
Algorithms for the Longest Common Subsequence Problem

DANIEL S. HIRSCHBERG

Princeton Untverslty, Princeton, New Jersey

AaS~ACT Two algorithms are presented that solve the longest common subsequence problem The first
algorithm is applicable in the general case and requires O(pn + n log n) time where p is the length of the
longest common subsequence The second algorithm requires time bounded by O(p(m + 1 - p)log n) In the
common speoal case where p is close to m, this algorithm takes much less time than n ~

KEY WORDS AND PHRASES' subsequence, common subsequence, algorithm

CR CATEOORIES 3 73, 3 79, 5 25, 5 39

In t roduc t ion

We start by def ining conven t ions and t e rmino logy that will be used th roughou t this
paper .

String C = clc~ ... cp is a subsequence of string A = aja2 "'" am if there is a mapp ing
F : {1, 2 , p} ~ {1, 2, ... , m} such that F(i) = k only if c~ = ak and F is a m o n o t o n e
strictly increasing funct ion (i .e. F(i) = u, F(]) = v, and i < j imply that u < v). C can be
fo rmed by delet ing m - p (not necessari ly ad jacen t) symbols f rom A . F o r example ,
" c o u r s e " is a subsequence of " c o m p u t e r sc ience . "

Str ing C is a c o m m o n s ubs equence of strings A and B if C is a s u b s e q u e n c e of A and
also a subsequence of B.

String C is a longest c o m m o n subsequence (abbrev ia ted LCS) of string A and B if C is
a c o m m o n subsequence of A and B of maximal length , i .e. there is no c o m m o n subse-
quence of A and B that has grea te r length.

Th roughou t this paper , we assume that A and B are strings of lengths m and n , m _< n ,
that have an LCS C of (unknown) length p .

We assume that the symbols that may appea r in these strings c o m e f rom some a lphabet
of size t . A symbol can be s tored in m e m o r y by using log t bits, which we assume will fit in
one word of memory . Symbols can be c o m p a r e d (a -< b?) in one t ime unit .

The n u m b e r of di f ferent symbols that actual ly appear in string B is def ined to be s
(which must be less than n and t).

The longest c o m m o n s u b s e q u e n c e prob lem has been solved by using a recurs ion
re la t ionship on the length of the solut ion [7, 12, 16, 21]. These are general ly appl icable
a lgor i thms that take O (m n) t ime for any input strings o f lengths m and n even though
the lower bound on t ime of O (m n) need not apply to all inputs [2]. We present
a lgor i thms that , depend ing on the na ture of the Input, may not requ i re quadra t ic t ime
to r ecove r an LCS. The first a lgor i thm is appl icable in the genera l case and requi res
O (p n + n log n) t ime. T h e second a lgor i thm requi res t ime b o u n d e d by O((m + 1 - p)p
log n). In the c o m m o n special case where p is close to m , this a lgor i thm takes t ime

Copyright © 1977, Associatton for Computing Machinery, Inc General permission to republish, but not for
profit, all or part of this material ts granted provtded that ACM's copyright notice is gl~,en and that reference is

made to the publication, to Its date of ~ssue, and to the fact that reprinting privileges were granted by
permission of the Association for Computing Machinery.
This research was supported by a National Science Foundation graduate fellowship and by the National Science
Foundation under Grant GJ-35570.
Author's present address' Department of Electrical Engineering, Rice Umverslty, Houston, TX 77001

Journal of the Assoclauon for Computing Machinery. Vol 24. No 4. October 1977. pp 664-675

Algor i thms for the Longest C o m m o n Subsequence Problem 665

much less than n z. We conclude with references to other algorithms for the LCS
problem that may be of interest.

pn Algor i thm

We present in this section algorithm A L G D , which will find an LCS in time O (p n +
n log n) where p is the length of the LCS. Thus this algorithm may be preferred for
applications where the expected length of an LCS is small relative to the lengths of the
input strings.

Some preliminary definitions are as follows:
We represent the concatenat ion of strings X and Y by XIIY.
Ai, represents the string ala2 "" a, (elements 1 through i of string A) . Similarly, the

prefix of length j of string B is represented by Bu.
We define L (i , j) to be the length of the LCS of prefixes of lengths i a n d j of strings A

and B, i e. the length of the LCS o r A l , and Bo.
(t, j) represents the positions of a, and b , the i th e lement of string A and the j th

element of string B. We refer to i (/) as the t-value (j-value) of (1, j) .
We define {(0, 0)} to be the set of O-candidates, and we define (i, j} to be a k°

candtdate (for k -> 1) if a, = b e and there exist i ' and j ' such that i ' < i, j ' < j , and
(i ' , j ') is a (k - 1)-candidate. We say that (i ' , j ') g e n e r a t e s (i , j) .

