
12

Refining Core String Edits and Alignments

In this chapter we look at a number of important refinements that have been developed
for certain core string edit and alignment problems. These refinements either speed up a
dynamic programming solution, reduce its space requirements, or extend its utility.

12.1. Computing alignments in only linear space

One of the defects of dynamic programming for all the problems we have discussed is
that the dynamic programming tables use ®(nm) space when the input strings have length
n and m. (When we talk about the space used by a method, we refer to the maximum
space ever in use simultaneously. Reused space does not add to the count of space use.)
It is quite common that the limiting resource in string alignment problems is not time but
space. That limit makes it difficult to handle large strings, no matter how long we may be
willing to wait for the computation to finish. Therefore, it is very valuable to have methods
that reduce the use of space without dramatically increasing the time requirements.

Hirschberg [224] developed an elegant and practical space-reduction method that works
for many dynamic programming problems. For several string alignment problems, this
method reduces the required space from &(nm) to O(n) (for n < m) while only doubling
the worst-case time bound. Miller and Myers expanded on the idea and brought it to
the attention of the computational biology community [344]. The method has since been
extended and applied to many more problems [97]. We illustrate the method using the
dynamic programming solution to the problem of computing the optimal weighted global
alignment of two strings.

12.1.1. Space reduction for computing similarity

Recall that the similarity of two strings is a number, and that under the similarity objective
function there is an optimal alignment whose value equals that number. Now if we only
require the similarity V(n,m), and not an actual alignment with that value, then the
maximum space needed (in addition to the space for the strings) can be reduced to 2m.
The idea is that when computing V values for row i, the only values needed from previous
rows are from row i — 1; any rows before i — 1 can be discarded. This observation is clear
from the recurrences for similarity. Thus, we can implement the dynamic programming
solution using only two rows, one called row C for current, and one called row P for
previous. In each iteration, row C is computed using row P, the recurrences, and the two
strings. When that row C is completely filled in, the values in row P are no longer needed
and C gets copied to P to prepare for the next iteration. After n iterations, row C holds
the values for row n of the full table and hence V(n, m) is located in the last cell of that
row. In this way, V(n, m) can be computed in 0{m) space and O(nm) time. In fact, any

254

12.1. COMPUTING ALIGNMENTS IN ONLY LINEAR SPACE 255

n-i

m—j m
Figure 12.1: The similarity of the first / characters of S\ and the first j characters of Sr

2 equals the similarity
of the last / characters of Si and the last j characters of S2. (The dotted lines denote the substrings being
aligned.)

single row of the full table can be found and stored in those same time and space bounds.
This ability will be critical in the method to come.

As a further refinement of this idea, the space needed can be reduced to one row plus
one additional cell (in addition to the space for the strings). Thus m + 1 space is all that
is needed. And, if n < m then space use can be further reduced to n + 1. We leave the
details as an exercise.

12.1.2. How to find the optimal alignment in linear space

The above idea is fine //"we only want the similarity V(n, m) or just want to store one
preselected row of the dynamic programming table. But what can we do if we actually
want an alignment that achieves value V(n, m)? In most cases it is such an alignment
that is sought, not just its value. In the basic algorithm, the alignment would be found
by traversing the pointers set while computing the full dynamic programming table for
similarity. However, the above linear space method does not store the whole table and
linear space is insufficient to store the pointers.

Hirschberg's high-level scheme for finding the optimal alignment in only linear space
performs several smaller alignment computations, each using only linear space and each
determining a bit more about an actual optimal alignment. The net result of these compu-
tations is a full description of an optimal alignment. We first describe how the initial piece
of the full alignment is found using only linear space.

Definition For any string a, let ar denote the reverse of string a.

Definition Given strings S\ and S2, define V(i, j) as the similarity of the string con-
sisting of the first / characters of S[, and the string consisting of the first j characters
of Sr

2. Equivalently, V(i, j) is the similarity of the last i characters of Si and the last j
characters of S2 (see Figure 12.1).

