
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 20, 18+3,1 (1980)

A Faster Algorithm Computing String Edit Distances*

WILLIAM J. MASEK

MITLaboratory for Computer Science, Cambridge, Massachusetts 02139

AND

MICHAEL S. PATESON

School of Computer Science, University of Warwick, Coventry, Warwicks, United Kingdom

Received September 25, 1978; revised August 6, 1979

The edit distance between two character strings can be defined as the minimum cost of
a sequence of editing operations which transforms one string into the other. The operations
we admit are deleting, inserting and replacing one symbol at a time, with possibly different
costs for each of these operations. The problem of finding the longest common subsequence
of two strings is a special case of the problem of computing edit distances. We describe an
algorithm for computing the edit distance between two strings of length n and m, n > m,
which requires O(n * max(1, m/log n)) steps whenever the costs of edit operations are
integral multiples of a single positive real number and the alphabet for the strings is
finite. These conditions are necessary for the algorithm to achieve the time bound.

1. INTRODUCTION

Wagner and Fischer [7] presented an algorithm for determining a sequence of edit
transformations that changes one string into another. The execution time of their algo-
rithm is proportional to the product of the lengths of the two input strings. The same
three types of operations are used here, namely: (1) inserting a character into a string;
(2) deleting a character from a string; and (3) replacing one character of a string with
another. We present an algorithm with an asymptotically faster execution time, for
example, O(n2/log n) when both strings are of length II, providing that the alphabet for
the strings is finite and all edit costs are integral multiples of some real number r.

This algorithm computes an optimal edit sequence for pairs of strings. As a special
case it can compute the longest common subsequence of two strings.

For the infinite alphabet case Wong and Chandra [8] obtained upper and lower bounds
proportional to rz2 using a slightly restricted model of computation. Aho et al. [l] obtained
similar results for the longest common subsequence problem. Lowrance and Wagner [6]

* This work was supported by the National Science Foundation under Research Grant GJ-43-
634X, Contract MCS74-12997 A04.

0022~OOOO/80/010018-14$02.00/O
Copyright 8 1980 by Academic Press, Inc.
AU rights of reproduction in any form reserved.

18

COMPUTING STRING EDIT. DISTANCES 19

extended the results of [A to include the operation of interchanging adjacent characters.
They developed an O(n2) algorithm solving their extended problem.

1.1. Basic DeJinitions

The following notation and conventions will be used.

A A string of characters over some alphabet 2.

1 A 1 The length of string A.

A* The nth character of the string A (I A, 1 = 1).

Ai*i The string A, . . . Aj (1 ALi I =j - j + 1).

An An abbreviation for Al,n.

h The null string also denoted A”.

An edit operation is a pair (a, b) # (h, h) of strings’ of length less than or equal to 1,
also denoted as a + b. String B results from string A by the edit operation a -+ b,
written “A -+ B via a + b,” if A = ua7 and B = ab7 for some strings u and 7. We call
a + b a replacement operation if a # h and b f h, a delete operation if b =)\, and an
insert operation if a = h.

A sequence S of edit operations will be called an edit sequence. Let S = s, , ss ,..., s,
be an edit sequence; an S derivation from A to B is a sequence of strings Co , C, ,..., C,,,
such that A = Co, B = C,,, and for all 1 < i < m, CiPl -+ Ci via s(. (Note in this
case the Ci’s represent a sequence of complete strings, not individual characters.) If
there is some S derivation of A to B, we say S takes A to B.

A costfunction y is a function assigning a nonnegative real number to each edit operation
a -+ b. We define y(S) for any edit sequence S = s, ,..., s, to be y(S) = CIGiGrn Y(Q).
The edit distance 6(y, A, B) from string A to string B using the cost function y is defined
by a(~, A, B) = min{y(S) 1 S is an edit sequence taking A to B}.

We may assume y(a + b) = S(y, a, b) for all edit operations a -+ b. This leads to no
loss of generality, since for any y’ we may define a new cost function y by y(a -+ b) =
6(y’, a, b). Then y satisfies the stated property and 8(y’, A, B) = S(y, A, B) for all
strings A and B.