Define a0 = b0 = $ where $ is some symbol that does not appear in s t rmgsA or B.
LEM~A 1. For k -> 1, (t, j) is a k-candidate i f f L(i , j) >- k and a~ = bj. Thus there is a

c o m m o n subsequence o f length k o f A l~ and B w
PROOF. By induction on k. (i, j) Is a 1-candidate iff a, = be (by definition), in which

case L(i , j) necessarily is at least 1. Thus the lemma is true for k = 1. Assume it is true
for k - 1. Consider k. If (t, j) is a k-candidate then there exist i ' < i and j ' < j such
that (i ' , j ') is a (k - 1)-candidate. By assumption, there is a common subsequence D ' =
dldz "" dk- l of Ale, and B~j,. Since a~ = bj ((i, j) is a k-candidate) , D = D ' Ila~ Is a
common subsequence of length k of Aim and B~. Thus L(i, 1) -> k .

Conversely, if L(i , j) >- k and a~ = b j , then there exist i ' < i a n d j ' < j such that ae =
bj, and L(i ' , 1') = L(i, j) - 1 -> k - 1. (i ' , j ') is a (k - D-candidate (by inductive
hypothesis) and thus (i, j) is a k-candidate . []

The length of an LCS is p , the maximum value of k such that there exists a k-
candidate. As we shall see, to recover an LCS, it suffices to maintain the sequence of a 0-
candidate, 1-candidate , (p - 1)-candidate, and a p-candidate such that in this
sequence each/ -candida te can generate the (i + 1)-candidate for 0 --< i < p.

Rule. L e t x = (x~,x2) a n d y = (ya, y~) be two k-candidates. Ifx~ >- y~ andx2 ~- Y2,
then we say that y rules out x (x ~s a superfluous k-candidate) since any (k + 1)-
candidate that could be generated by x can also be generated by y. Thus, from the set
of k-candidates, we need consider only those that are minimal under the usual vector
ordering. Note that l fx and y are minimal elements then x~ < y~ iffx2 > Y2.

LEMraA 2. Let the set off k-candtdates be {(i~, 1~)} (r = 1, 2). We can rule out
candidates so that (after renumbering) t~ < i2 < "'" and j~ > j2 > "".

PRoov. Any two k-candidates (l, j) and (t ' , j ') satisfy one of the following (without
loss of generality, i -< i ') :

(1) i < t ' , j - < j ' .
(2) i < i ' . j > j ' .
(3) t = i ' , j - - < j ' .
(4) i = t ' , j > j ' .

In cases (1) and (3) (t ' , j ') can be ruled out; m case (4) (i , j) can be ruled out; and case (2)
satisfies the statement of the lemma. Thus any set of k-candidates whtch cannot be
reduced by further application of the rule will satisfy the condition stated in the
lemma'. []

The set of k-candidates, reduced by apphcatmn of the rule so as to satisfy the
statement of Lemma 2, are the minimal elements of the set of k-candidates (since no

666 DANIEL $. HIISCHltEIIG

element can rule out a minimal element) and will be called the set of minimal k-
candidates. By Lemma 2, there is at most one minimal k-candidate for each i-value.

We note that if (i, j) is a minimal k-candidate then L(/, j) = k and (i,]) is the k-
candidate with/-value i having smallest j -value] such that L(i, j) = k.

LEMMA 3. For k -~ 1, (i,]) is a mintmal k.candtdate i f f] is the minimum value such
that b~ ffi a, and low <] < high, where high is the minimum].value o f all k-candidates
whose i-value is less than i (no upper limit i f there are no such k-candidates) and low is the
mmimum]-value o fa l l (k - 1)-candidates whose i-value is less than i.

PROOF. Assume that (i,]) is a minimal k-candidate. I f] -> high then there is a k-
candidate ~/', j ') such that i ' < i a n d] ' = high _< j. <i, j) would be ruled out by ~/', j ')
and thus would not be minimal.

I f] _< low, then there is no (k - 1)-candidate that can generate (i, j). (i, j) would not
be a k-candidate.

bj = at is required by the definition of k-candidate and low < j < high has just been
shown. I f] and] ' both satisfy these constraints, j < j ' , then (i, j'> is ruled out by (i, j).
Thus, for a particular i, j must be the minimum #value of all k-candidates satisfying
these constraints.

The i f of the lemma has thus been shown.
The converse is easily shown: If (i, j) is not a k-candidate, then either at ~ b~ or there is

no (k - 1)-candidate that can generate <i,]). That is, thej-value of all (k - 1)-candidates
with/-value less than i is greater than or equal to]. This is equivalent to] _< low.

If {i,/) is a k-candidate but is not minimal, say (i',]') rules out (i,]), then i ' -< i and] ' _<
]. I f / ' < i, then clearly] < high is violated. Otherwise, i ' = i. In this case] ' > low since
(i', j'> must be generated from a (k - 1)-candidate and b~, = a, since <i', j) is a k-
candidate. Also# < j < high. Thusj ' satisfies all the constraints and] is not the minimum
value that does so, a contradiction. []

We present algorithm A L G D , which, using the results of Lemma 3, obtains an LCS
C of length p of input strings A and B in time O(pn + n log n).

The algorithm is based on an efficient representation of the L matrix. Since L is
nondecreasing in both arguments, we may draw contours in its matrix as shown in the
following example:

B

c b o c b o a b o

A

0 , , , , ,

b O0 ~,,.L) I ~. ~ 2 2 2 2

c i~11 1 2 ~ 1 I 2 2 2 2 2
d 2 2 2 2 2

b Ill I 2~2 2 ~ 3 3 3 3
b 2 3 3 ~4~-

The entire matrix is specified by its contours. The contours are described by sets of
minimal k-candidates. The contour between L-values o fk - 1 and k is defined by the set
of minimal k-candidates whose elements are positioned at the convex corners of the
contour.

