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AaS~ACT Two algorithms are presented that solve the longest common subsequence problem The first 
algorithm is applicable in the general case and requires O(pn + n log n) time where p is the length of the 
longest common subsequence The second algorithm requires time bounded by O(p(m + 1 - p)log n) In the 
common speoal case where p is close to m, this algorithm takes much less time than n ~ 
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In t roduc t ion  

We start  by def ining conven t ions  and t e rmino logy  that will be  used th roughou t  this 
paper .  

String C = clc~ ... cp is a subsequence  of  string A = aja2 "'" am if  there  is a mapp ing  
F :  {1, 2 . . . .  , p} ~ {1, 2, ... , m} such that  F(i) = k only if c~ = ak and F is a m o n o t o n e  
strictly increasing funct ion (i .e.  F(i) = u,  F(]) = v,  and i < j imply that  u < v).  C can be 
fo rmed  by delet ing m - p (not  necessari ly ad jacen t )  symbols  f rom A .  F o r  example ,  
" c o u r s e "  is a subsequence  of  " c o m p u t e r  sc ience . "  

Str ing C is a c o m m o n  s ubs equence  of  strings A and B if C is a s u b s e q u e n c e  of  A and 
also a subsequence  of  B.  

String C is a longest  c o m m o n  subsequence  (abbrev ia ted  LCS)  of  string A and B if C is 
a c o m m o n  subsequence  of  A and B of maximal  length ,  i .e.  there  is no c o m m o n  subse- 
quence  of  A and B that  has grea te r  length.  

Th roughou t  this paper ,  we assume that  A and B are  strings of  lengths  m and n ,  m _< n ,  
that  have  an LCS C of (unknown)  length p .  

We assume that  the symbols  that  may  appea r  in these strings c o m e  f rom some  a lphabet  
of  size t .  A symbol  can be  s tored  in m e m o r y  by using log t bits,  which we assume will fit in 
one  word  of  memory .  Symbols  can be  c o m p a r e d  (a -< b?)  in one  t ime unit .  

The  n u m b e r  of  di f ferent  symbols  that  actual ly appear  in string B is def ined  to be  s 
(which must  be less than n and t).  

The  longest  c o m m o n  s u b s e q u e n c e  prob lem has been  solved by using a recurs ion 
re la t ionship  on the  length  of  the  solut ion [7, 12, 16, 21]. These  are  general ly  appl icable  
a lgor i thms that  take O ( m n )  t ime for any input  strings o f  lengths  m and n even  though  
the lower  bound  on t ime of  O ( m n )  need  not  apply to all inputs [2]. We  present  
a lgor i thms that ,  depend ing  on the na ture  of  the  Input,  may  not  requ i re  quadra t ic  t ime 
to r ecove r  an LCS.  The  first a lgor i thm is appl icable  in the  genera l  case and requi res  
O ( p n  + n log n) t ime.  T h e  second a lgor i thm requi res  t ime b o u n d e d  by O((m + 1 - p )p  
log n).  In  the c o m m o n  special  case where  p is close to m ,  this a lgor i thm takes t ime 
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much less than n z. We conclude with references to other algorithms for the LCS 
problem that may be of interest.  

pn Algor i thm 

We present in this section algorithm A L G D ,  which will find an LCS in time O ( p n  + 
n log n) where p is the length of the LCS. Thus this algorithm may be preferred for 
applications where the expected length of an LCS is small relative to the lengths of the 
input strings. 

Some preliminary definitions are as follows: 
We represent  the concatenat ion of strings X and Y by XIIY.  
Ai,  represents the string ala2 "" a, (elements 1 through i of string A ) .  Similarly, the 

prefix of length j of string B is represented by Bu. 
We define L ( i , j )  to be the length of the LCS of prefixes of lengths i a n d j  of strings A 

and B, i e. the length of the LCS o r A l ,  and Bo. 
(t, j)  represents the positions of a, and b ,  the i th e lement  of string A and the j th  

element of string B. We refer to i ( / )  as the t-value (j-value) of (1, j ) .  
We define {(0, 0)} to be the set of O-candidates, and we define (i, j} to be a k° 

candtdate (for k -> 1) if a, = b e and there exist i '  and j '  such that i '  < i, j '  < j ,  and 
( i ' , j ' )  is a (k - 1)-candidate. We say that ( i ' , j ' ) g e n e r a t e s  ( i , j ) .  

Define a0 = b0 = $ where $ is some symbol that does not appear  in s t rmgsA or B. 
LEM~A 1. For k -> 1, (t, j )  is a k-candidate i f f  L(i ,  j)  >- k and a~ = bj. Thus there is a 

c o m m o n  subsequence o f  length k o f  A l~ and B w 
PROOF. By induction on k.  (i, j )  Is a 1-candidate iff a, = be (by definition),  in which 

case L(i ,  j)  necessarily is at least 1. Thus the lemma is true for k = 1. Assume it is true 
for k - 1. Consider k.  If (t, j )  is a k-candidate  then there exist i '  < i and j '  < j such 
that ( i ' , j ' )  is a (k - 1)-candidate. By assumption, there is a common subsequence D '  = 
dldz "" dk- l  of Ale, and B~j,. Since a~ = bj ((i, j) is a k-candidate) ,  D = D '  Ila~ Is a 
common subsequence of length k of Aim and B~. Thus L(i,  1) -> k .  