Clearly, the table of V(i, j) values can be computed in 0{nm) time, and any single
preselected row of that table can be computed and stored in O(nm) time using only O(m)
space.

The initial piece of the full alignment is computed in linear space by computing V (n, m)
in two parts. The first part uses the original strings; the second part uses the reverse strings.
The details of this two-part computation are suggested in the following lemma.

Lemma 12.1.1. V(n, m) = maxo<*<m[V(n/2, k) + V(n/2, m - k)].

256 REFINING CORE STRING EDITS AND ALIGNMENTS

PROOF This result is almost obvious, and yet it requires a proof. Recall that Si[l..i] is
the prefix of string S\ consisting of the first / characters and that S[[l . i] is the reverse
of the suffix of S\ consisting of the last i characters of Si. Similar definitions hold for S2

and Sj.
For any fixed position k' in S2, there is an alignment of S\ and S2 consisting of an

alignment of S,[l..n/2] and S2[l..k'] followed by a disjoint alignment of Si[n/2 + l..n]
and S2[k' + \..m]. By definition of V and V, the best alignment of the first type has
value V(n/2, k') and the best alignment of the second type has value V(n/2, m — k'), so
the combined alignment has value V(n/2, k') + V(n/2, m - k') < maxk[V(n/2, k) +
V(n/2,m-k)] < V(n,m).

Conversely, consider an optimal alignment of Si and S2. Let k' be the right-most position
in S2 that is aligned with a character at or before position n/2 in S\. Then the optimal
alignment of Si and S2 consists of an alignment of Si [1..n/2] and S2[l..k'] followed by
an alignment of Si [n/2 + l..n] and S2[k' + \..m\. Let the value of the first alignment be
denoted p and the value of the second alignment be denoted q. Then p must be equal
to V(n/2, k'), for if p < V(n/2, k') we could replace the alignment of Si[l..n/2] and
S2[l..k'] with the alignment of Si[1..n/2] and S2[l..k'] that has value V(n/2,k'). That
would create an alignment of Si and S2 whose value is larger than the claimed optimal.
Hence p = V(n/2,k'). By similar reasoning, q = V(n/2,m — k'). So V{n,m) =
V(n/2, it') + V(n/2, m-k')< max*[V(n/2, jfc) + V(n/2, m - k)].

Having shown both sides of the inequality, we conclude that V(n, m) = max^[V(n/2, k)
+ Vr(n/2,m-k)]. •

Definition Let k* be a position k that maximizes [V(n/2, k) + V(n/2, m - k)].

By Lemma 12.1.1, there is an optimal alignment whose traceback path in the full
dynamic programming table (if one had filled in the full n by m table) goes through cell
(n/2, k*). Another way to say this is that there is an optimal (longest) path L from node
(0,0) to node (n, m) in the alignment graph that goes through node (n/2, k*). That is the
key feature of k*.

Definition Let Ln/2 be the subpath of L that starts with the last node of L in row n/2—I
and ends with the first node of L in row n/2 + 1.

Lemma 12.1.2. A position k* in row n/2 can be found in O(nm) time and O(m) space.
Moreover, a subpath Ln/2 can be found and stored in those time and space bounds.

PROOF First, execute dynamic programming to compute the optimal alignment of Si
and S2, but stop after iteration n/2 (i.e., after the values in row n/2 have been computed).
Moreover, when filling in row n/2, establish and save the normal traceback pointers for
the cells in that row. At this point, V(n/2, k) is known for every 0 < k < m. Following
the earlier discussion, only O(m) space is needed to obtain the values and pointers in rows
n/2. Second, begin computing the optimal alignment of S[and S2 but stop after iteration
n/2. Save both the values for cells in row n/2 along with the traceback pointers for those
cells. Again, O(m) space suffices and value V(n/2 , m — k) is known for every k. Now,
for each k, add V(n/2, k) to V(n/2, m — k), and let k* be an index k that gives the largest
sum. These additions and comparisons take O(m) time.