To keep track of the minimal k-candidates, we use the matrix D. D[k, i] is the j-value
of the unique minimal k-candidate having/-value of i or 0 if there is no such minimal k-
candidate. Thus D[k, i] describes the contours by giving the number of the first column
of row i that is in region k (if that number is different from D[k, ~ - 1]).

A l g o r i t h m s f o r the L o n g e s t C o m m o n S u b s e q u e n c e P r o b l e m 667

l o w c h e c k is the smalles t / -value of a (k - 1)-candidate. F L A G has value 1 iff there are
any k-candidates.

NB[O] is the number of times symbol 0 occurs in string B. P B [O , 1]
P B [0, N B [0]] is the ordered list, smallest first, of positions in B in which symbol 0 occurs.

If t, the size of the symbol alphabet , is not large compared to n, then we may index an
array by the bit representat ion of a symbol. Otherwise, if t >> n, then we construct a
balanced binary search tree which provides a mapping from symbols that appear in string
B to the integers 1 through s (there are s different symbols that appear in B). Whenever
string element a, appears as an array subscript (as in N[a,]), it should be understood that
we are indexing N by the integer s, which has been obtained (during initialization for
A L G D) from traversing the search tree just described. If a, does not appear in B, then
the integer s, is zero. An equivalent assumption is followed for subscript b~ in step 1.

ALGD(m, n, A , B, C, p)

1. NB[O],~-OforO = l , . , s
PB[O,O]~--OforO= l , . , s
en[0, 0] ~ 0; PB[0, 1] ~ 0
for j * - 1 step 1 until n do
~ i n

NB[bj] ~ NB[bj] + 1
eB[bj, NB[b~]] ~ j

end
2 D [O , i] ~ . - O f o r z = O , . . , m

lowcheck ~-- 0
3. f o r k ~ l s t e p l d o

~gin
4. N[O] ~ NB[O] for 0 = 1, , s

N[0] ~ 1
FLAG ~ 0
low ~ D[k - 1, lowcheck]
high ~ n + 1

5. for t ~ l o w c h e c k + 1 step 1 until m do
begin

6. while PB[ai, N[at] - 1] > l o w do N[a~] ~ N[a ,] - 1

7 if htgh > PB[a~, N[a~]] > low
then begin

htgh ~ PB[a,, N[a,]]
D[k, t] <--high
if FLAG = 0 then {lowcheck ~-- t, FLAG ~-- 1}

end
else D[k, ,] *- 0

8 i f D [k - 1, t] > 0 then l o w ~ D [k - l , t]

end loop of step 5
9. if FLAG = 0 then go to step 10

end loop of step 3
10 p c - - k - 1

k~-.-p
f o r t ~ m + 1 s t e p - l u n t i l O d o
i f D [k , ~] > 0 then
I~gin

Ck ~- ai
k , , - - k - 1

end

The loop of step 3 evaluates the set of minimal k-candidates for k = 1, 2, The loop
of step 5 evaluates the set of minimal k-candidates , smallest / -value first, and fills in the
D array accordingly (in the example given previously this is left-to-right) while scanning
the chains of occurrences of a given character in B with largest j -value first (right-to-left).
For each i, i can be the / -va lue of a minimal k-candidate if there is a] satisfying the
constraints of Lemma 3. This is tested by determining the minimum]-value of symbol a,
that is greater than l o w , If that value is less than h t g h , then (i ,]) is a minimal k-candidate .

668 DANIEL S. HIRSCHBERG

There can be no k-candidate with/-value less than or equal to lowcheck, so the loop of
step 5 begins at lowcheck + 1. lowcheck is set, in step 7, when the first minimal k-
candidate (that having smallest/-value of all k-candidates) is determined.

LEMMA 4. ALGD evaluates the correct values of high and low (as defined m
Lemma 3) for determining whether each k-candidate (i, j) is minimal.

PRoov. high is supposed to be the minimum]-value of all k-candidates with/-value
less than i high is imtialized at n + 1 (i.e. does not limit) in step 4, before any k-
candidates have been generated. Thereafter, if any k-candidates are found to be minimal
(in step 7), then, since the]-values of minimal k-candidates decrease as the t-values
increase, the mimmumj-value of all minimal k-candidates with t-value less than i will be
the]-value of the minimal k-candidate with greatest/-value less than i (i.e. the last one
found, since we generate minimal k-candidates in order of increasing/-value). The j-
values of ruled-out (nonminimal) k-candidates cannot be smaller than the]-value of the
last minimal k-can&date high is updated to the most recent/-value each time a new
minimal k-candidate is found in step 7. Thus high has value as defined in Lemma 3.

low is supposed to be the minimum]-value of all (k - 1)-candidates whose/-value is
less than i. Again, sincej-values decrease as/-values increase, low should be thej-value
of the (k - 1)-candidate whose/-value is as great as possible but less than i. low is
initialized in step 4 to be the]-value of the first (lowest/-value) (k - 1)-candidate. As i
increases, if there was a minimal (k - 1)-candidate with/-value of i, then the mimmum
permissible j-value will decrease and low is updated (in step 8) for the next iteration. []

LEMMA 5. ALGD correctly determines the set of minimal k-candtdates.
PaooF. By Lemma 4, high and low are computed correctly. We must show that in

the loop of steps 5-8 D[k, i] gets the mlnimumj-value (0 if none) such that b~ = a~ and
low < j < high.