Let 6 denote the distance function between the strings A and B using the cost function
y; then we denote 6(y, Ai, Bj) by 6,,i . We write the cost of replacing a with b as R,., ,
the cost of deleting a as D, , and the cost of inserting a as 1, . We will assume I A I > I B I
throughout.

1.2. Previous Results

Wagner and Fischer’s matrix-filling algorithm in [7] computes 6 by constructing
a(IAI+l)x(IBl+l) dt e i matrix whose i, jth entry is S,,, (Fig. la). They showed
that each internal element of the matrix is determined by three adjacent matrix elements.
The initial vectors of a matrix are its first row and column. TheJinaZ vectors of a matrix
are its last row and column. Theorem 1 describes how they computed the initial vectors

20 MASK AND PATERSON

B B

A X b a b a a a A Xbabaaa

A 0123456 x 0123456
b” 2121234 1212345 b” 2 1 2 1 4 5

; 4321234 3212123 a b 4 3212123 1 4
b 5432345 b 5 2 5
b 6543456 b 6543456

(a) (4

FIG. 1. (a, b) Computing distances with matrices. The alphabet is {a, b}. Assume I = D = 1,
R,,, = Rb,, = 2 and R.,, = R,,, = 0.

of the matrix, and Theorem 2 provides the rule for computing subsequent matrix
elements.

THEOREM 1 [7]. 6,,, = O,andforaZli,jsuchthatl <i<lAl,l <j<lBI,

%,a = C DA? 3 and h3.5 = 1 IB, -
l(T<i l<tQ

THEOREMS [7]. ForaZZi,jsuch~hatl <i<lA[,l <j<lBI:

Si.5 = min(%.-l,j-~ f R,+,B~, k~,j + DAM' &,+.I + IBM).

Each of the / A 1 . 1 B I internal entries in the edit matrix for A and B can thus be
computed in constant time, so the construction of the entire matrix can be performed
with 0(I A I . 1 B I) elements steps. Our algorithm reduces the time needed to
0(1 A 1 . I B i/max(1, j B j/log 1 A I)) if the alphabet is finite and the edit costs are restricted.

2. A FASTER ALGORITHM

The transitive closure of a directed graph with n nodes can be easily computed with
an n x n matrix using O(n2) row operations. Arlazarov, et al. [3] proved that if the matrix
was split up into submatrices with a small number of rows, and all of the possible com-
putations on submatrices were precomputed, the problem could be solved using
O(n2/log n) row operations. This algorithm is commonly referred to as “the four Russians’
algorithm.” Our algorithm applies similar techniques to Wagner and Fischer’s edit
matrices.

(Hopcroft, Paul, and Valiant [5] p rovided a generalized version of the four Russians’
technique by showing that every computation performable in O(n2) steps on a multitape
Turing machine can be performed in O(n2/log n) steps on a unit-cost random-access

COMPUTING STRING EDIT DISTANCES 21

machine. Since the Fischer-Wagner algorithm can easily be implemented on a multitape
Turing machine running in O(n2) steps, it might appear that our result follows as an
immediate corollary. This, however, is not the case, since our method achieves time
O(na/log n) on a random-access machine under the logarithmic cost criterion [2]. The
operations executed on these machines have cost proportional to the length of their
operands plus the length of the addresses of their operands. For example, storing the
number n into a memory of size 2” requires time m to address the memory register plus
time log n to actually store the number.)

The four Russians’ algorithm works faster by splitting the computation into many
smaller computations. It computes all possible smaller computations, then puts them
together (using some of the small computations many times) to get the larger computation.
We follow a similar strategy. First, all possible (m + 1) x (m + 1) submatrices which
can occur in the full matrix are computed for a suitably chosen parameter m; then these
submatrices are combined to form the full matrix (like Fig. 1 b), and the edit cost is
computed.

