 to the

I
‘1 og,

@ w9=19°8]92 N 42 i)

and define[: ! c,?

°in Set to be the function mapping each

1892 to the function] ©igrg: 1g.9!? %ggiven by|4 7! 1 94|

Universal property {

161

Theorem. c; has ale- adjoint :Set ! Set.

Foreach 2 Set ,define 2 Set to be the function mapping eacB2 to the
set 1

1% @ e9=119°8]92 " 42 g

and define]l : ! c¢;* °inSet tobe the function mapping each

1892 to the function] ©igrg: 1g.9!? %ggiven by|4 7! 1 94|

Universal property {existence pargiven any- 2 Set and5: ! c¢;*- °in

Set , we have —>cCc,t °

where forall82 ,92 and42 ig.9 3819-!4, Bg.gl4°

161

Theorem. c; has ale- adjoint :Set ! Set.

Foreach 2 Set ,define 2 Set to be the function mapping eacB2 to the
set 1

1% @ e9=119°8]92 " 42 g

and define]l : ! c¢;* °inSet tobe the function mapping each
1892 to the function] ©igrg: 1g.9!? %ggiven by|4 7! 1 94|
Universal property {uniqueness pargiven6 : I - in Set making

[,
—C;* ° commuteinSet ,

|
\01160
\ !
Cll_ [0}
then for all82 ,and19¢42 1 9 we have

Bg10e8, B5g.gld°=1C,6 [Oig.gd= 1C;6%g.0t 1 ©ig.od®, 65194

s06 = 5.

161

Dependent functions

of families of sets

We have seen that the le- adjointtac, : Set ! Set s given by dependent
products of sets.

Dually, dependent function sets give:

Theorem. c; has aright adjoint :Set ! Set.

Proof. We apply the Theorenirom Lecture 13: for each 2 Set we define

2SetandY :c;t ©°! in Set with the required universal property...

162

Theorem. c; has aright adjoint :Set ! Set.

Foreach 2 Set ,define 2 Set to be the function mapping eacB2 to
the set

‘1 %, ¢ 1g.9=f5 1 °8j5issingle-valueandtot@j‘

where5 1 %is
single-valuedf 892 +84¢42 15,9 19¢825/0109¢225) 4=4
total if 892 942 15.919¢425

Thuseachb 21 %is adependently typed functiormapping element®92
elements of ig.q (result set depends on the argumess).

to

163

Theorem. c; has aright adjoint :Set ! Set.

Foreach 2 Set ,define 2 Set to be the function mapping eacB2 to

the set
‘ 1 9 o, 159=f5 1 %j5issingle-value and totag‘
and definey :c;* ©! in Set to be the function mapping each
1892 to the functionY ©g.9:1 %! i3.9Qiven by = unique

42 ig.gsuchthat9¢425,

Universal property {

163

Theorem. c; has aright adjoint :Set ! Set.

Foreach 2 Set ,define 2 Set to be the function mapping eacB2 to
the set

‘1 %, ¢ 1g.9=f5 1 °8j5issing|e-va|ueandtot@j‘

and definey :c;* ©! in Set to be the function mapping each

1892 to the functionY ©g.9:1 %! i3.9Qiven by: unique

42 ig.gsuchthat9¢425,

Universal property {existence pargiven any- 2 Set and5:c;*- °! in
%
Set , we have c;t O
A A
5 : Cllso: :
- Cll_ o

where forall82 andG2 - g|5,G, f19+5.0@ |92 g

163

Theorem. c; has aright adjoint :Set ! Set.

Foreach 2 Set ,define 2 Set to be the function mapping eacB2 to
the set

1 %, o 18.9=f5 1 9%j5issingle-value and tota

and defineY :c,;t ©! in Set to be the function mapping each

1892 to the functiontY ©g.9: 1 %! 1g.9given by = unique

42 ig.gsuchthat9¢425,

Universal property {uniqueness pargiven6 : - ! in Set making
Y .
c;! °———= commuteinSet |,

CllsoT /

Cll_ (o]
then forall82 ,92 andG2 - gwe have

553G 9 5g.gG=1Y €,6%g.9G= 1Y 08,9165, 635G 9

s06 = 5.

163

Isomorphism of categories

Two categorieC and D areisomorphicif they are
iIsomorphic objects in the category of all categories of
some given size, that is, if there are functors

C

D with id ¢ = and =id p.

In which case, as usual, we writ€ D].