Conversely,  if L( i ,  j) >- k and a~ = b j ,  then there exist i '  < i a n d j '  < j such that  ae = 
bj, and L(i ' ,  1') = L(i,  j)  - 1 -> k - 1. (i ' ,  j ' )  is a (k - D-candidate (by inductive 
hypothesis) and thus (i, j )  is a k-candidate .  [] 

The length of an LCS is p ,  the maximum value of k such that there exists a k- 
candidate.  As we shall see, to recover an LCS, it suffices to maintain the sequence of a 0- 
candidate,  1-candidate . . . .  , (p  - 1)-candidate,  and a p-candidate  such that in this 
sequence each/ -candida te  can generate the (i + 1)-candidate for 0 --< i < p.  

Rule. L e t x  = (x~,x2) a n d y  = (ya,  y~) be two k-candidates.  Ifx~ >- y~ andx2 ~- Y2, 
then we say that y rules out  x (x ~s a superfluous k-candidate)  since any (k + 1)- 
candidate that could be generated by x can also be generated by y.  Thus, from the set 
of k-candidates,  we need consider only those that are minimal under  the usual vector 
ordering. Note that l fx  and y are minimal elements then x~ < y~ iffx2 > Y2. 

LEMraA 2. Let  the set off k-candtdates be {(i~, 1~)} (r = 1, 2 . . . .  ). We can rule out  
candidates so that (after renumbering)  t~ < i2 < "'" and j~ > j2 > "". 

PRoov. Any two k-candidates (l, j)  and (t ' ,  j ' )  satisfy one of the following (without 
loss of generality, i -< i ' ) :  

(1) i < t ' ,  j - < j ' .  
(2) i < i ' . j  > j ' .  
(3) t = i ' ,  j - - < j ' .  
(4) i = t ' ,  j > j ' .  

In cases (1) and (3) ( t ' , j ' )  can be ruled out; m case (4) ( i , j )  can be ruled out; and case (2) 
satisfies the statement of the lemma. Thus any set of k-candidates  whtch cannot  be 
reduced by further application of the rule will satisfy the condition stated in the 
lemma'. [] 

The set of k-candidates,  reduced by apphcatmn of the rule so as to satisfy the 
statement of Lemma 2, are the minimal elements of the set of k-candidates  (since no 
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element can rule out a minimal element) and will be called the set of minimal k- 
candidates. By Lemma 2, there is at most one minimal k-candidate for each i-value. 

We note that if (i, j) is a minimal k-candidate then L(/, j) = k and (i, ]) is the k- 
candidate with/-value i having smallest j -value]  such that L(i, j) = k. 

LEMMA 3. For k -~ 1, (i, ]) is a mintmal k.candtdate i f f  ] is the minimum value such 
that b~ ffi a, and low < ] < high, where high is the minimum ].value o f  all k-candidates 
whose i-value is less than i (no upper limit i f  there are no such k-candidates) and low is the 
mmimum ]-value o fa l l  (k - 1)-candidates whose i-value is less than i. 

PROOF. Assume that (i, ]) is a minimal k-candidate. I f ]  -> high then there is a k- 
candidate ~/', j ' )  such that i '  < i a n d ] '  = high _< j. <i, j) would be ruled out by ~/', j ' )  
and thus would not be minimal. 

I f ]  _< low, then there is no (k - 1)-candidate that can generate (i, j). (i, j) would not 
be a k-candidate. 

bj = at is required by the definition of k-candidate and low < j < high has just been 
shown. I f ]  and ] '  both satisfy these constraints, j < j ' ,  then (i, j'> is ruled out by (i, j). 
Thus, for a particular i, j must be the minimum #value of all k-candidates satisfying 
these constraints. 

The i f  of the lemma has thus been shown. 
The converse is easily shown: If (i, j) is not a k-candidate, then either at ~ b~ or there is 

no (k - 1)-candidate that can generate <i,]). That is, thej-value of all (k - 1)-candidates 
with/-value less than i is greater than or equal to ]. This is equivalent to ] _< low. 

If  {i,/) is a k-candidate but is not minimal, say (i',]') rules out (i,]), then i '  -< i and] '  _< 
]. I f / '  < i, then clearly] < high is violated. Otherwise, i '  = i. In this case] '  > low since 
(i', j'> must be generated from a (k - 1)-candidate and b~, = a, since <i', j) is a k- 
candidate. Also#  < j  < high. Thusj '  satisfies all the constraints and] is not the minimum 
value that does so, a contradiction. [] 

We present algorithm A L G D ,  which, using the results of Lemma 3, obtains an LCS 
C of length p of input strings A and B in time O(pn + n log n). 