2.1. Computing all the Submatrices

Define the (i, j, K) submatrix of the edit matrix S to be the k + 1 x k + 1 submatrix
whose upper left corner entry is (i, j). (Fig. lb shows the borders of the (i, j, K) submatrices
(0, 0, 3), (0, 3, 3), (3, 0, 3), and (3, 3, 3).) It is obvious from Theorem 2 that the values
in an (i, j, R) submatrix are determined solely by its initial vectors S(i, j), S(i, j + l),...,
S(i, j + k), and S(i, j), S(i + 1, j) ,..., S(i + k, j) along with its two strings LP+~*~+” and
Bj+l~j+~. The first part of our algorithm computes the values for all (i, j, m) submatrices
which can occur in any edit matrix using the same alphabet and cost function. It saves
each submatrix’s final vectors S(i + m, j + 1) ,..., S(i + m, j + m) and S(i + 1, j + m) ,...,
S(i + m, j + m) to be used later.

To compute the final vectors for each possible submatrix we must first be able to
enumerate the submatrices. We assume the alphabet is finite, so listing all length m
strings is easy; however, listing all m-length initial vectors may take too long. As we get
further into the matrix the values tend to increase, so listing all initial vectors may
become uneconomical, However, under a modest restriction on the costs assigned to
edit operations, there are only a finite number of differences between consecutive matrix
values for all edit matrices using the same cost function and alphabet. We will operate
with these differences instead. Define a step to be the difference between any two horizon-
tally or vertically adjacent matrix elements and a step vector as a vector of steps. Corollary
1 expresses Theorem 2 in terms of steps.

COROLLARY 1 (of Theorem 2).

S&i - si,j-1

= min{RA& - (S&j-i - si-1,~I), DAM + &-IA - si-,+I) - (hi-~ - &,-I), bBj)h

22 MASEK AND PATERSON

Now each (i, j, K) submatrix may be determined by a starting value 6(i, j), two initial
step vectors S(i,j + 1) - 6(i,j) ,..., 6(i, j + K) - 6(i, j + k - 1) and S(i + 1, j) -
%j),..., 6(i + K, j) - S(i + K - 1, j), along with the two strings LP+~*~+~ and B*+l*j+“.
Then our algorithm can compute the final step vectors for each possible submatrix
efficiently. To enumerate all possible submatrices we will enumerate all pairs of length m
strings and all pairs of length m step vectors.

The initial phase of our algorithm in which all submatrices are computed can now be
presented. Assuming some fixed ordering on the alphabet C and on the finite set of
possible step sizes we enumerate all length m strings and all length m step vectors in
lexicographic order. Then for each pair of strings C, D and pair of step vectors R, S
Algorithm Y calculates a submatrix of steps according to Corollary 1. There are two classes
of steps to consider, the ones moving horizontally and the ones moving vertically. There-
fore our algorithm computes two matrices of steps: T consisting of the vertical steps
and U consisting of the horizontal steps. The function Store saves R’ and S’, the final
step vectors of the edit submatrix determined by C, D, R, and S so that they can be
easily recovered given C, D, R, and S.

Algorithm Y

for each pair C, D of strings in .Zm and
each pair of length m step vectors R and S

do
begin

for i = 1 to m do
begin

T(i, 0) := R(i);
U(0, i) := S(i);

end;
for i = 1 to m do
forj= 1 tomdo

begin

T(i, j) := min{R,,,o, - U(i - 1, j), D, ,

ID, + T(i, j - 1) - U(i - 1, j)};

U(i, j) := min{Rci,nj - T(i,j - l),

DC,+ U(i- Lj)- T&j- ~),ID,,)
end;

R’ := <T(l, m) ,..., T(m, m));
s’ := (U(m, 1) ,..., U(m, m));
Store (R’, s’, R, S, C, D);

end;

COMPUTING STRING EDIT DISTANCES 23

Algorithm Y takes time O(m2 log m) to calculate and store each submatrix. The
O(m2) operations to calculate each submatrix each require time O(log m) to address their
operands. Since we know beforehand exactly how many submatrices we must precalculate
we can implement the Store function in time O(m2) by indexing into the RAM memory.
If we assume there are a finite number of possible differences between costs of edit
instructions, calculating all of the final step vectors takes total time O(cmm2 log m) =
O(km) for some k depending only on the number of steps and Z, but not m. Now we
observe that the size of steps in a matrix is bounded independently of the strings involved.