The]-values of successive minimal k-candidates decrease in value since their/-values
increase. In looking for D[k, i] we look for a match for symbol a, in string B, and we
can restrict our attention to occurrences (j-values) of symbol as in string B that are
before (less than) the last occurrence (]-value) that was examined. Step 6 does that.
PB[a, o] is the ordered list of j-values of symbol a, and N[a,] points to the smallest
]-values (in PB) of symbol at that has been examined. Initially, m step 4, N[a,] points to
the last occurrence of symbol at. If the last-examined]-value of a, is greater than low,
step 6 sets N[a,] to point to the lowestj-value of at that is greater than low. If the last-
examined]-value of a, is not greater than low, then there can be no minimal k-
candidate for this value of i since the minimum]-value that is greater than low either
violates the high constraint or results in a candidate that can be ruled out. In this case
step 6 does nothing, the test in step 7 fails, and D[k, i] is set to zero. []

THEOREm 1. ALGD correctly computes the LCS of strings A and B.
PROOF. By Lemma 5, A L G D correctly determines the set of minimal k-candidates.

Thus, if there are any k-candidates, at least one is minimal. If (t, j) is the pth match in
an LCS which is of length p , then, by Lemma 1, (/, j) is a p-candidate. Thus there is at
least one minimal p-can&date (and there are no (p + D-candidates). Step 10 of
ALGD recovers a common subsequence of length p by recovering a sequence of
(/-values o0 minimal candidates such that the minimal k-candidate generated the
minimal (k + D-candidate. []

THEOREI~ 2. Assuming that symbols can be compared in one time unit, ALGD
requires time of O(pn + n log s), where s is the number of different symbols that appear
in string B.

PROOF. Step 1 can be done in time O(n log s). Step 2 can be done in time O(m).
Step 3 executes steps 4-9 p times. Step 4 takes time O(s) per execution, s -< n, for
total time less than or equal to O(pn). Step 5 executes steps 6-8 at most m times, a
total of at most pm times. The while loop in step 6 is executed at most n times within
the loop of step 5 since the N[O] are not increased within this loop (each position of B is
examined at most once for each value of k). The total time in step 6 is therefore O(pn)

Algorithms for the Longest Common Subsequence Problem 669

Steps 7 and 8 are done in constant time. Total time is O(pm) . Step 9 is done in
constant time. Total time is O(p) . Step 10 is done in time O(m). Total execution time is
thus as stated above. []

Note that for p _> O(log s), A L G D requires time O(pn).

pe log n Algorithm

We now consider a special case that often occurs in applications such as determining
the discrepancies between two files, one of which was obtained by making minor
alterations to the other (and we wish to recover those alterations). We assume that
there is an LCS of length at least m - ~ (for some given ~).

If C is an LCS of A and B, there will be at most ~ elements of A that do not appear in
C. The position of each such element will be called a skipped position. Thus there are at
most E skipped positions. We define e to be ~ + 1.

If (t,j) is a minimal k-candidate that can be an element in an LCS (that is, a, = bj is the
kth element of an LCS), then k -< i -< k + ¢ (otherwise more than E positions i nA would
be skipped). We shall call such candidates feasible k-candidates. Let h = i - k. Then 0 -<
h <- ~ and h is the number of positions in A that have been skipped thus far (through
ak+h). By Lemma 2, there is at most one feasible k-candidate with/-value of i.

Let the feasible k-candidate pairs (/-value andj-value) be held in arrays F and G, e.g.
(h + k , /) would be described by F[h] = h + k, G[h] = j. If there is no feasible k-
candidate with/-value h + k, let F[h] = F[h - 1], G[h] = G[h - 1], and define F [- 1]
= 0, G [- 1] = n + 1. By this construction and by Lemma 2, F is a nondecreasing
sequence and G is a nonincreasmg sequence.

Define NEXTB(O, j) to be the minimum r > 1 such that br = 0. If there is no such r,
then NEXTB(O, j) is defined to be n + 1.

LEMMA 6. I f (i, j) is a feasible k-candidate, then j = N E X T B (a , G[h]), where h = i -
k and where G[h] is the value assoctated with the set or feasible (k - 1)-candidates.

PROOF. Let (i, j) be a feasible k-candidate. By definition of k-candidate, there must
exist i ' < i and f < j such that <i', j ') is a feasible (k - 1)-candidate. By Lemma
3, j is the minimum (over possible j ') of N E X T B (a , , j ') . But j" < j ' implies that
NEXTB(O, j") _< NEXTB(O,] ') . Therefore I = NEXTB(a , , mm possible j ') . Since j-
values of minimal k-candidates decrease as their /-values increase, the minimum
possible j ' is the/ -value of the feasible (k - 1)-candidate whose t-value is as large as
possible but less than i = h + k, i.e. not more than h + (k - 1). G[h] is precisely that
/-value. So we conclude tha t j = N E X T B (a , G[h]). []

In order to be able to recover an LCS, we shall keep track (for each feasible k-
candidate) of which h positions in A have been skipped. A straightforward method,
keeping values of F[h] for all h and k, requires space of O(pc) . We shall use a data
structure that requires only O(e 2 + n) space without changing the order of magnitude of
time requirements.

