## Reminder: sequence alignment in sub-quadratic time

- Last week: Sequence alignment in sub-quadratic time for unrestricted Scoring Schemes.

1) utilize LZ78 parsing
2) utilize Total Monotonicity property of highest scoring paths in the alignment graph. (SMAWK)

- Today: Another algorithm for sub-quadratic sequence alignment under restricted, discrete scoring schemes


# Another technique to Align <br> Sequences in Subquadratic Time? 

- For limited edit scoring schemes, such as LCS, use "Four-Russians" Speedup
- Another idea for exploiting repetitions: Divide the input into very small parts, pre-compute the DP for all possible values the small parts and store in a table. Then, speed up the dynamic programming via Table Lookup.


## The "Four-Russians" technique for speeding up for dynamic programming

Dan Gusfield: The idea comes from a paper by four authors ... concerning boolean matrix multiplication. The general idea taken from this paper has come to be known in the West as The Four-Russians technique, even
 though only one of the authors is Russian.

## Arlazarov, Dinic, Kronrod and Faradzev



Masek \& Paterson applied the "Four Russians" to the string edit problem

Can the quadratic complexity of the optimal alignment value computation be reduced without relaxing the problem?

Previous Results [Masek and Paterson 1980]

- An $O\left(n^{2} / \log n\right)$ time global alignment algorithm.
- Constant size alphabet.
-Restricted to discrete scoring schemes.

Open Problem [Masek and Paterson 1980]
Can a better algorithm be found for the constant alphabet case, which does not restrict the scoring matrix values?

## Partitioning Alignment Grid into Blocks of equal size t



## How Many Points Of Interest?


$O(h n / \log n)$ rows of $n$ vertices + $O(h n / \log n)$ columns of $n$ vertices

## blocks of size $t$



How many points of interest? $\mathrm{O}\left(n^{2} / t\right)$
$\mathrm{n} / \mathrm{t}$ rows with n vertices each
$\mathrm{n} / \mathrm{t}$ columns with n vertices each

## Outline

- Demonstrate the "Four Russians" technique on a simpler problem: Block Alignment.
- Extend "Four Russians" to the standard sequence alignment problem: the "tabulation explosion" challenge....
- Discuss "discrete scoring schemes" and the "unit step" property. Example of LCS.
- Four Russians algorithm for sub-quadratic sequence alignment under discrete scoring schemes


## Start with a Simpler Problem: Block Alignment


valid

invalid

## Block Alignment: legitimate operations

- Block alignment of sequences $\boldsymbol{u}$ and $\boldsymbol{v}$ :

1. An entire block(i.e. substring) in $\boldsymbol{u}$ is aligned with an entire block in $v$.
2. An entire block(substring) is inserted.
3.An entire block(substring) is deleted.

Block path: a path that traverses every $t \times t$ square through its corners

## Block Alignment: Examples


valid

invalid

## Block Alignment Problem

- Goal: Find the longest block path through an edit graph
- Input: Two sequences, $\boldsymbol{u}$ and $\boldsymbol{v}$ partitioned into blocks of size $t$. This is equivalent to an $n \times n$ edit graph partitioned into $t \times t$ subgrids
- Output: The block alignment of $\boldsymbol{u}$ and $\boldsymbol{v}$ with the maximum score (longest block path through the edit graph)
- How do we solve this in two-stages by partitioning to t by t blocks?


## Stage 1: compute the mini-alignments



## Constructing Alignments within Blocks

- To solve: compute alignment score $\beta_{\mathrm{i}, \mathrm{f}}$ for each pair of blocks $\left|u_{(i-1)^{t}+1+1} \ldots u_{i+t}\right|$ and $\left|v_{(j-1)^{4} t+1} \ldots v_{j+t}\right|$
- How many blocks are there per sequence?
$(n / t)$ blocks of size $t$
- How many pairs of blocks for aligning the two sequences?
$(n / t) \times(n / t)$
- For each block pair, solve a mini-alignment problem of size $t \times t$


## Stage 1: compute the mini-alignments



How many blocks?
$(n / t)^{*}(n / t)=\left(n^{2} / t^{2}\right)$

## Stage 2: dynamic programming

- Let $s_{i, j}$ denote the optimal block alignment score between the first $i$ blocks of $\boldsymbol{u}$ and first $j$ blocks of $\boldsymbol{v}$

$$
s_{i, j}=\max \left\{\begin{array}{c}
s_{i-1, j}-\sigma_{\text {block }} \\
s_{i, j-1}-\sigma_{\text {block }} \\
s_{i-1, j-1}+\beta_{i, j}
\end{array}\right\}
$$

$\sigma_{\text {block }}$ is the penalty for inserting or
deleting an entire
block
$\beta_{i, j}$ is score of pair of blocks in row $i$ and column $j$.