The algorithm is based on an efficient representation of  the L matrix. Since L is 
nondecreasing in both arguments, we may draw contours in its matrix as shown in the 
following example: 

B 

c b o c b o a b o 

A 

0 , , , , , 

b O0 ~,,.L) I ~. ~ 2 2 2 2 

c i~11 1 2 ~ 1  I 2 2 2 2 2 
d 2 2  2 2 2  

b Ill I 2~2  2 ~ 3 3 3 3 
b 2 3 3 ~4~- 

The entire matrix is specified by its contours. The contours are described by sets of 
minimal k-candidates. The contour between L-values o fk  - 1 and k is defined by the set 
of minimal k-candidates whose elements are positioned at the convex corners of the 
contour. 

To keep track of the minimal k-candidates, we use the matrix D. D[k, i] is the j-value 
of the unique minimal k-candidate having/-value of i or 0 if there is no such minimal k- 
candidate. Thus D[k, i] describes the contours by giving the number of the first column 
of row i that is in region k (if that number is different from D[k, ~ - 1]). 
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l o w c h e c k  is the smalles t / -value of a (k - 1)-candidate. F L A G  has value 1 iff there are 
any k-candidates.  

NB[O]  is the number  of times symbol 0 occurs in string B.  P B [ O ,  1] . . . . .  
P B  [0, N B  [0 ]] is the ordered list, smallest first, of positions in B in which symbol 0 occurs. 

If  t, the size of the symbol alphabet ,  is not large compared to n,  then we may index an 
array by the bit representat ion of a symbol. Otherwise,  if t >> n,  then we construct a 
balanced binary search tree which provides a mapping from symbols that appear  in string 
B to the integers 1 through s (there are s different symbols that appear  in B).  Whenever  
string element a, appears as an array subscript (as in N[a,]), it should be understood that 
we are indexing N by the integer s, which has been obtained (during initialization for 
A L G D )  from traversing the search tree just described.  If a, does not  appear  in B, then 
the integer s, is zero. An equivalent assumption is followed for subscript b~ in step 1. 

ALGD(m,  n, A ,  B, C, p) 

1. NB[O],~-OforO = l , .  , s  
PB[O,O]~--OforO= l , .  , s  
en[0, 0] ~ 0; PB[0, 1] ~ 0 
for j * -  1 step 1 until n do 
~ i n  

NB[bj] ~ NB[bj] + 1 
eB[bj, NB[b~]] ~ j 

end 
2 D [ O , i ] ~ . - O f o r z = O , . .  , m  

lowcheck ~-- 0 
3. f o r k  ~ l s t e p l d o  

~gin 
4. N[O] ~ NB[O] for 0 = 1, , s 

N[0] ~ 1 
FLAG ~ 0 
low ~ D[k - 1, lowcheck] 
high ~ n + 1 

5. for t ~ l o w c h e c k  + 1 step 1 until m do 
begin 

6. while PB[ai, N[at] - 1] > l o w  do N[a~] ~ N[a , ]  - 1 

7 if htgh > PB[a~, N[a~]] > low 
then begin 

htgh ~ PB[a,, N[a,]] 
D[k, t] <--high 
if FLAG = 0 then {lowcheck ~-- t, FLAG ~-- 1} 

end 
else D[k,  ,] *- 0 

8 i f  D [ k  - 1, t] > 0 then l o w  ~ D [ k  - l ,  t]  

end loop of step 5 
9. if FLAG = 0 then go to step 10 

end loop of step 3 
10 p c - - k - 1  

k~-.-p 
f o r t ~ m  + 1 s t e p -  l u n t i l O d o  
i f  D [ k ,  ~] > 0 then 
I~gin 

Ck ~- ai 
k , , - - k - 1  

end 

The loop of step 3 evaluates the set of minimal k-candidates for k = 1, 2, . . . .  The loop 
of step 5 evaluates the set of minimal k-candidates ,  smallest / -value first, and fills in the 
D array accordingly (in the example given previously this is left-to-right) while scanning 
the chains of occurrences of a given character in B with largest j -value first (right-to-left).  
For  each i,  i can be the / -va lue  of a minimal k-candidate  if there is a ] satisfying the 
constraints of Lemma 3. This is tested by determining the minimum]-value  of symbol a, 
that is greater  than l o w ,  If  that value is less than h t g h ,  then ( i , ] )  is a minimal k-candidate .  
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There can be no k-candidate with/-value less than or equal to lowcheck, so the loop of 
step 5 begins at lowcheck + 1. lowcheck is set, in step 7, when the first minimal k- 
candidate (that having smallest/-value of all k-candidates) is determined. 