164

Equivalence of categories

Two categorieC and D areequivalentif there are

functors C D and natural isomorphisms

[1idc andY: id p.

In which case, one writesC' D|.

165

Equivalence of categories

Two categorieC and D areequivalentif there are

functors C D and natural isomorphisms

[1idc andY: id p.

In which case, one writesC' D|.

Some deep results in mathematics take the form of equivalencesadégories.
E.g.

category of compagt
E%tally disconnecte®
« Hausdor€ spaces._,

category of ",

Stone duality: Boolean algebras

category of ®°, category of compact

Gelfand duality: abelian algebras Hausdor€ spaces

165

ExampleSet ' Set

Set is aslice category
| objects are pairg «?° where 2 obj Setand

?72Sete ©

| morphisms6:1e?2011 QG gre52Sete ®
satisfying?® 5=?in Set
| composition and identities { as foSet

166

ExampleSet ' Set

There are functors : Set! Set and
:Set | Set, given on objects and morphisms by:

-, 1f18¢@|82 " G2 - gpfst ©
518e @, 18+&

1e90 1f42 j?24=8)(82 ©
1 5%4, 54

166

ExampleSet ' Set

There are functors : Set! Set and
:Set | Set, given on objects and morphisms by:

-, f18+Gj82 "N G2- gopfst ©

518G, 18+&3
1e90 1f42 j?24=8)(82 ©
1 5%4, 54

There are natural isomorphisms
[1id gg andY: id ses

defined by. .. [exercise]

166

FACT Given? : ! in Set the composition

?
Se¢ ' Set! Set' Sep

is the functor \pullbackalong?".

One can generalize frorBetto any categoryC with
pullbacks and model « types by les/right adjoints to
pullback functors { sedocally cartesian closed
categories in the literature.

167

Lecture 15

168

Presheaf categories

Let C be a small categoryThe functor categorySef™
is called thecategory of presheaves d@.

| objects are contravariant functors fror® to Set
| morphisms are natural transformations

Much used in the semantics of various dependently-typed langea and logics.

169

Given a categoryC with a terminal objectl

A global elemeniof an object- 2 obj Cis by definition
a morphisml! - inC

E.g. inSet...
E.g. inMon ...

170

Given a categoryC with a terminal objectl

A global elemeniof an object- 2 obj Cis by definition
a morphisml! - inC

We sayC is well-pointedif forall 5¢6:- ! . in Cwe

have:
ave s

81 -5 G=6 G) 5=6

(Setis, Mon isn't.)

170

Idea:
G
replace global elements of, ! ~ -

by arbitrary morphisms. ! ¢ (forany. 2 obj C)

171

Idea:
G
replace global elements of, ! ~ -

by arbitrary morphisms. ! ¢ (forany. 2 obj C)

Some people use the notatio 2. - |and say
\Gis ageneralised elemeraf- at stage. "

Have to take into account \change of stage":

G2 - A/1°.) G52 -

(cf. Kripke's \possible world" semantics of intuitionistiacw modal logics)

171

Yoneda functor
y:C!l Sef”

(whereC is a small category)

is the Curried version of the hom functor

C coP cop g get

Yoneda functor
y:C!l Sef”

(whereC is a small category)

is the Curried version of the hom functor
C cop cor g get

| For eachC-object- , the objecty- 2 Sef™ is the functor
Cl «-0:CO ! Setgiven by

/ 7! Cife- © 6 5

.ls 7! } g

71 Cle- ©

Yoneda functor
y:C!l Sef”

(whereC is a small category)

is the Curried version of the hom functor
c co cor g set

| For eachC-object- , the objecty- 2 Sef™ is the functor
Cl «-0:CO ! Setgiven by

/ 7! Clfs- © 6 5
ls 71 } gs
. 7! Cle- ©

this function is oeen wri,en as 5 |

Yoneda functor
y:C!l Sef”

(whereC is a small category)

is the Curried version of the hom functor

C cop cop g% get

For eachC-morphism. ! > , the morphismy. ! v y- in

Sef™ is the natural transformation whose component at any

given/ 2 C°Pis the function
y. 1 © 1y5°/3 y- 1/ ©

Cifs.© Ce- o

6———5 6

172

Yoneda functor
y:C!l Sef”

(whereC is a small category)

is the Curried version of the hom functor

Hom

C C°% C°% @ Set

. 5 . 5 .
| For eachC-morphism.! = -, the morphismy. ! Y y- in
Sef™ is the natural transformation whose component at any
given/ 2 C°Pis the function

this function is oeen
wri,enas 5

y. 1 © 1y5°/3 y- 1/ ©
Cife, © Cllg- °
—

6———5 6

172

The Yoneda Lemma

For each small categor§, each object 2 C and each
presheaf 2 Sef™, there is a bijection of sets

[.. :Sefiy-e o 10

which is natural in both- and .