## Block Alignment Runtime

- Indices $i, j$ range from 0 to $n / t$
- Running time of algorithm is

$$
\mathrm{O}\left([n / f]^{\star}[n / t]\right)=\mathrm{O}\left(n^{2} / t^{2}\right)
$$

if we don't count the time to compute each $\beta_{i, j}$

## Block Alignment Runtime (cont'd)

- Computing all $\beta_{i, j}$ requires solving
$(n / t)^{*}(n / t)=n^{2} / t^{2}$ mini block alignments, each of size $\left(t^{*} t\right)=t^{2}$
- So computing all $\beta_{i, j}$ takes time

$$
\mathrm{O}\left(n^{2} / t^{2} * t^{2}\right)=\mathrm{O}\left(n^{2}\right)
$$

This is the same as dynamic programming

- How do we speed this up? (utilize repetitive mini-blocks...)


## Four Russians Technique



- Let $t=\log (n)$, where $t$ is block size, $n$ is sequence size.
- Instead of having $\left.(n / t)^{*}(n / t)\right)=n^{2} / t^{2}$ minialignments, construct $4^{t} \times 4^{t}$ mini-alignments for all pairs of strings of $t$ nucleotides (huge size), and put in a lookup table.
- However, size of lookup table is not really that huge if $t$ is small. Let $t=(\log \underline{n}) / 4$. Then $4^{t} \times 4^{t}=4^{(\log n) / 4} \times 4^{(\log n) / 4}=4^{(\log n) / 2}=2^{(\log n)}=n$


## Look-up Table for Four Russians Technique

each sequence has $t$ nucleotides


## Lookup table "Score"


size is only $n$, instead of
$(n / t)^{*}(n / t)$

Let $t=(\log \underline{n}) / 4$. Then the number of entries In the lookup table: $4^{t} \times 4^{t}=n$

Computing the scores for each entry in the table requires dynamic programming for a $(\log n)$ by $(\log n)$ alignment: $(\log n)^{2}$ Altogether: $n(\log n)^{2}$ (instead of $O\left(n^{2}\right) \ldots$ )

## New Recurrence

- The new lookup table Score is indexed by a pair of $t$-nucleotide strings, so



## Four Russians Speedup Runtime

- Since computing the lookup table Score of size $n$ takes $O\left(n(\log n)^{2}\right)$ time, the running time is mainly limited by the $n^{2} / t^{2}$ accesses to the lookup table
- Each access takes O(logn) time
- Overall running time: $\mathrm{O}\left(\left[n^{2} / 2\right]^{*}\right]^{*} \log n$ )
- Since $t=\log n$, substitute in:
- $\mathrm{O}\left(\left[n^{2} /\{\log n\}^{2}\right]^{*} \log n\right)=\mathrm{O}\left(n^{2} / \log n\right)$

So Far... (restriced to block alignment)

- We can divide up the grid into blocks and run dynamic programming only on the corners of these blocks
- In order to speed up the mini-alignment calculations to under $n^{2}$, we create a lookup table of size $n$, which consists of all scores for all $t$-nucleotide pairs
- Running time goes from quadratic, $\mathrm{O}\left(n^{2}\right)$, to subquadratic: $\mathrm{O}\left(n^{2} / \log n\right)$


## Outline

- Demonstrate the "Four Russians" technique on a simpler problem: Block Alignment.
- Extend "Four Rusians" to the standard sequence alignment problem: the "tabulation explosion" challenge....
- Discuss "discrete scoring schemes" and the "unit step" properties of scores for neighboring cells in the DP table for these schemes. Example of LCS.
- Four Russians algorithm for sub-quadratic sequence alignment under discrete scoring schemes


## Four Russians Speedup for LCS

- Unlike the block partitioned graph, the LCS path does not have to pass through the vertices of the blocks.

block alignment

longest common subsequence


## Block Alignment vs. LCS

- In block alignment, we only care about the corners of the blocks.
- In LCS, we care about all points on the edges of the blocks, because those are points that the path can traverse.
- Recall, each sequence is of length $n$, each block is of size $t$, so each sequence has ( $n / t$ ) blocks.


