Category Theory

Lecture 10

Assessed Exercise Sheet 4 available
(Solutions due Fri 4 Nov, 12noon)

Solution notes for Ex. Sh. 3 available
Curry-Howard correspondence

<table>
<thead>
<tr>
<th>Logic</th>
<th>Type Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>propositions</td>
<td>↔ types</td>
</tr>
<tr>
<td>proofs</td>
<td>↔ terms</td>
</tr>
</tbody>
</table>

E.g. IPL versus STLC.
Curry-Howard-Lawvere/Lambek correspondence

<table>
<thead>
<tr>
<th>Logic</th>
<th>Type Theory</th>
<th>Category Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>propositions</td>
<td>types</td>
<td>objects</td>
</tr>
<tr>
<td>proofs</td>
<td>terms</td>
<td>morphisms</td>
</tr>
</tbody>
</table>

E.g. IPL *versus* STLC *versus* CCCs
Curry-Howard-Lawvere/Lambek correspondence

<table>
<thead>
<tr>
<th>Logic</th>
<th>Type Theory</th>
<th>Category Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>propositions</td>
<td>types</td>
<td>objects</td>
</tr>
<tr>
<td>proofs</td>
<td>terms</td>
<td>morphisms</td>
</tr>
</tbody>
</table>

E.g. IPL versus STLC versus CCCs

These correspondences can be made into category-theoretic equivalences—we first need to define the notions of functor and natural transformation in order to define the notion of equivalence of categories.
Functors
are the appropriate notion of morphism between categories

Given categories \mathbf{C} and \mathbf{D}, a functor $F : \mathbf{C} \to \mathbf{D}$ is specified by:

- a function $\text{obj } \mathbf{C} \to \text{obj } \mathbf{D}$ whose value at X is written F_X
- for all $X, Y \in \mathbf{C}$, a function $\mathbf{C}(X, Y) \to \mathbf{D}(F_X, F_Y)$ whose value at $f : X \to Y$ is written $Ff : F_X \to F_Y$

and which is required to preserve composition and identity morphisms:

$$F(g \circ f) = Fg \circ Ff$$
$$F(\text{id}_X) = \text{id}_{F_X}$$
Examples of functors

“Forgetful” functors from categories of set-with-structure back to \textbf{Set}.

E.g. \(U : \text{Mon} \rightarrow \text{Set} \)

\[
\begin{align*}
U(M, \cdot, e) &= M \\
U((M_1, \cdot_1, e_1) \xrightarrow{f} (M_2, \cdot_2, e_2)) &= M_1 \xrightarrow{f} M_2
\end{align*}
\]
Examples of functors

“Forgetful” functors from categories of set-with-structure back to \textbf{Set}.

E.g. $U : \text{Mon} \to \text{Set}$

$$
\begin{align*}
U(M, \cdot, e) &= M \\
U((M_1, \cdot_1, e_1) \xrightarrow{f} (M_2, \cdot_2, e_2)) &= M_1 \xrightarrow{f} M_2
\end{align*}
$$

Similarly $U : \text{Preord} \to \text{Set}$.
Examples of functors

Free monoid functor $F : \text{Set} \rightarrow \text{Mon}$

Given $\Sigma \in \text{Set}$,

$$F \Sigma = (\text{List} \Sigma, @, \text{nil}), \text{ the free monoid on } \Sigma$$
Examples of functors

Free monoid functor \(F : \text{Set} \to \text{Mon} \)

Given \(\Sigma \in \text{Set} \),

\[
F \Sigma = (\text{List} \Sigma, @, \text{nil}), \text{ the free monoid on } \Sigma
\]

Given a function \(f : \Sigma_1 \to \Sigma_2 \), we get a function \(Ff : \text{List} \Sigma_1 \to \text{List} \Sigma_2 \) by mapping \(f \) over finite lists:

\[
Ff \left[a_1, \ldots, a_n \right] = \left[f a_1, \ldots, f a_n \right]
\]