173

The Yoneda Lemma

For each small categor§, each object 2 C and each
presheaf 2 Sef™, there is a bijection of sets

[.. :Sefiye o 10

which is natural in both- and . \

the value of
:COP 1 Set
at -

the set of natural transformations from
the functory- :C°P! Set
to the functor :C°! Set

173

The Yoneda Lemma

For each small categor§, each object 2 C and each
presheaf 2 Sef™, there is a bijection of sets

[.. :Sefiy-e o 10

which is natural in both- and

Definition of the function [.. :Sef™1y-« ©o1 1.0
foreach\ :y- ! in Sef™ we have the function
Cl-e- Ozy- 1.0 Yoo and define

[.. 2o, _1d_o

173

The Yoneda Lemma

For each small categor§, each object 2 C and each
presheaf 2 Sef™, there is a bijection of sets

[.. :Sefiy-e o 10

which is natural in both- and

Definition of the function [1 : - ©°! Sef*iy-. o
foreachG2 - °. 2Cand52y- 1 °=Cle- ©°

150

5 :
we geta 1- °! 1, %in Setand hence 15°1@ 2 1. ©;

173

The Yoneda Lemma

For each small categor§, each object 2 C and each
presheaf 2 Sef™, there is a bijection of sets

[.. :Sefiy-e o 10

which is natural in both- and

Definition of the function [1 : - ©°! Sef*iy-. o
foreachG2 - °. 2Cand52y- 1 °=Cle- ©°

150

we geta 1- °! 1, %in Setand hence 15°1@ 2 1. ©;

Define [1@ :y-1°1 1 opy

checkthis gives a
[li®@ 150, 1501®@ natural transformation
B : [y !

173

Proofof [[.. [.! =id wo

ForanyG2 !- °we have

[.. [.1@ , [.1'@ td.° by definition of| ..

, lid. 1@ by definition of [.}
=id .13 since is a functor
=G

174

Proof of

For anyy- ! '

[

[-ol [" = Id SeFOply_. o

o 5
inSef” and.! = - in C, we have

10 5, [_.1 1_1jg_o00 g
. 1501_ 1|d R 00 .
=\ 15183 ¢°°
, \.tid. 5°
=\ 150

naturality of \

y_ 1 (o] s 1

s

y_ 1. 0 N 1. 0

\.

by definition of|[..

by definition of [.1
by naturality of\
by definition of 5

175

Proofof [.} [.. =idgeoray.. o

v o 5
For anyy- ! inSef” and.! ~ - in C, we have

[L[..ne 5, [.1n.1d. o0 5
. 1501_ 1|d R 00 .
=\ 15 183 00
o\, td. 5°
:_150

so8\e.e [1 [.. 0o =\
so8\e [1 [.. 1o =\

so[.} [.. =id.

by definition of|[..

by definition of [}
by naturality of\
by definition of 5

175

The Yoneda Lemma

For each small categor€, each object 2 C and each
presheaf 2 Sef™, there is a bijection of sets

[.. :Sefiy-e o 10

which is natural in both- and .

176

Proof that [.. is naturalin

Given | inSef”, have to show that

Sef*ry-e 0 a0

il l

SeFOp 1y-o o_ = <. 10

[-.

. \
commutes inSet For ally- ! we have
io [W°e i N td. oo
, 1i \O_ 1|d .0

TR

, [% oo

177

Proof that [.. is naturalin - :

5
Given.! - in C, have to show that

SelC"’Hy_. o " . 10

lybe l l/ 150

Settye 0o 10

[.

commutes inSet For ally- ! ' we have

15011[.. 1\oo , 1501\ 1jd . 0o
=\ 151jd._©°° by naturality of\
:_ 150
=\ 151d oo
, 1\ y5o. 1id, o
, [W ybe
, [_. 11y50 1\ oo

178

Corollary of the Yoneda Lemma:
the functory : C! Sef™ isfull andfaithful.