## How Many Points Of Interest?

block alignment


How may blocks?
$(n / t)^{*}(n / t)=\left(n^{2} / t^{2}\right)$
longest common subsequence


How many points of interest? $\mathrm{O}\left(n^{2} / t\right)$ $\mathrm{n} / \mathrm{t}$ rows with n vertices each $\mathrm{n} / \mathrm{t}$ columns with n vertices each

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 |  |  | 2 |  |  | 5 |  |  | 8 |
| 2 |  |  | 1 |  |  | 4 |  |  | 7 |
| 3 | 2 | 1 | 1 | 1 | 2 | 3 | 4 | 5 | 6 |
| 4 |  |  | 2 |  |  | 2 |  |  | 5 |
| 5 |  |  | 3 |  |  | 2 |  |  | 4 |
| 6 | 5 | 4 | 4 | 3 | 3 | 3 | 2 | 3 | 4 |



| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 |  |  | 2 |  |  |  |  |  |  |
| 2 |  |  | 1 |  |  |  |  |  |  |
| 3 | 2 | 1 | 1 |  |  |  |  |  |  |
| 4 |  |  |  |  |  |  |  |  |  |
| 5 |  |  |  |  |  |  |  |  |  |
| 6 |  |  |  |  |  |  |  |  |  |


| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 |  |  | 2 |  |  |  |  |  |  |
| 2 |  |  | 1 |  |  |  |  |  |  |
| 3 | 2 | 1 | 1 |  |  |  |  |  |  |
| 4 |  |  | 2 |  |  |  |  |  |  |
| 5 |  |  | 3 |  |  |  |  |  |  |
| 6 | 5 | 4 | 4 |  |  |  |  |  |  |


| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 |  |  | 2 |  |  | 5 |  |  |  |
| 2 |  |  | 1 |  |  | 4 |  |  |  |
| 3 | 2 | 1 | 1 | 1 | 2 | 3 |  |  |  |
| 4 |  |  | 2 |  |  |  |  |  |  |
| 5 |  |  | 3 |  |  |  |  |  |  |
| 6 | 5 | 4 | 4 |  |  |  |  |  |  |

## Traversing Blocks for LCS (cont'd)

- If we used regular dynamic programming to compute the grid, it would take quadratic, $\mathrm{O}\left(n^{2}\right)$ time, but we want to do better.
- Use the "Four Russians" Tabulation!
we know these scores


$I=((1,1,2,3),(1,2,3,4), a b c, b b a)$
$O=(4,3,3,3,2,2,3)$


## Traversing Blocks for LCS

- New Problem: Given alignment scores $s_{i, *}$, in the first row and scores $s_{*, j}$ in the first column of a $t \times t$ mini square, compute alignment scores in the last row and column of the minisquare.
- To compute the last row and the last column score, we use these 5 variables:
- 1. value in upper left cell.

1. alignment scores $s_{\mathrm{i}, \text {, }}$ in the first row
2. alignment scores $s_{*, j}$ in the first column
3. substring of sequence $u$ in this block ( $4^{t}$ possibilities)
4. substring of sequence $v$ in this block ( $4^{t}$ possibilities)

## Four Russians Speedup

- Build a lookup table for all possible values of the four variables:

1. all possible scores for the first row $s_{*, j}$
2. all possible scores for the first column $s_{*, j}$
3. substring of sequence $u$ in this block ( $4^{t}$ possibilities)
4. substring of sequence $v$ in this block ( $4^{t}$ possibilities)

- For each quadruple we store the value of the score for the last row and last column.