LEMMA 3. Let I = max(l, 1 a E Z}, D = max{D, j a E .Z}. For all A, B, i, j such that
1 <~<IAl,l <j<lBI

(i) -I < 6i.j - ai-l,f < D,

(ii) -D < & - Bi,3-1 < I.

Proof. (i) Ai may be taken to Bi by first deleting Ai then taking Ai-l to B’; therefore

8i.j d ai-1.j $ DA, and so 6i.j - Sd-1.j < DA(< D.

Again Ai-1 may be taken via Ai to Bj; thus

L.5 < I,4‘ + %.i or 6i.j - St-l,j 3 -IA< 2 --I*

Part (ii) follows by a similar argument. 1

Let Q = (D, 1 a E Z} u {Ia / a E Z} u {Ra,b 1 a, b E .C}. The set .Q is discrete only if
there exists some constant Y such that every element of D is some integral multiple of Y.
For finite alphabets, cost functions mapping into the integers or the rational numbers are
always discrete while functions mapping into the real numbers may not be. We will
show that if the set of edit costs is discrete then there is a finite set of steps occurring in
the submatrices independent of the strings we are using for this computation. Hence
Algorithm Y is applicable.

LEMMA 4. If Q is discrete then the set of possible steps in edit matrices is$nite.

Proof. Any element of an edit matrix is the sum of the costs of a series of edit opera-
tions. Therefore the steps are merely linear integral combinations of Q. By Lemma 3,
there is some real number b such that -b < s < b for any possible step s. Since 52 is
discrete, there is some real number r > 0 such that every step is a multiple of Y. Hence
there are at most 2[b/r] + 1 possible steps. 1

2.2. Computing the Edit Distance

The last stage of our algorithm, Algorithm 2, pieces together the (i, j, k) submatrices
generated by Algorithm Y to form the edit matrix of steps. Then the actual edit costs
can be calculated by summing the steps along any path to the end. Assume Fetch(R,
S, C, D) returns a pair of final vectors of the submatrix determined by strings C and D,

24 MASEK AND PATERSON

and initial step vectors R and S. P and Q are matrices of length m vectors. Graphically P
is the matrix of initial and final column vectors of m x m submatrices and Q is the
corresponding matrix of row vectors. Define the function Sum(vector) to be the sum of
a vector’s components. Finally assume m divides 1 A 1 and 1 B I.

Algorithm Z

for i = 1 to 1 A l/m do P(i, 0) := (DA ,*-,)n+l ,..., DA‘,);

forj = 1 to I B l/m do Q(O,j) := (IB,~_~),+~ ,..., 1~~~);
fori = 1 to I AI/mdo

forj = 1 to I B l/m do

(P(i,j), U(i, j)) := Fetch(P(i, j - l), Q(i - 1, j),
A(i-l,m+l.~m, B(j-l,m+l,h);

cost := 0;

for i = 1 to 1 A I/m do cost := cost + Sum(P(i, 0));

for j = 1 to 1 B i/m do cost := cost + Sum(Q(\ A I/m, j));

We will now assume I A j 3 1 B I. S ince we know how many vectors Algorithm Y
saved we can implement Fetch in time O(m + log / A I) by indexing into the RAM
memory. It uses time O(log I A 1) to read the relevant P and Q vectors plus time O(m)
to address and then read the saved vectors. The timing analysis of Z is now straight-
forward; it requires 0(I A I . I B l/m”) f t h e c es and assignments of length m vectors, and
hence, O(l A I 1 B / . (m + log / A 1)/m”) b asic steps. If we choose m = [log, I A IJ
then the entire algorithm (both Y and Z) runs in time O(l A I * I B l/m). (Algorithm Y
runs in time O(@).)

The O(l A I . I B I/ m 1 t ime bound is still achieved if m does not divide I A I and / B 1.
Just pad out A and B with a dummy character not in the string, say 4, until A and B
are multiplies of m. Then set Dm = I* = 0, and for all a in z, R,,, = D, and R6,a = I, .
Note that if m > / B 1 we can pad out B until it is length m so that our algorithm runs
in time O(l A I).