In general, a functor :C! Dis
| faithful if for all -«. 2 Cthe function

Cl_._ o | Dl 1_ Oe 1_ 00
5 7! 150
IS injective:
85¢82 Cl-e, 0% 150= 150) 5=50

| full if the above functions are all surjective:
86 2 D1 1- % 1 00952 Cl-e, O 150=6

179

Corollary of the Yoneda Lemma:

the functory : C! Sef™ isfull andfaithful.

Proof. From the proof of the Yoneda Lemma, for eact2 Sef” we have a
bijection

10 et SeFOply_. o
By definition of i .. © ', when =y. the above function is equal to
y. 1-0=Cle, 0 | Sef’iy.ey ©
5 71 5=y5

So, being a bijectior 7! y5 is both injective and surjective; spis both faithful
and full.

179

Recall (for a small categorg):
Yoneda functor y: C! Sef™

Yoneda Lemma: there is a bijection
Sef™1y-e © 1 owhich is natural bothin 2 Sef™
and- 2 C.

An application of the Yoneda Lemma:

Theorem. For each small categor, the category
Set™ of presheaves is cartesian closed.

180

Theorem. For each small categor, the category
Sef™ of presheaves is cartesian closed.

181

Theorem. For each small categor, the category
Sef™ of presheaves is cartesian closed.

Proof sketch.

Terminal object inSef™ is the functor1 : C°P | Setgiven by

11-° fOg terminal objectinSet
115°, id foq

181

Theorem. For each small categor, the category
Sef™ of presheaves is cartesian closed.

Proof sketch.
Product of « 2 Sef™ is the functor :C°P 1 Setgiven by
(
! 0i.0 1.0 1.0 cartesian product of sets

1 0150 , 150 150

. . . . C1 C2 .
with projection morphisms ! given by the natural
transformations whose components at 2 C are the projection

functions 1-° 1.0 10® 1o

181

Theorem. For each small categor, the category
Sef™ of presheaves is cartesian closed.

Proof sketch.

We can work out what the value of the exponential 2 Sef™ at
- 2 Chasto be using the Yoneda Lemma:

Lo gefPiye o gefPiy. . 0

universal property of

I Yoneda Lemmd the exponential

Theorem. For each small categor, the category
Sef™ of presheaves is cartesian closed.

Proof sketch.

We can work out what the value of the exponential 2 Sef” at
- 2 Chasto be using the Yoneda Lemma:

Lo geffiye o gefPiy. . 0

We take the setSef™1y- « ©to be the definition of the value of
at- ...

181

Exponential objects in Sef™:

1. O , Se'E:Oply_ e O

5 5 0
Given.! - in C, we havey. ! y y- in Sef” and hence

Lo SeF°p1y. e 0 | Sef:aply_ . O 1.0
\ 70\ y5 id °

We define

150 1y5 jd ©

Have tocheckthat these definitions make ino a functor
CoP 1 Set

182

Application morphismsin Sef™:

Given « 2 Sef”, the application morphism

app: !

is the natural transformation whose component at 2 Cis the
function

1 010 1.0 1.0 Sefi‘)ply_ e O 1. 0 app. 1.0

defined by

app. \e @, \.1ld.@

Have tocheckthat this is natural in- .

183

Currying operationin Sef™:

\ cur \

! VA

Given ! \ in Sef”, the component otur \ at- 2 C

1. 0 !lcur\o' 10 Sef:oply- e« O
is the function mapping each 2 - °to the natural
transformationy- ! whose componentat 2 Cis the
function

1y_ 01. (0] , Cl." (0] 1' (0] | 1. (0]

defined by

Ligur\© 1]00 1540 | 1 1501|069

184

Currying operationin Sef™:

\ Icur\

! 7!

1lcur\0_ 1|00 15..0’ \ 1 1501|O.~0

Have tocheckthat this is natural in. |,

then that *cur \ °. is natural in-

then that cur \ is the unique morphism ! ' in Sef™ satisfying
app 4 id °=\.

184

Theorem. For each small categor, the category
Sef™ of presheaves is cartesian closed.

So we can interpret simply typed lambda calculus in an
presheaf category.

More than that, presheaf categories (usefully) model
dependently-typed languages.

185

Lecture 16

186

Used in Haskell to abstract generic aspects of
computation (return a value, sequencing) and to
encapsulate e€ectful code.

Concept imported into functional programming from
category theory, first for its denotational semantics by
Moggi and then for its practice by Wadler

187

Used in Haskell to abstract generic aspects of
computation (return a value, sequencing) and to
encapsulate e€ectful code.