LEMMA 4. ALGD evaluates the correct values of  high and low (as defined m 
Lemma 3) for determining whether each k-candidate (i, j) is minimal. 

PRoov. high is supposed to be the minimum ]-value of all k-candidates with/-value 
less than i high is imtialized at n + 1 (i.e. does not limit) in step 4, before any k- 
candidates have been generated. Thereafter, if any k-candidates are found to be minimal 
(in step 7), then, since the ]-values of minimal k-candidates decrease as the t-values 
increase, the mimmumj-value of all minimal k-candidates with t-value less than i will be 
the ]-value of the minimal k-candidate with greatest/-value less than i (i.e. the last one 
found, since we generate minimal k-candidates in order of increasing/-value). The j- 
values of ruled-out (nonminimal) k-candidates cannot be smaller than the ]-value of the 
last minimal k-can&date high is updated to the most recent/-value each time a new 
minimal k-candidate is found in step 7. Thus high has value as defined in Lemma 3. 

low is supposed to be the minimum ]-value of all (k - 1)-candidates whose/-value is 
less than i. Again, sincej-values decrease as/-values increase, low should be thej-value 
of the (k - 1)-candidate whose/-value is as great as possible but less than i. low is 
initialized in step 4 to be the ]-value of the first (lowest/-value) (k - 1)-candidate. As i 
increases, if there was a minimal (k - 1)-candidate with/-value of i, then the mimmum 
permissible j-value will decrease and low is updated (in step 8) for the next iteration. [] 

LEMMA 5. ALGD correctly determines the set of  minimal k-candtdates. 
PaooF. By Lemma 4, high and low are computed correctly. We must show that in 

the loop of steps 5-8 D[k, i] gets the mlnimumj-value (0 if none) such that b~ = a~ and 
low < j < high. 

The ]-values of successive minimal k-candidates decrease in value since their/-values 
increase. In looking for D[k, i] we look for a match for symbol a, in string B, and we 
can restrict our attention to occurrences (j-values) of symbol as in string B that are 
before (less than) the last occurrence (]-value) that was examined. Step 6 does that. 
PB[a, o] is the ordered list of j-values of symbol a, and N[a,] points to the smallest 
]-values (in PB) of symbol at that has been examined. Initially, m step 4, N[a,] points to 
the last occurrence of symbol at. If  the last-examined ]-value of a, is greater than low, 
step 6 sets N[a,] to point to the lowestj-value of at that is greater than low. If the last- 
examined ]-value of a, is not greater than low, then there can be no minimal k-  
candidate for this value of i since the minimum ]-value that is greater than low either 
violates the high constraint or results in a candidate that can be ruled out.  In this case 
step 6 does nothing, the test in step 7 fails, and D[k, i] is set to zero. [] 

THEOREm 1. ALGD correctly computes the LCS of  strings A and B. 
PROOF. By Lemma 5, A L G D  correctly determines the set of  minimal k-candidates. 

Thus, if there are any k-candidates, at least one is minimal. If (t, j) is the pth match in 
an LCS which is of length p ,  then, by Lemma 1, (/, j) is a p-candidate. Thus there is at 
least one minimal p-can&date (and there are no (p + D-candidates). Step 10 of 
ALGD recovers a common subsequence of length p by recovering a sequence of 
(/-values o0 minimal candidates such that the minimal k-candidate generated the 
minimal (k + D-candidate. [] 

THEOREI~ 2. Assuming that symbols can be compared in one time unit, ALGD 
requires time of  O(pn + n log s), where s is the number of different symbols that appear 
in string B. 

PROOF. Step 1 can be done in time O(n log s). Step 2 can be done in time O(m). 
Step 3 executes steps 4-9 p times. Step 4 takes time O(s) per execution, s -< n,  for 
total time less than or equal to O(pn). Step 5 executes steps 6-8 at most m times, a 
total of at most pm times. The while loop in step 6 is executed at most n times within 
the loop of step 5 since the N[O] are not increased within this loop (each position of B is 
examined at most once for each value of k). The total time in step 6 is therefore O(pn) 
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Steps 7 and 8 are done in constant time. Total time is O(pm) .  Step 9 is done in 
constant time. Total time is O(p) .  Step 10 is done in time O(m). Total execution time is 
thus as stated above. [] 

Note that for p _> O(log s), A L G D  requires time O(pn).  

pe log n Algorithm 

We now consider a special case that often occurs in applications such as determining 
the discrepancies between two files, one of which was obtained by making minor 
alterations to the other (and we wish to recover those alterations). We assume that 
there is an LCS of length at least m - ~ (for some given ~). 

If C is an LCS of A and B, there will be at most ~ elements of A that do not appear in 
C. The position of each such element will be called a skipped position. Thus there are at 
most E skipped positions. We define e to be ~ + 1. 