Let there be an array K E E P whose elewents are trtples such that

KEEP[x] = (aa[x], nskip[x], pt Ix]).

P is an array of size e such that, after the set of feasible k-candidates has been
determined, x = P[h] will be the index of the element of K E E P that has information
enabhng recovery of a common subsequence that has aFtn] = bGtnj as its kth element. F[h]
= h + k, and thus precisely h of the elements a~, . . . , aFthl will not appear in the common
subsequence. To recover the common subsequence, it is sufficient to recover these h
skipped positions. Ifx = 0, then no positions were skipped, and ifx < 0, then there is no
common subsequence to be recovered.

The method of recovery is as follows:
If x is zero, there are no more skipped positions to be recovered.
Otherwise, aa[x] is the largest index of a skipped position in string A . nskip[x] is the

number of consecutive positions ending in aa[x], all of which are skipped positions.

670 DANIEL S. HIRSCHBERG

If all of the skipped A-pos i t ions have been r ecove red , then pt[x] is zero.
Otherwise , pt[x] is the index of K E E P that has informat ion enabl ing recovery of the

skipped A-pos i t ions having indices smal ler than aa[x] - n s k i p [x] + 1.

E x a m p l e . I f posi t ions 2, 5, 6, 7, 9, 10 in string A cor respond to a c o m m o n
subsequence of length 6 (of A1, ~0), then h = 4 and K E E P [P[4]] will enab le recovery of
posit ions 1, 3, 4, 8: a a [P [4]] = 8, n s k i p [P [4]] = 1, p t [P[4]] = y (ano ther index of
K E E P) . a n [y] = 4, n s k i p [y] = 2 (posit ions 3 and 4 have been sk ipped) , p t [y] =

z. an[z] = 1, n s k l p [z] = 1, p t [z] = 0 (all skipped posit ions have been recovered) .
Re fe rence counts are kept for each e l emen t of K E E P . Spaces in the K E E P array are

main ta ined by garbage col lect ion funct ions G E T S P A C E which provides an avai lable
space and P U T S P A C E which places a newly avai lable space (i .e. one whose re fe rence
count drops to zero) on the garbage l inked list. See [10] for imp lemen ta t i on techniques .

We now present A L G E , which uses L e m m a 6 in o rder to solve the L C S p rob lem in
t ime O (p e log n):

A L G E (m, n, A , B, C, p, e)

1 F[h], G[h] ~ 0 for h = 0 •
P[O] ~-- O; P [h] ~ - - - l f o r h = 1, , •

2 for k ~ 1 step 1 while there were candidates found m the last pass do
begin

3 lmax ~-- 0
jrmn ~ n + 1

4 for h ~ 0 step 1 until e do
begin

5 t ~ - - h + k
J ~ NEXTB(a . G[h])
ff l -> I mm

6 then begin
F[h] ~ lmax
G[h] ~ Imm
NEWP[h] <--- - 1

end
7 else begin

nsktp ~ (, - 1) - F [h]
if nsklp = 0
then NEWP[h] ~ P[h]
else begin

NEWP[h] ~ GETSPACE
KEEP[NEWP[h]] ~ (l - 1, nsktp, P[h - nsktp])

end
8 lmax ~ l

I mm *-1
F[h] ~ l
G[h] ~'-1

end
9 end loop of step 4

10. if no k-candidates were found then gotn step 13
for : *- 0 step l until • do
begin

11 REMOVE(PIt])
Pit] ~ NEWP[t]

end loop of step 10
12 end loop of step 2
13 x ~ mm h such that P[h] _> 0, -1 if none such

p c - - k - 1
ifx < 0 0 R p < m - • then {print "NO", gain step 15}

14. RECOVER
15 END of ALGE

SUBROUTINE RECOVER

1 SKIP[x + 1] <-- 0
lastmatch <-- Fix]
y ~ P[x]

A l g o r t t h m s f o r the L o n g e s t C o m m o n Subs equence P r o b l e m 671

2 whi ley ~ do
begin

count ~ nsk~p[y]
posttton ~ aa[y]

3 while count > 0 do
begin

SKIP[x] ~ posttlon
x ~ - x - 1
positzon ~-- posttton - 1
count ~-- count - 1

end loop of step 3
y ~- pt[y]

end loop of step 2
4. x ~-- 1

k ~ - I
for t ~- 1 step 1 until lastmatch do
if~ = SKIP[x] thenx ~--x + 1
else begin