Concept imported into functional programming from
category theory, first for its denotational semantics by
Moggi and then for its practice by Wadler

Here, a quick overview of:

| Moggi's computational -calculus and its
categorical semantics using (strong) monads

| 'monads and adjunctions

187

Computational Lambda Calculus
(CLC)

CLC extends STL@ith new types, terms and equations...
Types: ¢ «”7” = STLC types, plus

Tt © type of \computations" of values of type
Terms: BeCe "2 STLC terms, plus

return C trivial computation
dofG B@ sequenced computatiotindsfreeGin Q

As for STLC, we identify CLC syntax trees up tdequivalence, wherey is extended by the rules
By -@ ng 1~ g
C=y & ~ does not occur inf Be G~&C-Q@

d
return C=y return d]an dof G BQ@=ydofP B

188

Computational Lambda Calculus

(CLC)

CLC extends STL@ith new types, terms and equations...
Types: ¢ «”7” = STLC types, plus

Tt © type of \computations" of values of type
Terms: BeCe "2 STLC terms, plus

return C trivial computation
dofG B@ sequenced computatiotbinds freeGin Q

Typing rules :
T C B:Tt © G CTte°
S (val) S
return C: Tt © dofG B@:T+ °

Equations...

(seq)

188

CLC equations

Extend STLO/[-equality(~ B=y; C:)toarelation " B=C: by addingthe

following rules:

" B:

°G:

TCiTr o

" dofG return B@Q=0CBG/4 Tt ©

TC:Tt o

"C=dofG CGreturn Tt ©°

BTt © *G:

CT o

‘DT ©

* dof ~

dof G BQ@;Dg=dofG Bdof~ GCDgg

189

CLC equations

Extend STLO/[-equality(~ B=y; C:)toarelation " B=C:

following rules:

" B:

G "CTrto

T dof G

return B@Q=0CBG/4 Tt ©

TC:Tt o

"C=dofG CGreturn Tt ©°

by adding the

TBITL ©

G "C:Tto o~ "D:Tt O

* dof ~

dof G

B@;Dg=dofG Bdof~

CGDag

(To describe a particular notion of computation (I/O, mutigbstate, exceptions, concurrent processes, ...) one casider extensions of
vanilla CLC, e.g. with extra ground types, constants and etjoas.)

189

Parameterised Kleisli triple

is the following extra structure on a categor§ with
binary products:

| a function mapping each 2 obj Cto an object
)1-°220Db) C

| for each- 2 obj C, aC-morphism- ! -)10
| for eachC-morphism- . ! °) 1/ ©aC-morphism
-) 1 0!5) 1/ o
satisfying.. .

190

Parameterised Kleisli triple[cont.]
if-1° -%and-° .1°)10 then

6 15 id % =6 15 idy.°

if- .1°)10 then
5 1d. [°=5

if- 17)yoand- /1°)1 © then
16 h:1-5° =6 h:l'5i

191

Examples irSet

State: fix a set((of \states") and define
)10, 1 (o(

[. GB !G*B
5 1Ge¥B, 5.Ge2BwhereC B 1~

192

Examples irSet

State: fix a set((of \states") and define

1 o 1 of computations are functiong ! - (
) -y T (— taking states to values in paired with
a next state
[.GB 1G+B

5 1G+B, 5!Ge2BwhereC B 1~

5 1Ge0 first \runs" C2) 1. °in stateBto get 1~« B,
then runs51Ge2 2) 1/ °in the new state®

192

Examples irSet

Error:
)1-0, - 1=f10@G2- g[f! 1(°g
[. G, 10-G

(516-Q if C=10-°

5 1G-C, _
11e0° if C=12e0°

193

Examples irSet

Error:
)0, - 1=f10@G2-g|[f* 1-0°g<—\
[. G, 1@ computations are either
’ (copiest0~ @ of values in
51GeR2 if C=10e~° G2- oran errortls(°
5 1GeC, if C= 10

11e(° if C= 11s0P

if C2) 1. °is the error,
then 5 1G<° propagates it,
otherwise it acts like

193

Examples irSet

Continuations : fix a set' (of \results") and define

)1_0 y 1' -0

[.G, 22'"2G
51GeR, 22'/"A ~2 . 751Ge20

194

Examples irSet

Continuations : fix a set' (of \results™) and define

1. 0 , 1' -0 computations are functiong:"' - ! '
) T D — mapping continuation® 2 ' - of the
[G 291793 computation to resultsA 22