If (t,j) is a minimal k-candidate that can be an element in an LCS (that is, a, = bj is the 
kth element of an LCS), then k -< i -< k + ¢ (otherwise more than E positions i nA  would 
be skipped). We shall call such candidates feasible k-candidates. Let h = i - k. Then 0 -< 
h <- ~ and h is the number  of positions in A that have been skipped thus far (through 
ak+h). By Lemma 2, there is at most one feasible k-candidate with/-value of i. 

Let the feasible k-candidate pairs (/-value andj-value)  be held in arrays F and G, e.g. 
(h + k , / )  would be described by F[h] = h + k,  G[h] = j.  If there is no feasible k- 
candidate with/-value h + k, let F[h] = F[h - 1], G[h] = G[h - 1], and define F [ - 1 ]  
= 0, G [ - 1 ]  = n + 1. By this construction and by Lemma 2, F is a nondecreasing 
sequence and G is a nonincreasmg sequence. 

Define NEXTB(O, j) to be the minimum r > 1 such that br = 0. If there is no such r, 
then NEXTB(O,  j) is defined to be n + 1. 

LEMMA 6. I f  (i, j) is a feasible k-candidate, then j = N E X T B ( a ,  G[h]), where h = i - 
k and where G[h] is the value assoctated with the set or  feasible (k - 1)-candidates. 

PROOF. Let (i, j) be a feasible k-candidate. By definition of k-candidate, there must 
exist i '  < i and f < j such that <i', j ' )  is a feasible (k - 1)-candidate. By Lemma 
3, j is the minimum (over possible j ' )  of N E X T B ( a , ,  j ' ) .  But j" < j '  implies that 
NEXTB(O, j") _< NEXTB(O,  ] ' ) .  Therefore I = NEXTB(a , ,  mm possible j ' ) .  Since j- 
values of minimal k-candidates decrease as their /-values increase, the minimum 
possible j '  is the/ -value  of the feasible (k - 1)-candidate whose t-value is as large as 
possible but less than i = h + k, i.e. not more than h + (k - 1). G[h] is precisely that 
/-value. So we conclude tha t j  = N E X T B ( a ,  G[h]). [] 

In order to be able to recover an LCS, we shall keep track (for each feasible k- 
candidate) of which h positions in A have been skipped. A straightforward method, 
keeping values of F[h] for all h and k, requires space of O(pc) .  We shall use a data 
structure that requires only O(e 2 + n) space without changing the order of magnitude of 
time requirements. 

Let there be an array K E E P  whose elewents are trtples such that 

KEEP[x] = (aa[x], nskip[x], pt Ix]). 

P is an array of size e such that, after the set of feasible k-candidates has been 
determined, x = P[h] will be the index of the element of K E E P  that has information 
enabhng recovery of a common subsequence that has aFtn] = bGtnj as its kth element. F[h] 
= h + k, and thus precisely h of the elements a~, . . . ,  aFthl will not appear in the common 
subsequence. To recover the common subsequence, it is sufficient to recover these h 
skipped positions. Ifx = 0, then no positions were skipped, and ifx < 0, then there is no 
common subsequence to be recovered. 

The method of recovery is as follows: 
If x is zero, there are no more skipped positions to be recovered. 
Otherwise, aa[x] is the largest index of a skipped position in string A .  nskip[x] is the 

number of consecutive positions ending in aa[x], all of which are skipped positions. 
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If  all of  the skipped A-pos i t ions  have been  r ecove red ,  then  pt[x]  is zero.  
Otherwise ,  pt[x]  is the index  of  K E E P  that  has informat ion  enabl ing  recovery  of  the 

skipped A-pos i t ions  having indices smal ler  than aa[x]  - n s k i p [ x ]  + 1. 

E x a m p l e .  I f  posi t ions 2, 5, 6, 7, 9, 10 in string A cor respond  to a c o m m o n  
subsequence  of  length 6 (of A1, ~0), then h = 4 and K E E P [  P[4]]  will enab le  recovery  of  
posit ions 1, 3, 4, 8: a a [ P [ 4 ] ]  = 8, n s k i p [ P [ 4 ] ]  = 1, p t [P[4]]  = y (ano ther  index of  
K E E P ) .  a n [ y ]  = 4, n s k i p [ y ]  = 2 (posit ions 3 and 4 have  been  sk ipped) ,  p t [ y ]  = 

z.  an[z]  = 1, n s k l p [ z ]  = 1, p t [ z]  = 0 (all skipped posit ions have  been  recovered) .  
Re fe rence  counts  are kept  for each e l emen t  of  K E E P .  Spaces in the K E E P  array are  

main ta ined  by garbage  col lect ion funct ions G E T S P A C E  which provides  an avai lable 
space and P U T S P A C E  which places a newly avai lable space (i .e.  one  whose  re fe rence  
count  drops to zero)  on the  garbage  l inked list. See [10] for imp lemen ta t i on  techniques .  