$I=(1,1,2,3),(1,2,3,4), a b c, b b a)$

$$
\mathrm{n}^{t} \quad * \mathrm{n}^{t} \quad * 4^{t} * 4^{t}=(4 \mathrm{n})^{2 t}
$$

This will be a huge table! we need another trick...
$\mathrm{O}=(4,3,3,3,2,2,3)$

## Outline

- Demonstrate the "Four Russians" technique on a simpler problem: Block Alignment.
- Extend to the standard sequence alignment problem: the "tabulation explosion" challenge....
- Discuss "discrete scoring schemes" and the "unit step" propertty.
- Four Russians algorithm for sub-quadratic sequence alignment under discrete scoring schemes


## The Longest Common Subsequence

$$
\begin{aligned}
& T=B C B A C B C D \\
& S=A B C D
\end{aligned}
$$

## The LCS Alignment Graph



Classical Dynamic Programming: O(n m) (Crochemore, Landau, Ziv-Ukelson O( n m/ $\log \mathrm{m}$ ))

Theorem (Hunt-Szymanski 77) Alignment scores in LCS are monotonically increasing, and adjacent elements can't differ by more than 1


## Reducing Table Size

- Alignment scores in LCS are monotonically increasing, and adjacent elements can't differ by more than 1
- Example: 0,1,2,2,3,4 is ok; 0,1,2,4,5,8, is not because 2 and 4 differ by more than 1 (and so do 5 and 8)
- Therefore, we only need to store quadruples whose scores are monotonically increasing and differ by at most 1


## Efficient Encoding of Alignment Scores

- Instead of recording numbers that correspond to the index in the sequences $u$ and $v$, we can use binary to encode the differences between the alignment scores

original encoding
binary encoding


(1,(0,1,1),(1,1,1),abc,bba) (3,(0,1,1),(1,1,1),abc,bba)

If we have two blocks with representations ( $a, b, c, s, t$ ) and ( $a^{\prime}, b, c, s, t$ ), then the blocks are "equivalent":

## We need to precompute only $(0,(0,1,1),(1,1,1)$, abc, bba)

| b |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 1 | 1 | 2 | 3 |
|  | 2 | 2 | 1 | 2 |
| $b$ | 3 |  | 2 | 2 |
|  | 4 | 3 | 3 | 3 |


$(1,(0,1,1),(1,1,1), a b c, b b a) \quad(3,(0,1,1),(1,1,1), a b c, b b a)$

If we have two blocks with representations ( $a, b, c, s, t$ ) and ( $a^{\prime}, b, c, s, t$ ), then the blocks are "equivalent": The value of each cell in the 2nd block is equal to the value of the corresponding cell in the 1 st block plus $a^{\prime}-a$.

## Reducing Lookup Table Size (1,(0,1,1),(1,1,1),abc,bba)

- $2^{t}$ possible "steps" ( $t=$ size of blocks)
- $4^{t}$ possible strings
- Lookup table size is $\left(2^{t} * 2^{t}\right) *\left(4^{t} * 4^{t}\right)=2^{6 t}$
- Computing each entry in the table: $t^{2}$
- Total Table Construction Time: $2^{6 t} t^{2}$
- Let $t=(\log n) / 6$;
- Table construction time is:
- $2^{6((\log n) / 6)}(\log n)^{2}=n(\log n)^{2}$


## Reducing Lookup Table Size

- Let $t=(\log n) / 6$;

Stage 1: Table construction time is:

$$
2^{6((\log n) / 6)}(\log n)^{2}=n(\log n)^{2}
$$

Stage 2: alignment graph computation time is:

$$
\begin{aligned}
& \mathrm{O}\left(\left[n^{2} / t^{2}\right]^{\star t} \mathrm{t}\right)=\mathrm{O}\left(\left[n^{2} /\{\log n\}^{2}\right]^{*} \log n\right) \\
& =\mathrm{O}\left(n^{2} / \log n\right)
\end{aligned}
$$

## Summary

- We take advantage of the fact that for each block of $t=\mathrm{O}(\log n)$, we can pre-compute all possible scores and store them in a lookup table of size $n$, whose values can be computed in time $\mathrm{O}\left(n(\log \underline{n})^{2}\right)$.
- We used the Four Russian speedup to go from a quadratic running time for LCS to subquadratic running time: $\mathrm{O}\left(n^{2} / \log \underline{n}\right)$