This gives a monoid morphism \(F \Sigma_1 \to F \Sigma_2 \); and mapping over lists preserves composition \((F(g \circ f) = Fg \circ Ff) \) and identities \((F \text{id}_\Sigma = \text{id}_{F\Sigma}) \). So we do get a functor from \(\text{Set} \) to \(\text{Mon} \).
Examples of functors

If C is a category with binary products and $X \in C$, then the function $(_ \times X) : \text{obj } C \to \text{obj } C$ extends to a functor $(_ \times X) : C \to C$ mapping morphisms $f : Y \to Y'$ to

$$f \times \text{id}_X : Y \times X \to Y' \times X$$

(recall that $f \times g$ is the unique morphism with

$$\begin{align*}
\pi_1 \circ (f \times g) &= f \circ \pi_1 \\
\pi_2 \circ (f \times g) &= g \circ \pi_2
\end{align*}$$

since it is the case that

$$\begin{align*}
\text{id}_X \times \text{id}_Y &= \text{id}_{X \times Y} \\
(f' \circ f) \times \text{id}_X &= (f' \times \text{id}_X) \circ (f \times \text{id}_X)
\end{align*}$$

(see Exercise Sheet 2, question 1c).
Examples of functors

If C is a cartesian closed category and $X \in C$, then the function $(_)^X : \text{obj } C \rightarrow \text{obj } C$ extends to a functor $(_)^X : C \rightarrow C$ mapping morphisms $f : Y \rightarrow Y'$ to

$$f^X \triangleq \text{cur}(f \circ \text{app}) : Y^X \rightarrow Y'^X$$

since it is the case that

$$\begin{cases} (\text{id}_Y)^X = \text{id}_{Y^X} \\ (g \circ f)^X = g^X \circ f^X \end{cases}$$

(see Exercise Sheet 3, question 4).
Contravariance

Given categories \mathbf{C} and \mathbf{D}, a functor $F : \mathbf{C}^{\text{op}} \to \mathbf{D}$ is called a **contravariant functor from \mathbf{C} to \mathbf{D}**.

Note that if $X \xrightarrow{f} Y \xrightarrow{g} Z$ in \mathbf{C}, then $X \xleftarrow{f} Y \xleftarrow{g} Z$ in \mathbf{C}^{op}

so $FX \xleftarrow{Ff} FY \xleftarrow{Fg} FZ$ in \mathbf{D} and hence

$$F(g \circ_C f) = Ff \circ_D Fg$$

(contravariant functors reverse the order of composition)

A functor $\mathbf{C} \to \mathbf{D}$ is sometimes called a **covariant functor from \mathbf{C} to \mathbf{D}**.
Example of a contravariant functor

If \mathcal{C} is a cartesian closed category and $X \in \mathcal{C}$, then the function $X^{(-)} : \text{obj } \mathcal{C} \to \text{obj } \mathcal{C}$ extends to a functor $X^{(-)} : \mathcal{C}^{\text{op}} \to \mathcal{C}$ mapping morphisms $f : Y \to Y'$ to

$$X^f \triangleq \text{cur(app} \circ (\text{id}_{X^{Y'}} \times f)) : X^{Y'} \to X^Y$$

since it is the case that

$$\begin{align*}
X^{\text{id}_Y} &= \text{id}_{X^Y} \\
X^{g \circ f} &= X^f \circ X^g
\end{align*}$$

(see Exercise Sheet 3, question 5).
Note that since a functor $F : C \to D$ preserves domains, codomains, composition and identity morphisms, it sends commutative diagrams in C to commutative diagrams in D.