We  now present  A L G E ,  which uses L e m m a  6 in o rder  to solve the  L C S  p rob lem in 
t ime O ( p e  log n): 

A L G E  (m, n, A ,  B, C, p, e) 

1 F[h], G[h] ~ 0 for h = 0 . . . .  • 
P[O] ~-- O; P [ h ] ~ - - - l f o r h  = 1, , •  

2 for k ~ 1 step 1 while there were candidates found m the last pass do 
begin 

3 lmax ~-- 0 
jrmn ~ n + 1 

4 for h ~ 0 step 1 until e do 
begin 

5 t ~ - - h + k  
J ~ NEXTB(a .  G[h]) 
ff l -> I mm 

6 then begin 
F[h ] ~ lmax 
G[h] ~ Imm 
NEWP[h ] <--- - 1 

end 
7 else begin 

nsktp ~ (, - 1) - F [ h ]  
if nsklp = 0 
then NEWP[h] ~ P[h] 
else begin 

NEWP[h] ~ GETSPACE 
KEEP[NEWP[h]] ~ (l - 1, nsktp, P[h - nsktp]) 

end 
8 lmax ~ l 

I mm *-1 
F[h ] ~ l 
G[h] ~'-1 

end 
9 end loop of step 4 

10. if no k-candidates were found then gotn step 13 
for : *-  0 step l until • do 
begin 

11 REMOVE(PIt]) 
Pit] ~ NEWP[t] 

end loop of step 10 
12 end loop of step 2 
13 x ~ mm h such that P[h] _> 0, -1  if none such 

p c - - k - 1  
ifx < 0 0 R p  < m - • then {print "NO", gain step 15} 

14. RECOVER 
15 END of ALGE 

SUBROUTINE RECOVER 

1 SKIP[x + 1] <-- 0 
lastmatch <-- Fix] 
y ~ P[x] 
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2 whi ley  ~ do 
begin 

count ~ nsk~p[y] 
posttton ~ aa[y] 

3 while count > 0 do 
begin 

SKIP[x] ~ posttlon 
x ~ - x - 1  
positzon ~-- posttton - 1 
count ~-- count - 1 

end loop of step 3 
y ~- pt[y] 

end loop of step 2 
4. x ~-- 1 

k ~ - I  
for t ~-  1 step 1 until lastmatch do 
if~ = SKIP[x] thenx  ~--x + 1 
else begin 

Ck 4.-- az 

k ~ - k + l  
end 

5 END OF RECOVER 

The loop of step 2 evaluates  sets of feasible k-candidates  for k = 1, 2, . . . .  The  loop 
of step 4 evaluates  whether  there ~s a teasible k-candida te  having precisely h skipped 
posit ions,  for h = 0, 1, ... , e, by using L e m m a  6 to de te rmine  the j -va lue  for a 
part icular  t-value and  then  checking,  by using L e m m a  2, whether  (i, j} is minimal ,  imax  
is the max imum t-value of feastble k-candidates  genera ted  thus far (i.e. w t th / -va lues  
less than the current  value of i); j m m  is the corresponding j -va lue  (which is the 
m i n i m u m  j -va lue  of feasible k-candidates  genera ted  thus far). If (i, j} is a feasible k- 
candidate ,  then it is s tored in the F and G arrays and informat ion  wtll  be stored in P[h],  
enabhng  recovery of any addi t ional  skipped posit ions that occur be tween  i and  F[h] as 
well as the skipped posit ions occurring before F[h] ((F[h], G[h]) is a (k - 1)-candidate 
that can genera te  (i, ])).  The h skipped posit ions corresponding to (F[h],  G[h]) are 
recoverable  by accessing K E E P [ P [ h ] ] .  In general  there may be more  than one  feasible 
k-candidate  that will be genera ted  by (F[h],  G[h]) .  Thus we must  not  destroy P[h] unt i l  
all required  references to K E E P [ P [ h ] ]  are made.  For  this reason,  new values for the P 
array are stored in the N E W P  array. When  we no longer  need  the old values of P (after 
the inner  loop of steps 4 -9 ) ,  we can then replace them with the new values,  be ing 
careful to decrement  reference counts  of K E E P  elements  that were poin ted  to by the 
old P array 

Func t ion  R E M O V E ( x )  decrements  the reference count  of K E E P [ x ]  (unless x --< 0, in 
which case noth ing  is done) ,  and ,  if K E E P [ x ]  now has reference count  zero,  then a call 
will be  made to R E M O V E ( p t [ x ] )  after K E E P [ x ]  has been  put  on the garbage l inked list 
by using P U T S P A C E .  

Imp lemen ta t i on  o f  N E X T B  

The following should be done  before using A L G E :  

1 Sort the symbols m A and then construct a balanced binary search tree of symbols that appear in string A 
Let there be ss such symbols (ss -< m). 