2.3. Edit Paths

Algorithms Y and Z describe how to compute the minimum edit cost between any
two strings. Now we will explain how to recover a sequence of edit operations that achieves
this minimum cost.

It is clear from the Wagner-Fischer algorithm that for any pair of strings A and B,
it is enough to consider edit sequences S with the following properties. Each initial
sequence 9 of S edits Ai to Bj for some i, j, and so corresponds to a matrix element.
Furthermore, successive elements correspond to a path through the matrix since for each
successive element either i, j, or both i and j, increase by 1. An edit path (Fig. 2) is any
such sequence of elements through the matrix, not necessarily starting at the (0, 0) cell.
The sequences of elements in an edit path model sequences of insertions, deletions, and

COMPUTING STRING EDIT DISTANCES 25

B

A hababaa

h Q 1 2 3 4 5 6
b 1 2 1 2 3 4 5
a 2 1 2 1 2 3 4
a 3 2 2 2 2 2 3
b 4 3 2 2. 2 3 4
a 5 4 3 2 3 2 3
b 6 5 4 3 2 3 4

FIG. 2. Paths in matrices. Assume A.,. = Rb.0 = 0, &,* = 1, Rb,,, = 2, and I = D = 1.
The underlined entries of the matrix form an edit path from (0, 0) to (5, 5) with cost 10. Its opera-
tions consist of D, D, I, R, R, R, I.

replacements according to their direction, and have costs depending on the symbols
involved. The cost of an edit path is the sum of the costs of its operations.

Wagner and Fischer described an algorithm for recovering the edit sequence from the
edit matrix by working backwards through it. The (i, j)th element of the matrix was
originally calculated from the (i, j - l)st, (i - 1, j)th, and (i - 1, j - 1)st elements
along with insert, delete, and replace operations. The characters Ai and Bj are known,
so it is easy to decide which operations could have given the value 6,,j . The procedure
outputs any such operation as the last step of the edit path and remembers the preceding
element (i, j - l), (i - 1, j), or (i - 1, j - 1). They applied this procedure recursively
on the remembered element of each “last step” until it reached the starting element
(0, 0). There are at most 2n steps in any optimal edit path, so this algorithm runs in time
O(n). We can use the same idea to recover the edit path from our discrete edit matrix
by regenerating the O(n/log n) log 71 x log n submatrices crossed by the optimal edit path.
This would take time O(n log n). Alternatively, if Algorithm Y was modified to save
every entry of each submatrix, and Algorithm 2 saved a pointer to each submatrix
whenever it was used, we could do this in linear time on a discrete edit matrix while
using space O(n2/log n).

2.4. Storage Requirements

Algorithm Y saves the initial and final step vectors for each of the submatrices. By
our choice of m, there are only O(n1/2) submatrices to save, so Algorithm Y’s storage
requirements are O(n1/2 log n) words.

The linear-time algorithm to construct an optimal edit sequence which was described
in Section 2.3 required O(n2/log n) p s ace, but if only the edit distance is required then
Algorithm 2 may be made more economical of space using an observation of Hirschberg
[4]. Since the ith row of submatrices depends only on the (i - 1)st row and the strings
A and B, Algorithm 2 can be modified to overwrite the (i - 2)th row with the ith row.
Then Algorithm 2, and the whole algorithm would require only linear space.

26 MASEK AND PATERSON

3. LONGEST COMMON SUBSEQUENCE

Let U and V be strings. U is a subsequence of length n of V if there exist 1 < ri < ...
-=c I, < 1 U] such that Vi = V,., . We say U is a longest common subsequence of A and B
if U is a subsequence of both A and B and there is no longer subsequence of both ,4
and B.

1 U 1 may be derived using the following cost function y:

R,,, = 0 if a=bEL’,

= 2 otherwise

D=I=l.

