SECTION 7
Advanced data structures
SECTION 7.1
Aggregate analysis
Total Distance: 10km
Moving Time: 58:27
Moving Time: 53:16
Running time of each operation, in a run of Dijkstra’s algorithm

- **popmin**
- **push**
- **decreasekey**

with a binary heap

with a binomial heap

Don’t worry about the worst-case cost of each individual operation.

Worry about the worst-case aggregate cost of a sequence of operations.

\[
\text{total time} = O(V) \times c_{\text{popmin}} + O(E) \times c_{\text{push/dec.key}}
\]
The worst case for a sequence of operations might not be as bad as the sum of per-op. worst cases. (This is the hallmark of an advanced data structure.)
Adding an item to a binomial heap

The worst case for a sequence of operations might not be as bad as the sum of per-op. worst cases. (This is the hallmark of an advanced data structure.)
The worst case for a sequence of operations might not be as bad as the sum of per-op. worst cases. (This is the hallmark of an advanced data structure.)
Adding a second item to a binomial heap

The worst case for a sequence of operations might not be as bad as the sum of per-op. worst cases. (This is the hallmark of an advanced data structure.)

Worst-case cost of add is $O(\log n)$, $n = \#\text{items in heap}$.

Worst-case cost of two adds is $O(1+\log n)$.
How can we reason about aggregate costs?

❖ Just be clever and work hard
❖ Use an accounting trick called *amortized costs*

Analysis of running time for recursive dfs

```python
# visit all vertices reachable from s
def dfs_recurse(g, s):
    for v in g.vertices:
        v.visited = False
    visit(s)

def visit(v):
    v.visited = True
    for w in v.neighbours:
        if not w.visited:
            visit(w)
```

- \(O(V) \)
- \(O(E) \)
- run at most once per vertex, so \(O(V) \)
SECTION 7.2, 7.3

Amortized costs
class MinList<T>:
 def append(T value):
 # append a new value
 def flush():
 # empty the list
 def foreach(f):
 # do f(x) for each item
 def T min():
 # return the smallest
 # (without removing it)

Stage 0
- Use a linked list
- \texttt{min} iterates over the entire list

Stage 1
- Use a linked list
- \texttt{min} caches its result, so that next time it only needs to iterate over newer values

Stage 2
- Use a linked list
- Store the current minimum, and update it on every append

Stage 3
- \texttt{min} caches its result, the same as Stage 1
- ... but we argue it’s just as good as Stage 2
Stage 3

- \min caches its result, the same as Stage 1
- ... but we argue it’s just as good as Stage 2

We get the same answer for aggregate cost whether we add true costs or "amortized" costs.
FUNDAMENTAL INEQUALITY OF AMORTIZATION

Let there be a sequence of m operations, applied to an initially-empty data structure, whose true costs are $c_1, c_2, ..., c_m$. Suppose someone invents $c'_1, c'_2, ..., c'_m$. These are called **amortized costs** if

$$c_1 + \cdots + c_j \leq c'_1 + \cdots + c'_j$$

for all $j \leq m$.

$$\text{aggregate true cost of a sequence of } ops \leq \text{ aggregate amortized cost of those operations }$$

for any sequence of ops.
I've designed a data structure that supports push at amortized cost $O(1)$ and popmin at amortized cost $O(\log N)$, where the number of items never exceeds N.

This makes it easy for the user to reason about aggregate costs.

For any sequence of $m_1 \times$ push and $m_2 \times$ popmin, applied to an initially empty data structure,

$$\text{worst-case aggregate cost} \leq m_1 O(1) + m_2 O(\log N) = O(m_1 + m_2 \log N)$$

i.e. there exist N_0 and $\kappa > 0$ such that, for any $N \geq N_0$, and for any sequence of of $m_1 \times$ push and $m_2 \times$ popmin on a data structure that starts empty and always has $\leq N$ elements,

$$\text{worst-case aggregate cost} \leq \kappa(m_1 + m_2 \log N)$$
SECTION 7.4
How on earth are we meant to come up with useful amortized costs?

SECTION 7.5
Please review the Binary and Binomial heaps, before Wednesday’s lecture.