2. for k ~ 1 step 1 until ss do LAS'I~k] ,-- 0 
3 for i ~-- 1 step 1 until n do 

begin 
find out that bt = 0k 
1 ~ LAST[k] 
LAST[k] ~ t 
if I ~ 0 then NEXT[i ] ~-- t 
else FIRST[k] ~-- t 

end loop of step 3 
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4. start z.- 1 
for k ~ 1 step 1 until ss  do 
bet~Jn 

Place the positions j of B such that bj = 0~ into N [ s t a r t ]  through N [ s t a r t  + n n  - 1] where 0~ occurs n n  

times in string B. The first posmon in B at which 0k occurs Is at FIRST[k]. If 0~ occurs at position j, then 
the next occurrence of 0~ in B wdl be at posinon NEXT[i ] unless LAST[k] = j, in which case there arc no 
more occurrences of 0~ in B. 
S[k] ~ start 
start ~ start + n n  

end 

We can find out  that a, = 0k m time O( logs) .  N[S[1]:S~k + 1] - 1] holds the block 
of positions j with b e = 0~. This block of  cells can be searched by using binary search of  
a hnearly ordered array [11, Sec. 6.2.1].  N E X T ( a ,  j) can thus be executed in t ime 
O(log n). 

If s is very small, then the following alternate way of computing NEXTB(O,  j) may be 
preferred: Instead of constructing a compressed array in step 4, construct a N E X T B  
matrix while in step 3. For  each l,  set N E X T B [ k ,  t] = i f o r j  _< t < i. This will result in 
time and space complexity (of the setup) of O(sn). The function NEXTB(O,  j) can be 
evaluated by determining that 0 = 0k in time O(log S) and by doing a simple table look- 
up. 

A L G E  retains k-candidates ,  as did A L G D ,  except for those candidates that cannot 
lead to a sufficiently long common subsequence because too many A-posi t ions  have 
already been skipped.  The (k + D-candidates  that can be generated by the dropped  k-  
candidates also skip too many A-posi t ions.  

LEMMA 7. A L G E  retains all feasible k-candidates. 
PROOF. By induction on k.  I t  is trivially true for k = 0 (the F and G arrays are 

initialized to zero in step 1). Assume that the set of feasible (k - 1)-candidates has been 
evaluated and stored in arrays F and G. A L G E  generates the set of feasible k-  
candidates in order  of increasing/-value.  F[h] is to hold i = h + k if i is an / -va lue  of a 
feasible k-candidate;  otherwise F[h] Is to hold the maximum i '  < i such that i '  is a 
feasible k-candidate .  G[h] is to hold the corresponding j-value,  imax and jmin hold the 
last-generated feasible k-candidate ,  which, by Lemma 2, has the maximum/-va lue  and 
minimumj-value  generated thus far. Step 3 initializes them to correctly indicate that no 
k-candidates have yet been generated.  Step 5 evaluates the j -value for a given potential  
k-candidate  by using Lemma 6. I f j  _>jmin then, even though the necessary condition for 
feasibility has been met,  (i, ]) is not minimal since it would be ruled out by (imax, jmin).  
In this case step 6 sets F[h] and G[h] to imax andjmin.  I f j  < jmin,  then (i , j)  is minimal 
since it cannot be ruled out by any previously generated k-candidate  (/ < jmm)  and it 
cannot be ruled out by any future generated k-candidate  (all future i' > i). In this case 
step 8 sets F[h] and G[h] and also updates tmax and jmin. [] 

THEOREM 3. A L G E  correctly computes the LCS  o f  strings A and B i f  the LCS  is o f  
length at least m - ~. 

PROOF. By Lemma 7, A L G E  correctly keeps minimal k-candidates .  Thus,  if there 
is a common subsequence of length p .~ m - ¢, then there is a minimal p-candida te  
which will be feasible. The data  structure of A L G E  keeps track, for each feasible k- 
candidate (t, j ) ,  of the h = i - k positions in string A that have been skipped in the 
common subsequence of  length k of At ,  and Bls. P[h] points to the e lement  of K E E P  
that contains the necessary information.  P is updated in step 7 when a feasible k-  
candidate is generated.  If  any addit ional positions are skipped (between the k-candidate  
(i, j )  and the (k - 1)-candidate (i ' ,  j ' )  that generated (i, ])) ,  then that information is 
recorded in an element  of K E E P  as well as a pointer ,  enabling recovery of the h - 
nskip previously skipped A-posi t ions  (of (i', j ' ) ) .  Subroutine R E C O V E R  recovers the 
skipped posiUons of a feasible p-candidate  by reversing the process in which they were 
stored and then computes the LCS by deleting the skipped positions from string A .  [] 

THEOREM 4. For ~ _< O(nlt2), A L G E  requires space linear m n. 



Algorithms for the Longest Common Subsequence Problem 673 

PROOF. The KEEP array requires O(e 2) space: The common subsequence implied by 
k-candidate  (h + k,j~ has h skipped A-posi t ions,  h <- ~, and thus can use at mos th  spaces 
in the KEEP array. The total number  of spaces referred to by all feasible k-candidates is 
thus at most ~(e + 1)/2. Adding to that the (exactly) E references to get the set of  feasible 
(k + 1)-candidates gives a total of no more than (e 2 + e)/2.  Each element  of array KEEP 
requires four words (aa, nskip, pt, and a reference counter).  