Ck 4.-- az

k ~ - k + l
end

5 END OF RECOVER

The loop of step 2 evaluates sets of feasible k-candidates for k = 1, 2, The loop
of step 4 evaluates whether there ~s a teasible k-candida te having precisely h skipped
posit ions, for h = 0, 1, ... , e, by using L e m m a 6 to de te rmine the j -va lue for a
part icular t-value and then checking, by using L e m m a 2, whether (i, j} is minimal , imax
is the max imum t-value of feastble k-candidates genera ted thus far (i.e. w t th / -va lues
less than the current value of i); j m m is the corresponding j -va lue (which is the
m i n i m u m j -va lue of feasible k-candidates genera ted thus far). If (i, j} is a feasible k-
candidate , then it is s tored in the F and G arrays and informat ion wtll be stored in P[h],
enabhng recovery of any addi t ional skipped posit ions that occur be tween i and F[h] as
well as the skipped posit ions occurring before F[h] ((F[h], G[h]) is a (k - 1)-candidate
that can genera te (i,])). The h skipped posit ions corresponding to (F[h], G[h]) are
recoverable by accessing K E E P [P [h]] . In general there may be more than one feasible
k-candidate that will be genera ted by (F[h], G[h]) . Thus we must not destroy P[h] unt i l
all required references to K E E P [P [h]] are made. For this reason, new values for the P
array are stored in the N E W P array. When we no longer need the old values of P (after
the inner loop of steps 4 -9) , we can then replace them with the new values, be ing
careful to decrement reference counts of K E E P elements that were poin ted to by the
old P array

Func t ion R E M O V E (x) decrements the reference count of K E E P [x] (unless x --< 0, in
which case noth ing is done) , and , if K E E P [x] now has reference count zero, then a call
will be made to R E M O V E (p t [x]) after K E E P [x] has been put on the garbage l inked list
by using P U T S P A C E .

Imp lemen ta t i on o f N E X T B

The following should be done before using A L G E :

1 Sort the symbols m A and then construct a balanced binary search tree of symbols that appear in string A
Let there be ss such symbols (ss -< m).

2. for k ~ 1 step 1 until ss do LAS'I~k] ,-- 0
3 for i ~-- 1 step 1 until n do

begin
find out that bt = 0k
1 ~ LAST[k]
LAST[k] ~ t
if I ~ 0 then NEXT[i] ~-- t
else FIRST[k] ~-- t

end loop of step 3

672 DANIEL S. HIRSCHBERG

4. start z.- 1
for k ~ 1 step 1 until ss do
bet~Jn

Place the positions j of B such that bj = 0~ into N [s t a r t] through N [s t a r t + n n - 1] where 0~ occurs n n

times in string B. The first posmon in B at which 0k occurs Is at FIRST[k]. If 0~ occurs at position j, then
the next occurrence of 0~ in B wdl be at posinon NEXT[i] unless LAST[k] = j, in which case there arc no
more occurrences of 0~ in B.
S[k] ~ start
start ~ start + n n

end

We can find out that a, = 0k m time O(logs) . N[S[1]:S~k + 1] - 1] holds the block
of positions j with b e = 0~. This block of cells can be searched by using binary search of
a hnearly ordered array [11, Sec. 6.2.1]. N E X T (a , j) can thus be executed in t ime
O(log n).

If s is very small, then the following alternate way of computing NEXTB(O, j) may be
preferred: Instead of constructing a compressed array in step 4, construct a N E X T B
matrix while in step 3. For each l, set N E X T B [k , t] = i f o r j _< t < i. This will result in
time and space complexity (of the setup) of O(sn). The function NEXTB(O, j) can be
evaluated by determining that 0 = 0k in time O(log S) and by doing a simple table look-
up.

A L G E retains k-candidates , as did A L G D , except for those candidates that cannot
lead to a sufficiently long common subsequence because too many A-posi t ions have
already been skipped. The (k + D-candidates that can be generated by the dropped k-
candidates also skip too many A-posi t ions.

LEMMA 7. A L G E retains all feasible k-candidates.
PROOF. By induction on k. I t is trivially true for k = 0 (the F and G arrays are

initialized to zero in step 1). Assume that the set of feasible (k - 1)-candidates has been
evaluated and stored in arrays F and G. A L G E generates the set of feasible k-
candidates in order of increasing/-value. F[h] is to hold i = h + k if i is an / -va lue of a
feasible k-candidate; otherwise F[h] Is to hold the maximum i ' < i such that i ' is a
feasible k-candidate . G[h] is to hold the corresponding j-value, imax and jmin hold the
last-generated feasible k-candidate , which, by Lemma 2, has the maximum/-va lue and
minimumj-value generated thus far. Step 3 initializes them to correctly indicate that no
k-candidates have yet been generated. Step 5 evaluates the j -value for a given potential
k-candidate by using Lemma 6. I f j _>jmin then, even though the necessary condition for
feasibility has been met, (i,]) is not minimal since it would be ruled out by (imax, jmin).
In this case step 6 sets F[h] and G[h] to imax andjmin. I f j < jmin, then (i , j) is minimal
since it cannot be ruled out by any previously generated k-candidate (/ < jmm) and it
cannot be ruled out by any future generated k-candidate (all future i' > i). In this case
step 8 sets F[h] and G[h] and also updates tmax and jmin. []

THEOREM 3. A L G E correctly computes the LCS o f strings A and B i f the LCS is o f
length at least m - ~.