Using the first set of saved pointers, follow any traceback path from cell (n/2, k*) to a
cell k\ in row n/2 — 1. This identifies a subpath that is on an optimal path from cell (0, 0) to
cell (n/2, k*). Similarly, using the second set of traceback pointers, follow any traceback

12.1. COMPUTING ALIGNMENTS IN ONLY LINEAR SPACE 257

n / 2 - l

nil

A

B

71/2+ 1

Figure 12.2: After finding k*, the alignment problem reduces to finding an optimal alignment in section A
of the table and another optimal alignment in section B of the table. The total area of subtables A and B is
at most cnm/2. The subpath Ln/2 through cell (n/2, k*) is represented by a dashed path.

path from cell (n/2, k*) to a cell k2 in row n/2 + 1. That path identifies a subpath of an
optimal path from (n/2, k*) to (n, m). These two subpaths taken together form the subpath
L,,/2 that is part of an optimal path L from (0, 0) to (n, m). Moreover, that optimal path
goes through cell (n/2, k*). Overall, 0(nm) time and O(m) space is used to findk*,k\, k2,
and Ln/2. D

To analyze the full method to come, we will express the time needed to fill in the
dynamic programming table of size p by q as cpq, for some unspecified constant c, rather
than as O(pq). In that view, the n/2 row of the first dynamic program computation is
found in cnm/2 time, as is the n/2 row of the second computation. Thus, a total of cnm
time is needed to obtain and store both rows.

The key point to note is that with a cnm-time and O(w)-space computation, the al-
gorithm learns k*,k\, k2, and Ln/2. This specifies part of an optimal alignment of Si and
52, and not just the value V(n, m). By Lemma 12.1.1 it learns that there is an optimal
alignment of S\ and S2 consisting of an optimal alignment of the first n /2 characters of
S\ with the first k* characters of 52, followed by an optimal alignment of the last n/2
characters of Si with the last m—k* characters of S2. In fact, since the algorithm has also
learned the subpath (subalignment) Ln/2, the problem of aligning Si and S2 reduces to
two smaller alignment problems, one for the strings Si[l. .n/2 — 1] and 52[l..Jti], and one
for the strings S][n/2 + l..ra] and S2[k2..m]. We call the first of the two problems the top
problem and the second the bottom problem. Note that the top problem is an alignment
problem on strings of lengths at most n/2 and k*, while the bottom problem is on strings
of lengths at most n/2 and m — k*.

In terms of the dynamic programming table, the top problem is computed in section A
of the original n by m table shown in Figure 12.2, and the bottom problem is computed
in section B of the table. The rest of the table can be ignored. Again, we can determine
the values in the middle row of A (or B) in time proportional to the total size of A (or B).
Hence the middle row of the top problem can be determined at most ck*n/2 time, and the
middle row in the bottom problem can be determined in at most c(m — k*)n/2 time. These
two times add to cnm/2. This leads to the full idea for computing the optimal alignment
of Si and S2.

258 REFINING CORE STRING EDITS AND ALIGNMENTS

12.1.3. The full idea: use recursion

Having reduced the original n by m alignment problem (for S\ and S2) to two smaller
alignment problems (the top and bottom problems) using O(nm) time and O(m) space,
we now solve the top and bottom problems by a recursive application of this reduction.
(For now, we ignore the space needed to save the subpaths of L.) Applying exactly the
same idea as was used to find k* in the n by m problem, the algorithm uses 0{m) space
to find the best column in row n/4 to break up the top n/2 by k\ alignment problem.
Then it reuses O(m) space to find the best column to break up the bottom n/2 by m — k2

alignment problem. Stated another way, we have two alignment problems, one on a table
of size at most n/2 by k* and another on a table of size at most n/2 by m — k*. We can
therefore find the best column in the middle row of each of the two subproblems in at most
cnk*/2 + cn(m — k*)/2 = cnm/2 time, and recurse from there with four subproblems.