The arrays and space that they use are as follows: Fie], G[e], C[p] ,  Pie] ,  NEWP[e], 
KEEP[2e 2 + 2e], FIRST[ss], NEXT[n], LAST[ss], SKIP[e], S[ss], N[n]. 

The NEXTB function requires at most 2n locations to store the various balanced 
binary search trees. 

Thus a total of at most 2e ~ + 7e + 4n + p + 3ss locations is used. F o r e  -< 0(nl/2), space 
requirements are linear in n. [] 

THEOREm 5. ALGE requires time O(pe log n). 
PROOF. Preprocessing for the NEXTB function requires time O(n log m). Step 1 

takes time O(e). Step 2 executes steps 3-12 p times. Step 3 takes constant t ime for a 
total time of O(p). Step 4 executes steps 5-9 at most e times. Step 5 takes time O(log n)  
for a total time of O(pe log n). Steps 6-9  take constant t ime for a total t ime of O(pe). 
Steps 10-12,  excluding time spent in function REMOVE, take time O(e) for a total time 
of O(pe). 

Subroutine RECOVER recovers at most c skipped positrons (taking time O(e)) and 
then deletes them from string A (taking time O(m)) for a total t ime of O(m). 

The number of references (to array KEEP) removed is at most the number  of  
references inserted. There are at most pe references inserted (one per  execution of step 
7), and the amount of t ime (per reference removal)  spent in function REMOVE is 
constant. Therefore the total time spent in function REMO VE is O(pe). 

Therefore the total time of execution of ALGE is O(pe log n). [] 
It is noted that step 5, reqmring O(log n)  t ime, is the bot t leneck,  causing total time 

requirements of O(pe log n). P. van Emde  Boas 's  recent algorithm for priority queues 
[19] appears capable of solving the position-finding problem in time O(log log n) .  If  so, 
this would reduce the time bound of this problem to O(pe log log n). 

ALGE assumes that c is known. If ~ is not known, then set E ~-- 2 and proceed 
through the algorithm. If that value of ~ is insufficient (i.e. there  is no common 
subsequence of length m - e), then double the guess for e and continue iteratively until 
a common subsequence is found. 

Total time spent will be (letting k be the multiplicative coefficient of the time 
requirement)  

2pk l o g n  + 4pk l o g n  + ... + epk l o g n ,  

which is less than 2pek log n. Since e < 2(m + 1 - p) ,  we can recover an LCS in time 
O(p(m + 1 - p)log n).  

Other Algorithms 

The only known algorithm for the LCS problem with worst-case behavior less than 
quadratic is due to Paterson [14]. The algorithm has complexity O(n~log log n/ log n). It 
uses a "Four  Russians" approach (see [3] or [1, pp. 244-247]) .  Essentially, instead of 
matrix L (where L[t, j ]  is the length of an LCS of A1, and Btj) being calculated one 
element at a time (see [7]), the matrix is broken up into boxes of some appropr ia te  size 
k.  The high sides of a box (the 2k - 1 elements of L on the edges of the box with 
largest indices) are computed from L-values known for boxes adjacent  to it on the low 
side and from the relevant symbols of A and B by using a look-up table which was 
precomputed.  

The algorithm assumes a fixed alphabet  size although modifications to the algorithm 
may be able to get around that condition. 
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There are 2k + 1 e lements  of L adjacent to a box on the low side. Two adjacent L- 
e lements  can differ by either zero or one.  There are thus 22k possibilities in this respect. 
The A-  and B-values range over an alphabet of  size s for each of  2k e lements ,  yielding a 
multiplicative factor o fs  zk, and the total number of boxes to be precomputed is therefore 
2 ~kt~+l°gs~. Each such box can be precomputed in time O(k ~) for a total precomputing 
time of O(k~22k~+l°g ~). 

There are (n/k) z boxes to be looked up, each of which will require O(k log k) t ime to 
be read, for a total t ime of O(n21og k/k). 

The total execution time will therefore be O(k~2 ~k~+~°g s~ + n21og k/k). If we let k = log 
n/2(1 + log s) ,  we see that the total execution time will be O(n21og log n/log n).  

Restrictions on the LCS Problem 

Szymanski [17] shows that ff we consider the LCS problem with the restriction that no 
symbol appears more than once within either input string, then this problem can be 
solved in time O(n log n). 

In addition if one of the input strings is the string of  integers 1 - n ,  this problem is 
equivalent to finding the longest ascending subsequence in a string of distinct integers. If 
we assume that a comparison between integers can be done in unit time, this problem can 
be solved in time O(n log log n) by using the techniques of van Emde Boas [18}. 
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