PROOF. By Lemma 7, A L G E correctly keeps minimal k-candidates . Thus, if there
is a common subsequence of length p .~ m - ¢, then there is a minimal p-candida te
which will be feasible. The data structure of A L G E keeps track, for each feasible k-
candidate (t, j) , of the h = i - k positions in string A that have been skipped in the
common subsequence of length k of At , and Bls. P[h] points to the e lement of K E E P
that contains the necessary information. P is updated in step 7 when a feasible k-
candidate is generated. If any addit ional positions are skipped (between the k-candidate
(i, j) and the (k - 1)-candidate (i ' , j ') that generated (i,])) , then that information is
recorded in an element of K E E P as well as a pointer , enabling recovery of the h -
nskip previously skipped A-posi t ions (of (i', j ')) . Subroutine R E C O V E R recovers the
skipped posiUons of a feasible p-candidate by reversing the process in which they were
stored and then computes the LCS by deleting the skipped positions from string A . []

THEOREM 4. For ~ _< O(nlt2), A L G E requires space linear m n.

Algorithms for the Longest Common Subsequence Problem 673

PROOF. The KEEP array requires O(e 2) space: The common subsequence implied by
k-candidate (h + k,j~ has h skipped A-posi t ions, h <- ~, and thus can use at mos th spaces
in the KEEP array. The total number of spaces referred to by all feasible k-candidates is
thus at most ~(e + 1)/2. Adding to that the (exactly) E references to get the set of feasible
(k + 1)-candidates gives a total of no more than (e 2 + e)/2. Each element of array KEEP
requires four words (aa, nskip, pt, and a reference counter).

The arrays and space that they use are as follows: Fie], G[e], C[p] , Pie] , NEWP[e],
KEEP[2e 2 + 2e], FIRST[ss], NEXT[n], LAST[ss], SKIP[e], S[ss], N[n].

The NEXTB function requires at most 2n locations to store the various balanced
binary search trees.

Thus a total of at most 2e ~ + 7e + 4n + p + 3ss locations is used. F o r e -< 0(nl/2), space
requirements are linear in n. []

THEOREm 5. ALGE requires time O(pe log n).
PROOF. Preprocessing for the NEXTB function requires time O(n log m). Step 1

takes time O(e). Step 2 executes steps 3-12 p times. Step 3 takes constant t ime for a
total time of O(p). Step 4 executes steps 5-9 at most e times. Step 5 takes time O(log n)
for a total time of O(pe log n). Steps 6-9 take constant t ime for a total t ime of O(pe).
Steps 10-12, excluding time spent in function REMOVE, take time O(e) for a total time
of O(pe).

Subroutine RECOVER recovers at most c skipped positrons (taking time O(e)) and
then deletes them from string A (taking time O(m)) for a total t ime of O(m).

The number of references (to array KEEP) removed is at most the number of
references inserted. There are at most pe references inserted (one per execution of step
7), and the amount of t ime (per reference removal) spent in function REMOVE is
constant. Therefore the total time spent in function REMO VE is O(pe).

Therefore the total time of execution of ALGE is O(pe log n). []
It is noted that step 5, reqmring O(log n) t ime, is the bot t leneck, causing total time

requirements of O(pe log n). P. van Emde Boas 's recent algorithm for priority queues
[19] appears capable of solving the position-finding problem in time O(log log n) . If so,
this would reduce the time bound of this problem to O(pe log log n).

ALGE assumes that c is known. If ~ is not known, then set E ~-- 2 and proceed
through the algorithm. If that value of ~ is insufficient (i.e. there is no common
subsequence of length m - e), then double the guess for e and continue iteratively until
a common subsequence is found.

Total time spent will be (letting k be the multiplicative coefficient of the time
requirement)

2pk l o g n + 4pk l o g n + ... + epk l o g n ,

which is less than 2pek log n. Since e < 2(m + 1 - p) , we can recover an LCS in time
O(p(m + 1 - p)log n).

Other Algorithms

The only known algorithm for the LCS problem with worst-case behavior less than
quadratic is due to Paterson [14]. The algorithm has complexity O(n~log log n/ log n). It
uses a "Four Russians" approach (see [3] or [1, pp. 244-247]) . Essentially, instead of
matrix L (where L[t, j] is the length of an LCS of A1, and Btj) being calculated one
element at a time (see [7]), the matrix is broken up into boxes of some appropr ia te size
k. The high sides of a box (the 2k - 1 elements of L on the edges of the box with
largest indices) are computed from L-values known for boxes adjacent to it on the low
side and from the relevant symbols of A and B by using a look-up table which was
precomputed.

The algorithm assumes a fixed alphabet size although modifications to the algorithm
may be able to get around that condition.

674 DANIEL S. HIRSCHBERG

There are 2k + 1 e lements of L adjacent to a box on the low side. Two adjacent L-
e lements can differ by either zero or one. There are thus 22k possibilities in this respect.
The A- and B-values range over an alphabet of size s for each of 2k e lements , yielding a
multiplicative factor o fs zk, and the total number of boxes to be precomputed is therefore
2 ~kt~+l°gs~. Each such box can be precomputed in time O(k ~) for a total precomputing
time of O(k~22k~+l°g ~).

There are (n/k) z boxes to be looked up, each of which will require O(k log k) t ime to
be read, for a total t ime of O(n21og k/k).