Continuing in this recursive way, we can find an optimal alignment of the two original
strings with log2 n levels of recursion, and at no time do we ever use more than O(m) space.
For convenience, assume that n is a power of two so that each successive halving gives a
whole number. At each recursive call, we also find and store a subpath of an optimal path
L, but these subpaths are edge disjoint, and so their total length is O(n + m). In summary,
the recursive algorithm we need is:

Hirschberg's linear-space optimal alignment algorithm

Procedure OPTAQ, V, r, r');
begin
h := (/' - /) /2;
In 0(1' — I) = O(m) space, find an index k* between / and /', inclusively, such that

there is an optimal alignment of Si [I..I'] and S2[r..r'] consisting of an optimal alignment of
Si [l..h] and S2[r..k*] followed by an optimal alignment of Si [h + 1../'] and S2[k* + l . .r '] .
Also find and store the subpath Lh that is part of an optimal (longest) path L' from cell
(/, r) to cell (/', r') and that begins with the last cell k\ on L' in row h — 1 and ends with
the first cell k2 on L' in row h + 1. This is done as described earlier.

Call OPTA(l, h-\,r,kx); {new top problem}
Output subpath Lh;
Call OPTAQi + 1,1', k2, r'); {new bottom problem}
end.

The call that begins the computation is to OPTA(\, n, 1, m). Note that the subpath Lh

is output between the two OPTA calls and that the top problem is called before the bottom
problem. The effect is that the subpaths are output in order of increasing h value, so that
their concatenation describes an optimal path L from (0, 0) to (n, m), and hence an optimal
alignment of Si and S2.

12.1.4. Time analysis

We have seen that the first level of recursion uses cnm time and the second level uses
at most cnm/2 time. At the ith level of recursion, we have 2'"1 subproblems, each of
which has n/2'~l rows but a variable number of columns. However, the columns in these
subproblems are distinct so the total size of all the problems is at most the total number
of columns, m, times n/2'~]. Hence the total time used at the ith level of recursion is at

12.2. FASTER ALGORITHMS WHEN DIFFERENCES ARE BOUNDED 259

most cnm/2'~K The final dynamic programming pass to describe the optimal alignment
takes cnm time. Therefore, we have the following theorem:

Theorem 12.1.1. Using Hirschberg 's procedure OPTA, an optimal alignment of two
strings of length n and m can be found in X °̂f" cnm/2'~' < 2cnm time and O(m) space.

For comparison, recall that cnm time is used by the original method of filling in the
full n by m dynamic programming table. Hirschberg's method reduces the space use from
®(nm) to 0(m) while only doubling the worst-case time needed for the computation.

12.1.5. Extension to local alignment

It is easy to apply Hirschberg's linear-space method for (global) alignment to solve the
local alignment problem for strings Si and 52. Recall that the optimal local alignment of
Si and S2 identifies substrings a and P whose global alignment has maximum value over
all pairs of substrings. Hence, if substrings a and /J can be found using only linear space,
then their actual alignment can be found in linear space, using Hirschberg's method for
global alignment.

From Theorem 11.7.1, the value of the optimal local alignment is found in the cell
0'*, j*) containing the maximum v value. The indices i* and j * specify the ends of strings
a and fi whose global alignment has a maximum similarity value. The v values can be
computed rowwise, and the algorithm must store values for only two rows at a time. Hence
the end positions i* and j * can be found in linear space. To find the starting positions of
the two strings, the algorithm can execute a reverse dynamic program using linear space
(we leave this to the reader to detail). Alternatively, the dynamic programming algorithm
for v can be extended to set a pointer h(i, j) for each cell (i, j), as follows: If v(i, j) is
set to zero, then set the pointer h(i, j) to (i, j); if v(i, j) is set greater than zero, and if
the normal traceback pointer would point to cell (p, q), then set h(i, j) to h(p, q). In this
way, h(i*, j*) specifies the starting positions of substrings a and fl, respectively. Since a
and ft can be found in linear space, the local alignment problem can be solved in 0{nm)
time and 0{m) space. More on this topic can be found in [232] and [97].