NowS=lAl+IBI---2/U], or IUi=(jAI+IBI--8))/2. Thedomainis
discrete, so if I .Z j is finite, we can compute I U I in time O(l A I * max(1, I B]/log I A I),
using Algorithms Y and 2. We can compute the actual string U using an algorithm
similar to our algorithm for recovering edit sequences. The cost function in this section
comes from [7].

4. DISCRETION Is NECESSARY

The number of steps in all possible n x n matrices for a given alphabet and cost
function has to be finite or very slowly growing for Algorithm Y to run efficiently. In
this section we demonstrate with an example that the set of possible steps can grow
linearly with the size of the strings. Algorithm Y has an exponential running time for the
strings and edit costs we define.

4.1. The Example

Our example gives a nondiscrete cost function with an unbounded number of steps.
Let 2 = {a, b, c>, then for all (T E Z define the cost function y:

R,., = 0,
R,, = %a = 1,

Rc,, = R,,, = R,,, = R,., = r,
I, = D, = 5.

A and B are generated as follows. First let A’ = baba... and B’ = abab... . We replace
some characters of A’ and B’ with c’s so that the number of c’s in Ai (and Bi) equals pi
where ,-k& = ~s~+~ =]2k/(2rr + I)]. (Note that the c’s only replace characters in even
positions.) Figure 3 shows the first 50 characters of A and B with the c’s inserted.

The edit costs are set up so the optimal paths contain many replacements, i.e., diagonal
steps. (Figure 4 shows the edit matrix with k = 10.) We define P(i, j, K) to be the
minimum cost for an edit path from (i, j) to (i + k, j + k). The eccentricity of (i, j) is

COMPUTING STRING EDIT DISTANCES 27

A60 = babababcbabababcbababcbabababcbabababcbababcbobabo

Bso = obobobocobobobocobobocobabobocababobacobobocabobob

FIG. 3. The first 50 characters of A and B.

A

B h b a b 0 b a b C b a

0 5 10 15 20 25 30 35 40 45 50
5 1 5 10 15 20 25 30 35 40 45

10 5 2 5 10 15 20 25 30 35 40
15 10 5 3 5 10 15 20 25 30 35
20 15 10 5 4 5 10 15 20 25 30
25 20 15 10 5 5 5 10 15 20 25
30 25 20 15 10 5 6 5 10 15 20
35 30 25 20 15 10 5 7 5+n 11 15
40 35 30 25 20 15 10 5 + r 7 5+2~11+~r
45 40 35 30 25 20 15 11 5 + 2a 8 5+2v
50 45 40 35 30 25 20 15 ll+a5+2r 9

FIGURE 4

j i - j] and we define P*(i, j, k) to be the minimum cost for any path from (i, j) to
(z’ + k, j + K) through points all of eccentricity at least j i - j /. Paths consisting solely
of replacements move down the diagonals of the edit matrix. There are two types of
diagonals, even and odd, corresponding to the parity of the eccentricity of their associated
paths. The odd diagonals correspond to paths with many cost 0 replacements (the a for
a and b for b replacements) and relatively few large cost replacements (the replacements
involving c’s) to keep the paths from getting too efficient. The even diagonals correspond
to paths with many small costs (the a for b and b for a replacements) and a few 0 cost
replacements (the c for c replacements) to keep them efficient enough. Since the c’s only
occur in even positions they can only match up on the even diagonals.

We will compute P(0, 0, n), P(0, 1, n), and P(1, 0, n) corresponding to the three
central diagonal paths. By inserting c’s with the precise densities chosen, none of the
diagonal paths gets too efficient so they do not interact. However, if we inserted the c’s
in any periodic pattern one of the diagonal paths would eventually become more efficient
and “overpower” another causing the pattern of steps to repeat. This would yield only
a bounded number of steps for the example.

4.2. Comparing the Paths

A path along an odd diagonal costs 7r times the number of c’s encountered in the path.
A path along an even diagonal costs the length of the path minus the number of c for c
replacements in the path, assuming the c’s match up. Note that the only place we can
guarantee that the c’s match up is the center.