The total execution time will therefore be O(k~2 ~k~+~°g s~ + n21og k/k). If we let k = log
n/2(1 + log s) , we see that the total execution time will be O(n21og log n/log n).

Restrictions on the LCS Problem

Szymanski [17] shows that ff we consider the LCS problem with the restriction that no
symbol appears more than once within either input string, then this problem can be
solved in time O(n log n).

In addition if one of the input strings is the string of integers 1 - n , this problem is
equivalent to finding the longest ascending subsequence in a string of distinct integers. If
we assume that a comparison between integers can be done in unit time, this problem can
be solved in time O(n log log n) by using the techniques of van Emde Boas [18}.

ACKNOWLEDGMENT. I would like to thank the (anonymous) referees for their many
helpful suggestions which have led to a material improvement in the readability of this
paper.

REFERENCES

(Note References [4-6, 8, 9, 13, 15, 20, 22, 23] are not oted m the text.)

1 AHO, A V , HOPCROFr, J E , AND ULLMAN, J D The Design and Analysis of Computer Algortthms
Addison-Wesley, Reading, Mass, 1974

2 Ario, A V , HmSCHBER6, D.S , AND ULLUAN, J D Bounds on the complextty of the longest common
subsequenee problem J ACM 23, 1 (Jan 1976), 1-12.

3 ARLAZAROV, V L,, DINIC, E A , KRONROD, M A , AND FARADZEV, I A On economic construction of
the trans~ttve closure of a dtrected graph Dokl Akad Nauk SSSR 194 (1970), 487-488 (m Russian)
Enghsh transi Jn Sovtet Math Dokl 11, 5 (1970), 1209-1210

4 CnVATAL, V , KLARNER, D A , AND KNUTrI, D E Selected combinatorial research problems STAN-
CS-72-292, Stanford U , Stanford, Cahf, 1972, p 26

5 CItVATAL, W , AND SANKOFF, D Longest common subsequences of two random sequences STAN-CS-
75-477, Stanford U , Stanford, Cahf, Jan 1975

6 HIRSCnBER6, D S On finding maximal common subsequences TR-156, Comptr So Lab , Princeton
U , Princeton, N.J , Aug 1974

7. HIRSCHEERG, D S A hnear space algorithm for computing maximal common subsequences Comm
ACM 18, 6 (June 1975), 341-343

8 HIESCr~EERG, D S The longest common subsequence problem Ph D Tb , Princeton U , Princeton,
N J , A u g 1975

9 HUN1", J W , AND SZYMANSKI, T G A fast algorithm for computing longest common suhsequences
Comm ACM 20, 5 (May 1977), 350-353.

10 KNUTn, D E The Art o f Computer Programming, Vol 1. Fundamental Algorithms Addison-Wesley,
Readmg, Mass., sec. ed , 1973

11 KNUTTn, D. E The Art o f Computer Programming, Vol 3" Sorting and Searching. Addison-Wesley,
Reading, Mass., 1973

12 LOWRANCE, R , AND WAGNER, R A An extension of the string-to-string correction problem J ACM
22, 2 (April 1975), 177-183

13 NEEDLEMAN, S B , AND WUNSCH, C D A general method applicable to the search for slmdantles m
the amino acid sequence of two proteins J. Mol Biology 48 (1970), 443-453

14 PATERSON, M.S Unpubhshed manuscript U of Warwick, Coventry, England, 1974
15 SANKOFF, D Matching sequences under deletion/insertion constraints Proc Nat Acad Sct USA 69, 1

(Jan 1974), 4-6
16 SELLERS, P H An algorithm for the distance between two fmlte sequences J. Combmatortal Theory,

Ser A, 16 (1974), 253-258

Algorithms for the Longest Common Subsequence Problem 6 7 5

17 SZYMANSKI, T G A special case of the maximal common subsequence problem TR-170, Comptr Scl
Lab , Princeton U , Princeton, N J , Jan 1975.

18 VAN EMDE BOAS, P An O(n log log n) on-hne algorithm for the insert-extract rain problem TR 74-
221, Dept Comptr Sol , CorneU U , I thaca, N Y , Dec 1974

19 VAN EMDE BOAS, P. Preserving order in a forest m less than logarithmic time Conf Rec 16th Annual
Symp on the Foundations of Comptr SOl , Oct 1975, pp 75-84

20 WAGNER, R A On the complexity of the extended string-to-string correction problem Proc Seventh
Annual ACM Syrup on Theory of Comping , 1975, pp 218-223

21 WAGNER, R A , AND FISCHER, M J The string-to-string correction problem J. ACM 21, 1 (Jan
1974), 168-173

22 WoNo, C K.. AND CRAtqDRA, A .K bounds for the string editing problem .Jr ACM 23, 1 (Jan 1976),
13-16

23 YAO, C C , AND YAO, F C On computing the rank function for a set of vectors UIUCDCS-R-75-699,
Dept Comptr Sc~ , U of lll inols at Urbana-Champalgn, Urbana, I11 , Feb 1975.

RECEIVED JUNE 1975, REVISED FEBRUARY 1977

Journal of the Association for Computing Machinery, Vol 24, No 4, October 1977