E.g.
Note that since a functor $F : C \to D$ preserves domains, codomains, composition and identity morphisms it sends isomorphisms in C to isomorphisms in D, because

$$F(f^{-1}) = (Ff)^{-1}$$
Composing functors

Given functors $F : C \to D$ and $G : D \to E$, we get a functor $G \circ F : C \to E$ with

$$G \circ F \left(\begin{array}{c} X \\ f \\ Y \end{array} \right) = \begin{array}{c} G(FX) \\ G(FF) \\ G(FY) \end{array}$$

(this preserves composition and identity morphisms, because F and G do)
Identity functor

on a category \(C \) is \(\text{id}_C : C \to C \) where

\[
\text{id}_C \left(\begin{array}{c} X \\ f \\ Y \\ \end{array} \right) = \begin{array}{c} X \\ f \\ Y \end{array}
\]
Functor composition and identity functors satisfy

- **associativity**: \(H \circ (G \circ F) = (H \circ G) \circ F \)
- **unity**: \(\text{id}_D \circ F = F = F \circ \text{id}_C \)

So we can get categories whose objects are categories and whose morphisms are functors

but we have to be a bit careful about size...
One of the axioms of set theory is

set membership is a well-founded relation, that is, there is no infinite sequence of sets \(X_0, X_1, X_2, \ldots \) with

\[
\cdots \in X_{n+1} \in X_n \in \cdots \in X_2 \in X_1 \in X_0
\]

So in particular there is no set \(X \) with \(X \in X \).

So we cannot form the “set of all sets” or the “category of all categories”.
One of the axioms of set theory is

set membership is a well-founded relation, that is, there is no infinite sequence of sets X_0, X_1, X_2, \ldots with

$$\cdots \in X_{n+1} \in X_n \in \cdots \in X_2 \in X_1 \in X_0$$

So in particular there is no set X with $X \in X$.

So we cannot form the “set of all sets” or the “category of all categories”.

But we do assume there are (lots of) big sets

$$\mathcal{U}_0 \in \mathcal{U}_1 \in \mathcal{U}_2 \in \cdots$$

where “big” means each \mathcal{U}_n is a Grothendieck universe…
Grothendieck universes

A Grothendieck universe \mathcal{U} is a set of sets satisfying

1. $X \in Y \in \mathcal{U} \Rightarrow X \in \mathcal{U}$
2. $X, Y \in \mathcal{U} \Rightarrow \{X, Y\} \in \mathcal{U}$
3. $X \in \mathcal{U} \Rightarrow \mathcal{P}X \triangleq \{Y \mid Y \subseteq X\} \in \mathcal{U}$
4. $X \in \mathcal{U} \land F \in \mathcal{U}^X \Rightarrow$
 \[\{y \mid \exists x \in X, \ y \in F x\} \in \mathcal{U} \]
 (hence also $X, Y \in \mathcal{U} \Rightarrow X \times Y \in \mathcal{U} \land Y^X \in \mathcal{U}$)

The above properties are satisfied by $\mathcal{U} = \emptyset$, but we will always assume

5. $\mathbb{N} \in \mathcal{U}$
We assume there is an infinite sequence $\mathcal{U}_0 \in \mathcal{U}_1 \in \mathcal{U}_2 \in \cdots$ of bigger and bigger Grothendieck universes and revise the previous definition of “the” category of sets and functions:

$\text{Set}_n = \text{category whose objects are all the sets in } \mathcal{U}_n \text{ and with } \text{Set}_n(X, Y) = Y^X = \text{all functions from } X \text{ to } Y.$

Notation: $\text{Set} \triangleq \text{Set}_0$ — its objects are called small sets (and other sets we call large).
Size

Set is the category of small sets.

Definition. A category C is **locally small** if for all $X, Y \in C$, the set of C-morphisms $X \to Y$ is small, that is, $C(X, Y) \in \text{Set}$.

C is a **small category** if it is both locally small and $\text{obj } C \in \text{Set}$.

E.g. **Set**, **Preord** and **Mon** are all locally small (but not small).

Given $P \in \text{Preord}$, the category C_P it determines is small; similarly, the category C_M determined by $M \in \text{Mon}$ is small.
The category of small categories, \(\mathbf{Cat} \)

- objects are all small categories
- morphisms in \(\mathbf{Cat}(C, D) \) are all functors \(C \to D \)
- composition and identity morphisms as for functors

\(\mathbf{Cat} \) is a locally small category