28 MASEK AND PATERSON

LEMMA 5. P*(i, j, k) 3 k - pi+k + pi if i - j is even; P*(i, j, k) > (P~+~ - pi +
pj+k - p&r if i - j is odd.

Proof. We proceed by induction on k. If k = 0, the result is obvious. For k = 1
we can enumerate the cases.

(i) If i - j is even,

p*(i,j, 1) - 1 + Pi+1 - Pi = R4i+1,Bj+I - 1 + (Pi+1 - Pi)

>O

since if RAi+l,B,+, < 1 then A,,, = Bj+i = c and pi+i - pi = 1.

(ii) If i -i is odd

P*(i,.i 1) - (cL~+~ - CL< + ~j+~ - CLOT
z %+lJG+, - (Pi+1 - Pi + Pi+1 - Pib

= 0 if neither Ai+r nor Bj+l is c or if just one of Ai+i or Bi+r is c.

Note that A,+1 = Bjtl = c is impossible.

For k > 1 there are two cases to consider.

Case 1. P* is computed from two shorter paths with the same minimum eccentricity
(Fig. 5a). Therefore P*(i, j, k) = P*(i, j, k’) + P*(i + k’, j + k’, k - k’) for some
0 < k’ < k and the result follows directly.

Case 2. P* is computed from a path with a higher minimum eccentricity (Fig. 5b).
Without loss of generality, suppose i > j; then P*(i, j, k) = 5 + P*(i + 1, j, k - 1) + 5.
There are two cases to look at.

FIG. 5. (a, b) Alternatives to the diagonal paths.

(i) If i - j is even,

P*(i,j,k)-k++~+lc-pi=lO+P*(i+l,j,k-l)-k+$~+k-~t

> 10 + (Pi+k - Pi+1 + &+k-1 - Pj)"-k + &+k - PZ

2 10 + (2~ + I)(@ - 2)/(29r + 1) - 1) - k
> 7 - 2rr > 0.

We are using the inequality pLrts - pT > (S - 1)/(2= + 1) - I.

COMPUTING STRING EDIT DISTANCES 29

(ii) If i - j is odd,

‘*(t i k, - (k%+k - /-% + cLi+k - b+

= lo+p*(i+ l,jk- l)-(~i+k-~CLd+~~+k-CLi)~

2 lo + k - l - h+k + pi+1 - (h+k - pi + &+k - i$)T

2 9 + k - (27r + l)((k + 1)/(237 + 1) + 1)
= 7 - 2a > 0.

We are using the inequality t~r+~ - CL,. < (S + 1)/(297 + 1) + 1. 1

The diagonal path is optimal for the center diagonal since we showed P*(O, 0, /z)l>
k - pk and k - pk is achieved by that path. Now we need to show the two center odd
diagonal paths are optimal. The path DR” costs 5 + (P~+~ - pL1 + pk - &r = 5 +
(pkfl + pk)“*

LEMMA 6. For all k’ 0 < k’ < k

P*(O, 0, k’) + 5 + P*(k’ + 1, k’, k - k’) > 5 + (pk+l + pk)“.

Proof. The minimal cost path to (k + 1, k) consists of a path to (k’, k’), followed by
a deletion, followed by a path of eccentricity 1 from (k’ + 1, k’) to (k + 1, k). That path
has cost P*(O, 0, k’) + 5 + P*(k’ + I, k’, k - k’).

By lemma 5:

P*(O, 0, k’) + 5 + P*(k’ + 1, k’, k - k’)

3 k’ - pk’ + 5 + (pk+1 - pk'+l + pk - pk’)”

= 5 + (pk+l + pkh + k’ - (1 + rr> pk’ - mpk'+l

> 5 + (ll.k+l + pkh

because if k’ is even

(1 + T, pk’ + vpk’+l = (2’7 + 1) pk’ < k’

or if k’ is odd

(l + ?T)pk’ + npk'+l = (I + w, pk'-l+ Tpk'+l

< ((1 + 4(k' - 1) + +' + 1))/(297 + 1)

When the results of Lemmas 5 and 6 are applied to the three diagonal paths in the
center of the matrix we can calculate their string edit distances exactly.