- y

51GeR, 22'/"A ~2 . 751Ge20

5 maps a computatiorA2"' " ° to the
function taking a continuation22 '/ to
the result of applyingAto the
continuation_~2."51Ge22in" -

194

Given a ccaC equipped with a parameterised Kleisli
triple Y« [+ 1.° ©, we can extend the semantics of STLC
to one for CLC.
Computation types: JT* °K=) 1J K
Trivial computations:

. J'CK [Jk
J “return C: Tt °K=J K! J K) I KR

Sequencing:J ~dofG BQ@:T* °K=5 hd ;-6

§ J «G "CT! °K
5 =JK JKI ENELS

B J BTt °K
%6 =J K)1 e

(and where is uniquely determined from the proofof ~ dof G B@: Tt °)

where

195

Given a ccaC equipped with a parameterised Kleisli
triple Y« [+ 1.° ©, we can extend the semantics of STLC
to one for CLC.

As for STLC versus cccs,

| the semantics of CLC in cc+Kleisli categories is
equationally sound and complete

| one can use CLC as an internal language for
describing constructs in cct+Kleisli categories

| there is a correspondence between equational
theories in CLC and cc+Kleisli categories

195

Monads

A monadon a categoryC is given by a functo) : C! Cand
natural transformationq :id !) and™ :)) !) satisfying

)))) L))

I

))) ——)

196

Monads

A monadon a categoryC is given by a functo) : C! Cand
natural transformationq :id !) and™ :)) !) satisfying

)))) L))

IR

))))

If C has binary products, then the monad srongif there is a

family of C-morphisms?-) 1. @ B)1 . %j-e. 20bjC°
satisfying a number (7, in fact) of commutative diagrams {dis
omi,ed, see Mogg).

196

A monadon a categoryC is given by a functo) : C! Cand
natural transformationq :id !) and™ :)) !) satisfying

)))) =))

IR

))))

If C has binary products, then theBmonad itrongif there is a
family of C-morphisms?-)% 9 ")1 ©°j.e 20bjC°
satisfying a number (7, in fact) of commutative diagrams {dis
omi,ed, see Mogg).

FACT: for a given category with binary products, \parameterised
Kleisli triple" and \strong monad" are equivalent notionsgach
gives rise to the other in a bijective fashion.

196

Monads and adjunctions

Given an adjunctionC__ —D a

we get a monad e[+ °0onC

where [=id

E.g. for Set: Mon where* is the forgetful functor) =*

*

is

the list monadon Set() 1- © = List - ,[given by singleton lists; by
fla,ening lists of lists). It's a strong monad (all monads dethave a
strength), but in general the monad associated with an adjuinet may

not be strong.

197

Monads and adjunctions

Given an adjunctionC__ —D a

we get a monad e[+ °0onC
Given a monad') e[+ ° on C we get an adjunction

c_ 0 a

N~

197

Monads and adiunctions

(O is the category ofEilenberg-Moore algeb%
for the monad) , which has objects « U ° with
| Given anadjunc|U:)® °! satisfying

we get a monad Ly gy ey
| Given a monad) y u)Ul u
co) o

and morphismssteU° !l eVOowith 5: !

satisfying
))
Ul lv

"

Monads and adjunctions

Given an adjunctionC__ —D a

we get a monad e[+ °0onC

Given a monad') e[+ ° on C we get an adjunction

c_ 0 a

N~

Startingfrom C_ "D a and forming the monad

) = , there's an obvious functor : D! O .

Monadicity Theoremdmpose conditionson :D! Cwhich ensure that
is an equivalencef categories. E.dMon is equivalent to the category of
Eilenberg-Moore algebras for the list monad @et(and similarly for any

algebraic theory).
197

Some current themes involving
category theory in computer science

| semantics of e€ects & co-e€ects in programming
languages
(monads and comonads)

| homotopy type theory
(higher-dimensional category theory)

| structural aspects of networks, quantum
computation/protocols, ...
(string diagrams for monoidal categories)

Next term: Advanced Topics in Category The@x¢S
module L118).

198

	Lecture 1
	Lecture 2
	Lecture 3
	Lecture 4
	Lecture 5
	Lecture 6
	Lecture 7
	Lecture 8
	Lecture 9
	Lecture 10
	Lecture 11
	Lecture 12
	Lecture 13
	Lecture 14
	Lecture 15