12.2. Faster algorithms when the number of differences is bounded

In Sections 9.4 and 9.5 we considered several alignment and matching problems where the
number of allowed mismatches was bounded by a parameter k, and we obtained algorithms
that run faster than without the imposed bound. One particular problem was the k-mismatch
problem, finding all places in a text T where a pattern P occurs with at most it mismatches.
A direct dynamic programming solution to this problem runs in 0(nm) time for a pattern
of length n and a text of length m. But in Section 9.4 we developed an <9(ifcm)-time solution
based on the use of a suffix tree, without any need for dynamic programming.

The 0(km)-\ime result for the ̂ -mismatch problem is useful because many applications
seek only exact or nearly exact occurrences of P in T. Motivated by the same kinds of
applications (and additional ones to be discussed in Section 12.2.1), we now extend the
^-mismatch result to allow both mismatches and spaces (insertions and deletions from the
viewpoint of edit distance). We use the term "differences" to refer to both mismatches and
spaces.

260 REFINING CORE STRING EDITS AND ALIGNMENTS

Two specific bounded difference problems

We study two specific problems: the k-difference global alignment problem and the more
involved k-difference inexact matching problem. This material was developed originally in
the papers of Ukkonen [439], Fickett [155], Myers [341], and Landau and Vishkin [289].
The latter paper was expanded and illustrated with biological applications by Landau,
Vishkin, and Nussinov [290]. There is much additional algorithmic work exploiting the
assumption that the number of differences may be small [341, 345, 342, 337,483, 94,93,
95, 373, 440, 482, 413, 414, 415]. A related topic, algorithms whose expected running
time is fast, is studied in Section 12.3.

Definition Given strings Si and S2 and a fixed number k, the k-difference global
alignment problem is to find the best global alignment of Si and S2 containing at most
k mismatches and spaces (if one exists).

The fc-difference global alignment problem is a special case of edit distance and is
useful when 5i and 52 are believed to be fairly similar. It also arises as a subproblem in
more complex string processing problems, such as the approximate PCR primer problem
considered in Section 12.2.5. The solution to the fc-difference global alignment problem
will also be used to speed up global alignment when no bound k is specified.

Definition Given strings P and T, the k-difference inexact matching problem is to find
all ways (if any) to match P in T using at most k character substitutions, insertions, and
deletions. That is, find all occurrences of P in T using at most k mismatches and spaces.
(End spaces in T but not P are free.)

The inclusion of spaces, in addition to mismatches, allows a more robust version of
the fc-mismatch problem discussed in Section 9.4, but it complicates the problem. Unlike
our solution to the ^-mismatch problem, the ^-differences problem seems to require the
use of dynamic programming. The approach we take is to speed up the basic 0(nm)-time
dynamic programming solution, making use of the assumption that only alignments with
at most k differences are of interest.

12.2.1. Where do bounded difference problems arise?

There is a large (and growing) computer science literature on algorithms whose efficiency is
based on assuming a bounded number of differences. (See [93] for a survey and comparison
of some of these, along with an additional method.) It is therefore appropriate, before
discussing specific algorithmic results, to ask whether bounded difference problems arise
frequently enough to justify the extensive research effort.

Bounded difference problems arise naturally in situations where a text is repeatedly
modified (edited). Alignment of the text before and after modification can highlight the
places where changes were made. A related application [345] concerns updating a graphics
screen after incremental changes have been made to the displayed text. The assumption
behind incremental screen update is that the text has changed by only a small amount, and
that changing the text on the screen is slow enough to be seen by the user. The alignment
of the old and new text then specifies the fewest changes to the existing screen needed to
display the new text. Graphic displays with random access can exploit this information to
very rapidly update the screen. This approach has been taken by a number of text editors.
The effects of the speedup are easily seen and are often quite dramatic.

	III Inexact Matching, Sequence Alignment, Dynamic Programming
	12 Refining Core String Edits and Alignments
	12.1 Computing alignments in only linear space
	12.1.1. Space reduction for computing similarity
	12.1.2. How to find the optimal alignment in linear space
	12.1.3. The full idea: use recursion
	12.1.4. Time analysis
	12.1.5. Extension to local alignment

	12.2 Faster algorithms when the number of differences are bounded
	12.2.1. Where do bounded difference problems arise?