30 MASEK AND PATERSON

LEMMA 7. For all k,

(a) h,, = k - pk and
(b) 6 &a?+1 = hc+,,, = 5 + h+1 + CL!&*

Proof. (a) Lemma 5 showed P*(O, 0, k) > k - pk: and k - pk is achieved by the
center diagonal path.

(b) Any path computing a,,,, must consist of a path with eccentricity 0 followed
by a deletion followed by a path with eccentricity 1. By Lemma 6 any such path must
cost at least 5 + &+I + p&r. The path consisting of a deletion followed by k replace-
ments (a center odd diagonal path) achieves this bound. 1

In this example all of our conditions but discreteness hold but Algorithm Y does not
work fast enough. Therefore discreteness is a necessary condition for using Algorithm Y.

THEOREM 5. Discreteness is a necessary condition for Algorithm Y to run in time O(kna)
on length m strings and step sequences.

Proof. By Lemma 7 in our example the edit distances along the main diagonal form
an increasing integer sequence, whereas the immediately adjacent diagonals are sequences
increasing by multiples of 7~. Since rr is irrational the number of different step sizes between
these diagonals increases linearly with n, the string length. Therefore Algorithm Y’s
running time would be about (Kn)” f or some k, and no effective use could be made of its
preprocessing. 1

5. CONCLUSION

We have presented an algorithm for computing the shortest edit distance between
two strings of length n in time O(n2/log n). The algorithm works if the alphabet is finite
and the domain for the cost function is discrete. Our analysis of an example shows the
need for the discreteness condition. We showed that there are cases violating the dis-
creteness condition when the algorithm does not work efficiently. The results in [l]
show our algorithm cannot work if the alphabet is infinite. The most important problem
remaining is finding a better algorithm for the finite alphabet case without the discreteness
condition.

The question of the complexity of the shortest edit distance problem for finite alphabets
is open. The best lower bound is linear in n [8], the upper bound is O(n2) or O(n2/log n)
depending on the discreteness condition. This gap seems too large and should be im-
proved.

ACKNOWLEDGMENTS

We are grateful for the interest and guidance during the course of this work given by Ron Rives&
Mike Fischer, Peter Elias, and Albert Meyer. In particular, the observation in Section 2 on [5],
and the topics addressed in Sections 2.3 and 2.4 are due to Meyer.

COMPUTING STRING EDIT DISTANCES 31

6. REFERENCES

1. A. V. AHO, D. S. HIRSCHBERG, AND J. D. ULLMAN, Bounds on the complexity of the longest
common subsequence problem, J. Assoc:Comput. Much. 23, No. 1 (1976), 1-12.

2. A. V. AHO, J. E. HOPCROFT, AND J. D. ULLMAN, “The Design and Analysis of Computer
Algorithms,” Addison-Wesley, Reading, Mass., 1974.

3. V. L. ARLAZAROV, E. A. DINIC, M. A. KRONROD, AND I. A. FARADZEV, On economic construction
of the transitive closure of a directed graph, Dokl. Akad, Nauk SSSR 194 (1970), 487-488
[in Russian]. English translation, So&t Math. Dokl. 11 No. 5 (1970), 1209-1210.

4. D. S. HIRSCHBERG, A linear space algorithm for computing maximal common subsequences,
CACM 18, No. 6 (1975), 341-343.

5. J. E. HOPCROFT, W. J. PAUL, AND L. G. VALIANT, On time versus space and other related
problems, in Proceedings, 16th Annual Symposium on Foundations of Computer Science,
Berkeley, 1975,” pp. 57-64.

6. R. LOFCE +ND R. A. WAGNER, An extension of the string to string correction problem,
J. Assoc. Comput. Mach. 22, No. 2 (1975), 177-183.

7. R. A. WAGNER AND M. J. FISCHER, The string to string correction problem, j. Assoc. Comput.
Much. 21, No. 1 (1974), 168-183.

8. C. K. WONG AND A. K. CHANDRA, Bounds for the string editing problem, J. Assoc. Comput.
Mach. 23, No. 1 (1976), 13-16.

